Skip to main content
Log in

\(\beta \)-MRI: new imaging device utilizing \(\beta \)-NMR

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

\(\beta \)-detected nuclear magnetic resonance (\(\beta \)-NMR) is a powerful research tool in nuclear physics and material sciences. In this study, we integrated an imaging function into a \(\beta \)-NMR instrument. Specifically, we installed position-sensitive detectors to create a magnetic resonance imaging device, which we have named the \(\beta \)-MRI. We conducted experiments to evaluate the performance of this device by irradiating spin-polarized \(^{12}\)B beams on a sample, and successfully generated its material mapping image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Conner, D.: Measurement of the nuclear \(g\) factor of Li\(^{8}\). Phys. Rev. Lett. 3, 429 (1959). https://doi.org/10.1103/PhysRevLett.3.429

    Article  ADS  Google Scholar 

  2. Sugimoto, K., Mizobuchi, A., Nakai, K., Matsuda, K.: Magnetic moments of F\(^{17}\) - nuclear magnetic resonance by polarization following O\(^{16}\)(d, n)F\(^{17}\) reaction -. J. Phys. Soc. Jpn. 21, 213 (1966). https://doi.org/10.1143/JPSJ.21.213

    Article  ADS  CAS  Google Scholar 

  3. Sugimoto, K., Nakai, K., Matsuda, K., Minamisono, T.: Magnetic moments of short-lived \(\beta \)-radioactive nuclei, \(^{12}\)B and \(^{12}\)N. J. Phys. Soc. Jpn. 25, 1258 (1968). https://doi.org/10.1143/JPSJ.25.1258

    Article  ADS  CAS  Google Scholar 

  4. Kawashima, Y., Watanabe, Y., Yamazaki, T.: A new analog detection system with target-imaging capability for \(\mu \)SR measurement in a pulsed muon beam. Nucl. Instrum. Methods A 274, 241 (1989). https://doi.org/10.1016/0168-9002(89)90386-0

    Article  ADS  Google Scholar 

  5. Kaplan, N., et al.: Non-resonant zeugmatography with muons (\(\mu SI\)) and radioactive isotopes. Hyperfine Interact 87, 1031 (1994). https://doi.org/10.1007/BF02068501

    Article  ADS  CAS  Google Scholar 

  6. Chow, K.H., et al.: MULTI-new detector, new logic, new science. Phys. B: Condens. 326, 279 (2003). https://doi.org/10.1016/S0921-4526(02)01630-7

    Article  ADS  CAS  Google Scholar 

  7. Shiroka, T., et al.: Exploring the performance of \(\mu \)SR position-sensitive detectors through numerical simulations. Nucl. Instrum. Methods A 591, 306 (2008). https://doi.org/10.1016/j.nima.2008.03.079

    Article  ADS  CAS  Google Scholar 

  8. Agostinelli, S., et al.: GEANT4 - a Simulation Toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  CAS  Google Scholar 

  9. Mizoi, Y., et al: Development of \(\beta \)-ray tracker for \(\beta \)-NMR spectroscopy and imaging. Proc. of the 36th Workshop on Radiation Detectors and Their Uses 2022-3, 54 (2023)

  10. Kanazawa, M., et al.: Present status of secondary beam courses in HIMAC. Nucl. Phys. A 746, 393 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.083

    Article  ADS  CAS  Google Scholar 

  11. Izumikawa, T.: Hyperfine Interactions of Short-lived 12B in Si Crystal. Doctral Dissertation, Graduate School of Science, Osaka University, Japan (1999)

  12. Abragam, A.: The Principles of Nuclear Magnetism. Oxford University Press (1961)

  13. Tarasov, O.B., Bazin, D.: LISE\(^{++}\): Exotic beam production with fragment separators and their design. Nucl. Instrum. Methods B 376, 185 (2016). https://doi.org/10.1016/j.nimb.2016.03.021

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Electronics Research Institute (FERI) of the Osaka Electro-Communication University (OECU). This work was performed under the Research Project with Heavy Ions at QST-HIMAC.

Funding

Fundamental Electronics Research Institute (FERI) of the Osaka Electro-Communication University (OECU).

Author information

Authors and Affiliations

Authors

Contributions

Y.M. and M.M. wrote the main manuscript text and draw all figures. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yutaka Mizoi or Mototsugu Mihara.

Ethics declarations

Ethics approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizoi, Y., Mihara, M., Kimura, Y. et al. \(\beta \)-MRI: new imaging device utilizing \(\beta \)-NMR. Hyperfine Interact 245, 20 (2024). https://doi.org/10.1007/s10751-024-01859-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01859-4

Keywords

Navigation