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Abstract
The author has for many years kept a watching brief on the experimental study of
nuclear electro-magnetic moments. Accurate values of nuclear magnetic dipole and electric
quadrupole moments are a major product and the life blood of hyperfine interaction studies
and their manifold applications. This paper outlines recent changes in the type of moment
measurements being undertaken and the effect of modern complex electronic configuration
computation on the extracted moment values.
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1 Introduction

It is close to thirty years since I accepted an invitation from Richard Mayer to undertake
bringing the nuclear electro-magnetic moment table up to date following the 1989 listing by
Raghavan [1]. Subsequently tables containing compiled references were published in 2004
and 2011 and the 2011 versionwas used byMertzimekis [2] to set up the IAEAon-line nuclear
electro-magnetic moment database in 2016. The most recent tables are IAEA publications
[3–5]. These give single recommended values for each quantity and the same data have been
incorporated in the database with fully updated lists of all references.

This short paper describes developments in the field of nuclear moments in recent years.
Topics are, on the experimental side, the changing profile of new results as older facilities
are closed, with the emergence of large laser-based groups at isotope separator facilities
as the major source of new results and a much-reduced flow of data on short-lived states.
Enhanced computation techniques are now making important contributions in both the area
of electric field gradient calculations allowing extraction of improved electric quadrupole
moments and in providing a new level of knowledge of diamagnetic corrections to magnetic
dipole moments.
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Fig. 1 Number of results by type and year. Horizontal bars represent decade averages

2 What is beingmeasured?

Figure 1 shows the number of results now listed as recommended values for magnetic
dipole moments of long-lived (≥ 1 ms) and short-lived nuclear states and of nuclear electric
quadrupole moments by year of publication over three decades from 1990 to 2020. The data
show that for the first decade the average numbers in each category were all close to 20 per
annum. Many techniques are represented both for long and short-lived states. After 2010 the
numbers tell a very different story. Although the total number of results in the third decade
remains close to 600 the number of measurements by the integral and time dependent angu-
lar correlation/distribution techniques fell close to zero and the total for short-lived states by
close to 50%. This reflected the rapid fall in the number of groups working in this area and
the closure of many smaller facilities which supported such work. New results are dominated
by work on broad isotopic ranges of long-lived states which are produced by the several
large groups using sophisticated laser-based techniques working at isotope separators such
as ISOLDE, CERN. The field is in dire need of new initiatives yielding short-lived state
moments. Ideas involving sophisticated detector arrays with complex sources exist. These
aim to measure attenuation of correlations through hyperfine interactions in recoiling ions.
Such experiments can utilise fission sources but require extended data taking and complex
analysis.

2.1 Nuclear dipole moments

The latest ISOLDE group publication on the sequence 112−133Sb [6] exemplifies these devel-
opments. It gives results for magnetic dipole and electric quadrupole moments of 19 ground
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and isomeric states. Its appearance has personal echoes for me as one who had been involved
with measurements on most of the heavier Sb isotopes over a long period using the technique
of NMR on Oriented Nuclei (NMR/ON). The new results show no major discrepancies with
existing dipole moment data but many of the quadrupole moments are measured for the first
time.

What is most appealing from the nuclear data point of view concerning the new data is
that the whole sequence of isotopes was measured over a limited time in a single sequence
using the same equipment. This avoids potential systematic differences which can make the
assessment of the work of different groups using different methods and equipment, or even a
single group over a period of years, problematic. As compared to the older NMR/ON data for
which the results depended on a measurement of the hyperfine field at an Sb ion implanted
into iron, known only to about 1%, the new data gives results by ratio with data taken in the
same experiment on stable 123Sb for which the magnetic dipole moment is claimed to be
known to better than 0.1%. Thus magnetic dipole moments for the other measured states are
achieved with errors smaller by an order of magnitude than previous results.

Which raises the question; how was the referenced 123Sb dipole moment determined?
The value taken by [6] is +2.5457(12) n.m. from Ref. [3]. This value originates from the
NMR result of Proctor and Yu [7] who give a moment of 2.5341(4) n.m. based on the ratio
of the 123Sb resonance to that of 2D in the same magnetic field. The raw experimental data
requires correction for diamagnetic effects in the Sb and D (deuteron) chemical forms used
but Proctor and Yu regarded the knowledge of the corrections as inadequate at that time and
their results were published without correction. The correction, by close to 0.5%, applied to
reach the value adopted by Lechner et al. requires explanation.

The calculation of the degree to which complex chemical electronic configurations react
to screen an applied magnetic field and reduce its magnitude at a nucleus, the diamagnetic
correction σ , is not simple. An early estimate of the effect in atoms was made by Lamb
[8]. Later Dickinson [9] made Hartree theory calculations for atoms which gave the moment
adjustment required, (1+σ ), as 1.0052 forSb.Thiswas adopted,with an estimateduncertainty
of 5%, by Fuller [10] in her comprehensive nuclear moment and method listing of 1976. The
Dickinson corrections were found to be too small by Lin, Johnson and Feioch (LJF) who
made Hartree-Fock calculations (later published in expanded form [11]) for neutral atoms
with result (1 + σ ) = 1.00642 for Sb. This value was taken by Raghavan [1] but no uncertainty
in the correction was allowed for.

In the last 20 years multi-electron configuration calculations have advanced in sophis-
tication and considerable effort has been made to improve our knowledge of diamagnetic
correction factors (also known as chemical shifts) in many systems. As discussed in the
preamble to Refs. [3, 4] the improved calculations are closer to the Dickinson than the LJF
values. Considering data for all elements for which there have been specific modern cal-
culation the best estimate of the correction where there has been no recent calculation is
σ=0.75(10)σL J F . Hence the value (1 + σ ) = 1.00481(48) for Sb applied giving the recom-
mended value of the 123Sb dipole moment. N.B. the adopted moment of 2D has also been
revised resulting in a further small adjustment in the 123Sb dipole moment value.

2.1.1 Other diamagnetic correction developments

As mentioned above modern calculations had provided improved diamagnetic corrections
applicable to magnetic dipole moments of 29 elements by the date of preparation of [3, 4].
These are calculations specific to the chemical environments in which the measurements
were made. The results show decisively that the many examples of apparently discrepant,
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Fig. 2 Applied field correction factor as a function of atomic number Z. Black dots: LJF correction as adopted
byRaghavan [1].Grey shaded: correctionwith uncertainty as adopted byStone [3, 4]. Coloured dots: correction
for 3d, 4d, 5d elements calculated by Antusek and Repisky [12]. For details see text

extremely precise, magnetic dipole values presented in older tabulations resulted from the
different chemical systems in which the measurements were made, with associated different
corrections. What of the remaining 70+ elements?

In 2020 Antusek and Repisky [12] published the first sophisticated calculation for tran-
sition metals covering the 3d, 4d and 5d elements (Fig. 2). Their results revealed that in the
chemical systems used for accurate moment determination for these elements the applica-
tion of a magnetic field not only produced diamagnetic reduction of the field at the nucleus
but also acted to induce a small paramagnetic moment which enhances the field. The latter
effect, which had hitherto been neglected, much reduced the overall screening and, in several
cases gave overall field enhancement. These new findings, with their estimated uncertainties,
provide new magnetic dipole moments for all stable isotopes taken as reference moments
for these elements and resolved many discrepancies in the literature. Although the changes
are less than 1% in the great majority of cases, because they affect the values of stable
ground state moments taken as reference values in e.g. laser spectroscopic measurements,
they necessitate adjustment of both magnitude and error for the moments of many states.

For the remaining elements the estimated correction, with associated uncertainty, as
described above for the example of Sb, is the best we have.

2.2 Electric quadrupole moments

The currently accepted values of nuclear electric quadrupolemoments have also been strongly
influenced by advances in computation which have produced more changes in recent years
than any experimental development. The reason is that the measured quadrupole interaction
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is the product of the moment eQ with the electric field gradient at the nucleus, usually written
as eq ; the latter cannot be measured directly but must be calculated. Improved calculation
of eq in atoms, ions, molecules and metals has changed the quadrupole moment values
extracted from quadrupole interaction measurements by considerable factors. For the last
twenty years or so Pyykko has published a series of papers reporting on these developments
and offering ‘reference values’, usually for ground states of stable isotopes [13–15]. Using
these reference values, techniques such as laser spectroscopy,which yield ratios of quadrupole
interactions, can obtain quadrupole moments for different isotopes and excited states. The
recent laser spectroscopy study of antimony isotopes once more offers an excellent example
of how the accepted Sb quadrupole moments have been dramatically changed by the recent
developments. New eq calculations have led to a revision far greater than any experimental
result. As described by Pyykko in his 2008 paper [14], until 2006 the ground state quadrupole
moment of 121Sb was taken to be Q(121Sb) = - 0.36(4)b based on atomic and molecular
spectroscopy and old eq calculations. In that year two newmolecular eq results led to revision
of the moment to Q(121Sb) = - 0.543(11)b, an increase of 51% in that value and all others
determined from it by ratio, as in the recent ISOLDE group study.

3 Conclusion

The contraction of activity involving short-lived state nuclear moments is to be regretted as it
denies theory the detailed information which knowledge of energy, spin and parity of a state
cannot provide. For longer-lived states the laser techniques find ways to work with weaker
beams and more complex excitations and the development of in-source ionisation methods
is encouraging. Regarding electric quadrupole moments the 121Sb example described is
not alone and there have been major value adjustments for other elements in recent years.
Quadrupole moments of V, Pm, Pb (60%) and Am have uncertainties of more than 10% and
at this time there remain a further seventeen elements, Si, P, Ar, Ag, Cd, Te, Ce, Ce, Tm, W,
Pt, Tl, Po, At, Cm, Bk and Cf which have no sound ‘modern’ eq calculation and hence no
reference moment is established. There is clearly much work to be done.
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