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Abstract
Synchrotron based nuclear forward scattering (NFS) experiments using the 193Ir nucleus 
have been performed for the first time on a dinuclear iridium(I) complex, [IrCl(COD)]2 
with COD being cycloocta-1,5-diene. This complex serves as a catalyst for hydrogenation 
and other chemical reactions. Both, the obtained absolute values of the isomer shift 
� = 0.87 mm s

−1 and the quadrupole splitting �EQ = 3.82 mm s
−1 agree within the 

experimental error with values obtained via conventional 193Ir Mössbauer spectroscopy 
reported earlier (Gál M. et al. J. Radioanal. Nucl. Chem., 260 (1) 2004, 133). In addition, 
we present density functional theory (DFT) calculations of the complex yielding its 
electronic structure and related Mössbauer parameters.

Keywords  193Ir nuclear forward scattering · 193Ir Mössbauer spectroscopy · Density 
functional theory · Iridium complexes

1  Introduction

Mössbauer spectroscopy using the 73 keV transition from the I = 3/2 ground to the I = 1/2 
first excited state of 193Ir has been considered as an optimal method to study hyperfine 
interactions in iridium containing materials because of its low natural line width of 
0.625 mm s

−1 [1]. However, 193Ir Mössbauer spectroscopy requires 193Os as a radioactive 
source which has a half life time of 31d and needs to be prepared via neutron irradiation by 
a 192Os(n,γ)193Os reaction [2, 3]. This has hampered more widespread applications of 193Ir 
Mössbauer spectroscopy in the past although the 193Ir isotope has a high natural abundance of 62%.
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The high brilliance at modern synchrotron sources and the recent development of mon-
ochromator systems for 73 keV with an energy resolution of 160 meV at the Dynamics 
Beamline P01 (PETRA III, DESY, Hamburg) now enables to excite the 73 keV level from 
the ground state to perform coherent nuclear forward scattering (NFS) experiments using 
the 193Ir nucleus. This set-up has been developed and used by Alexeev et  al. [4] for the 
studies of magnetic and electronic properties of iridates which display both strong spin 
orbit coupling and strongly correlated electron systems.

Iridium containing materials play an important role in chemistry. For example, in photo-
chemistry molecular iridium complexes are used in organic light-emitting diodes (OLEDs) [5, 
6], organic solar cells [7], in photocatalysis [8], in car exhaust catalysts but also recently for 
initiating “water oxidation reactions " [9, 10]. In this process water is catalytically split into 
hydrogen and oxygen, a prerequisite to enable hydrogen as a sustainable storable energy source.

Here, we report the first 193Ir NFS experiments on a molecular material, namely a dinuclear 
iridium(I) complex, [IrCl(COD)]2 [11] with COD being cycloocta-1,5-diene (Fig.  1). This 
complex serves as a catalyst for hydrogenation and other chemical reactions [12–22]. It has been 
investigated by conventional 193Ir Mössbauer spectroscopy in the past [23, 24] which makes this 
system ideal for elucidating the potential of 193Ir NFS with respect to its chemical applications. 
In addition, we present density functional theory (DFT) calculations, which have been used to 
calculate the isomer shift and the quadrupole splitting of the dinuclear iridium(I) complex.

2 � Materials and methods

Di-µ-chlorobis[(1,2,5,6-η)-1,5-cyclooctadiene]diiridium (C16H24Cl2Ir2; CAS No.: 
12112-67-3) was synthesized as described in [25]. For 193Ir NFS experiments the sam-
ple was filled in a hole with a diameter of 2  mm and a length of 4  mm of a sample 

Fig. 1   Structural view of the dinuclear iridium(I) complex [IrCl(COD)]2 investigated in this study. Ir atoms 
are displayed in dark blue, chloride atoms in green, carbon atoms in dark grey and hydrogens in grey [11]
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holder made of aluminium. The sample was tightly pressed into the sample volume and 
sealed with aluminium tape.

193Ir NFS experiments were performed at the Dynamics Beamline P01 (PETRA III, 
DESY, Hamburg) using the 40-bunch mode with a time separation of 192 ns between 
the electron bunches of the PETRA III storage ring.

The synchrotron radiation (SR) generated by the undulator source was 
monochromatized with a double-crystal monochromator (DCM) consisting of two 
Si(311) crystals (see Fig.  2) to about 10  eV. The medium resolution monochromator 
(MRM) reduced the energy bandwidth to about 160 meV. The MRM consisted of two 
asymmetric channel-cut silicon crystals, a Si(422) collimator crystal and a Si(800) 
energy selector crystal. Subsequently, the SR, monochromatized to 73.0  keV, was 
transmitted through the sample mounted in a He-closed cycle cryostat from Advanced 
Research Systems, Inc. The delayed resonantly scattered radiation was detected with 
an avalanche photo diode (APD) detector array. The APD detector allowed a time 
resolution of ∼0.6 ns and 193Ir-NFS time spectra could be obtained as early as 3 ns after 
the excitation by the SR pulses by using time gated electronics.

For the determination of the quadrupole splitting ( �EQ ) and the isomer shift ( � ) the 
193Ir-NFS data were analyzed with the CONUSS software [26] as described in Alexeev 
et al. [4].

DFT calculations were used to calculate the hyperfine parameters � and �EQ 
on the basis of the crystal structure of [IrCl(COD)]2 [11]. Structure optimization 
and Natural bond orbital (NBO) analysis [27] was performed with Gaussian 16 
[28] using Grimme’s dispersion with the original D3 damping function [29] for 
the functional TPSSTPSS and the basis set QZVP [30, 31]. Kohn-Sham Molecular 
orbitals (MOs) and their energies were calculated and graphically represented by 
the Gauss View mode.

With the optimized structures, calculations of the hyperfine parameters were per-
formed using the Orca 5.0 programme [32]. For this purpose, all-electron calculations 
of the SARC​ (segmented all-electron relativistically contracted) basis sets were used, 
which have been specially developed for scalar relativistic calculations and have been 
adapted to the Douglas-Kroll-Hess Hamiltonian of the second order (DKH2) [31]. The 
DKH-def2-TZVP basis set [30] was used for C, H, F, Br and Cl and the SARC-DKH-
TZVP basis set [33] was used for the two Ir atoms. Calculations were performed with 

Fig. 2   Set-up for 193Ir NFS at beamline P01, PETRA III: DCM - double crystal monochromator consisting 
of Si (311) single crystals (grey); MRM - medium resolution monochromator consisting of Si(422) (blue) 
and Si(800) (dark grey) single crystals
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both TPSS and B3LYP functionals. The convergence criteria and grid points for the self-
consistent field (SCF) calculations were set to Tight SCF (energy change 1 ⋅ 10−8au ). 
All SCF calculations were performed with the resolution of the Identity Approximation 
(RI) [34]. The programme Orca_eprnmr implemented in Orca was used to calculate the 
electron density �

0
 and the electric field gradient (EFG) tensor at the iridium core [34].

3 � Results and discussion

Figure 3 shows a 193Ir NFS spectrum of [IrCl(COD)]2 obtained at T = 10 K. The spectrum 
shows a beating pattern with a time period of about 5 ns which originates from the non-
zero EFG of the two equivalent Ir sites in [IrCl(COD)]2. The beating pattern could be suc-
cessfully reproduced by a simulation with CONUSS which gave �EQ = 3.82(4) mm s

−1 . 
There are small deviations between experimental and simulated data occurring at > 25 
ns which may be due by some spurious bunches of the synchrotron. Nevertheless, the so 
obtained value of the quadrupole splitting is in excellent agreement with those obtained 
by conventional 193Ir Mössbauer spectroscopy for this complex at liquid He temperatures 
( 3.81(2) mm s

−1 [23] and 3.85(2) mm s
−1 , respectively [24]).

For the determination of the isomer shift a data set with a metallic iridium foil as a single-
line reference was collected. The corresponding 193Ir  NFS spectrum is shown in Fig.  4. The 
interference of the 73  keV resonantly scattered quanta originating from the iridium foil and 
the [IrCl(COD)]2 sample leads to the disappearance of the regular beating structure visible in 
Fig. 3. A simulation with CONUSS using two Ir sites with �EQ = 3.82 mm s

−1 representing 
[IrCl(COD)]2 and �EQ = 0 mm s

−1 for the metallic Ir foil yields � = ±0.87(4) mm s
−1 for the 

complex. It is important to note that the sign of � cannot be obtained using the set-up displayed in 
Fig. 4. Indeed, conventional 193Ir Mössbauer spectroscopy showed that the sign of the isomer shift 
of [IrCl(COD)]2 is negative. Nevertheless, the absolute �-value obtained in this study is in excel-
lent agreement with the reported values of −0.88(1) mm s

−1 [23] and −0.87(1) mm s
−1 [24].
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Fig. 3   193Ir NFS spectrum of [IrCl(COD)]2 obtained at 10 K (black circles) (left) with the APD detector 
mounted behind the sample inside a closed cycle cryostat (right). The red line is a simulation performed 
with CONUSS [20] yielding �EQ = 3.82(4) mm s

−1  
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It has been shown by [35] that experimentally observed isomer shifts are related to 
the theoretically calculated electron density at the iridium nucleus �calc

0
 via the following 

relation:

The parameters a, b and c are fit parameters which need to be obtained from a series 
of complexes with known experimental values of � and calculated �calc

0
 which can be 

obtained by DFT methods based on known molecular structures. For 57Fe containing 
complexes this approach has been shown by various authors to be very successful 
[36, 37] The same strategy has been used recently within the frame of a DFT study to 
calculate 193Ir Mössbauer spectroscopic parameters [34].

For the determination of �calc
0

 of the complex [IrCl(COD)]2 investigated in this study 
DFT calculations of the various iridium(I), iridium(III) and iridium (IV) complexes 
listed in ref. [34] were repeated with the Orca 5.0 programme [32] as described in the 
Materials and Methods section. Table  1 provides a list of the iridium complexes and 
experimental � values and lists the charge and multiplicity of the complexes used for 
the calculations. The Cartesian coordinates of the complexes were taken from [34]. Our 
DFT calculations performed with both, the functional TPSS and B3LYP gave slightly 
different�calc

0
 values than reported in ref. [34] (Table 1) and were used to perform a lin-

ear regression analysis between �calc
0

 and measured � values as shown for both func-
tionals in Fig. 5. For [IrCl(COD)]2 we obtain electron densities at the iridium core of 
2657326.5773 au−3 when using TPSS and 2658125.7642 au−3 when using B3LYP. With 
the parameters a, b and c given in Table 2 the calculated isomer shifts for the complex 
are �TPSS = −0.58 mm s

−1 and �B3LYP = −0.65 mm s
−1 . Although the absolute values of 

� = a
(

�
calc
0

− b
)

+ c
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Fig. 4   193Ir  NFS spectrum of [IrCl(COD)]2 obtained at 10  K (black circles) (left) with an iridium foil 
mounted in the beam path (right). Temperature of the iridium foil was 300 K. The red line is a simula-
tion performed with CONUSS [20] using �EQ = 3.82(4) mm s

−1 for the Ir sites of [IrCl(COD)]2 yielding 
� = 0.87(4) mm s

−1 for the complex
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the calculated isomer shifts are below the experimental value of � = −0.87 mm s
−1 the 

DFT calculations also give a negative sign of the isomer shift as has been observed by 
conventional 193Ir Mössbauer spectroscopy.

The DFT calculations performed in this study also deliver the main components of 
the EFG tensor Vxx , Vyy and Vzz in its principal axis system ( ∣ Vxx ∣≤∣ Vyy ∣≤∣ Vzz ∣ ). With 

Table 1   Experimental isomer shifts � of iridium complexes listed in ref. [2, 23, 24, 34, 38] and calculated 
electron densities at the iridium nucleus �calc

0
 obtained by DFT calculations performed in this study with the 

functionals TPSS and B3LYP 

Complex �
[

mm s
−1
]

Ref. Charge Multiplicity �calc
0TPSS

[au−3]
�calc

0B3LYP

[au−3]

[IrIIIBr6]3− -2.23(3)  [2] -3 1 2657283.0545 2658084.3623
[IrIIICl6]3− -2.26(3)  [2] -3 1 2657280.9270 2658082.1558
trans-[IrIIICl4(py)2]− -1.73(3)  [38] -1 1 2657305.2701 2658105.3922
[IrIII(SCN)6]3− -1.65(3)  [38] -3 1 2657306.0747 2658107.5108
[IrIII(NH3)6]+3 -1.51(2)  [38] + 3 1 2657300.3303 2658100.6602
[IrIII(CN)6]3− 0.26(1)  [2] -3 1 2657336.2254 2658137.5882
[IrIVBr6]2− -1.10(2)  [2] -2 2 2657306.4264 2658110.7226
[IrIVCl6]2− -0.95(2)  [2] -2 2 2657307.8814 2658112.2327
trans-[IrIVCl4(py)2] -0.67(2)  [38] 0 2 2657321.8203 2658125.4879
trans-[IrIBr(CO)(Phh3)2] 0.010(15)  [34] 0 1 2657345.5671 2658144.8336
trans-[IrICl(CO)(Phh3)2] -0.06(10)  [34] 0 1 2657346.4855 2658145.7629
trans-[IrIF(CO)(Phh3)2] 0.28(10)  [34] 0 1 2657349.7936 2658148.8378
trans-[IrIIICl(Cl)2(CO)(Phh3)2] -0.480(15)  [34] 0 1 2657330.2666 2658132.1362
trans-[IrIIICl(O2)(CO)(Phh3)2] -0.290(15)  [34] 0 1 2657332.8288 2658134.4527
trans-[IrIIICl(H)(Cl)(CO)

(Phh3)2]
0.240(15)  [34] 0 1 2657346.8556 2658148.5975

trans-[IrIIICl(H)2(CO)(Phh3)2] 0.350(15)  [34] 0 1 2657348.3391 2658149.9957
[IrICl(COD)]2 -0,87(1)

-0,88(1)
 [24]
 [23]

0 1 2657326.5773 2658125.7642

Fig. 5   Experimental � -values as a function of calculated �
0
-values for the TPSS (a) and B3LYP (b) func-

tionals. The black points represent the experimental data (Table 1) and the red line the result of a linear 
regression analysis with parameters a, b and c listed in Table 2
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the asymmetry parameter � = (Vxx − Vyy)∕Vzz and the quadrupole moment Q the quadru-
pole splitting is given as:

Taking Q = 0.751 b for the first excited nuclear state of 193Ir and the expression 
eQVzz

[

mm s−1
]

= (eQVzz[J] × c
[

mm s−1
]

)∕E
�
[J] with the speed of light c in units of 

mm s−1 allows to obtain �EQ in its usual units since the DFT package ORCA delivers the 
EFG tensor components in units of au.

In this way we obtained for both functionals TPSS  and  B3LYP  a positive 
sign of the quadrupole splitting and slightly different absolute values of 
�EB3LYP

Q
= +4.70 mm s

−1
; �

B3LYP
= 0.29 and �ETPSS

Q
= +4.25 mm s

−1
; �

TPSS
= 0.43 . 

Giving the fact that for quadrupole splittings of 57Fe containing compounds deviations 
between experimental and DFT calculated  �EQ values in the order of ∼ 1 mm s

−1 
are not uncommon [39] we consider the agreement with the experimental value of 
�EQ = 3.82 mm s

−1 at least for the complex [IrCl(COD)]2 investigated here as reasonable.
 Gal et al. [24] argued that � = −0.87 mm s

−1 of [IrCl(COD)]2 is unusually high com-
pared to other Ir(I) complexes which show typically � ∼ −4 mm s

−1 . They attributed this 
to a σ donation into the 6s orbitals as well as hybridization of the 6s with the 5 dz2 orbitals. 

�EQexp
=

eQVzz

2

√

1 +
�2

3

Table 2   Parameters of the linear 
regression analysis shown in 
Fig. 5 for the TPSS and B3LYP 
functionals

R2 represents goodness of fit

TPSS B3LYP

a[mm s
−1
au

−3] 0,040(4) 0,041(3)

b[au−3] 2,657,281 2,658,082
c[mm s

−1] -2,393(216) -2,454(184)
R2 0,83793 0,8841

Fig. 6   Coordinate axes system of the electronic orbitals of the right iridium atom of the complex chosen 
from the symmetry axis of the dz2 orbital. Note that inversion of the z-axis would interchange the x and y 
axes. The latter were chosen from the symmetry axes of the p orbitals
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According to our NBO analysis, the electron configuration of the iridium is 6s(0.48)5d( 
8.02)6p( 0.32)7p( 0.19). The eight occupied MOs with 5d character according to the refer-
ence frame given in Fig. 6 are shown in Fig. 7. Our calculations indicate that the 5p and 
5s-orbitals prevail their character as expected (Fig. 8).

The DFT calculations presented here show a positive Vzz which is in contradiction with 
the reported presumably negative Vzz assumed by Gal et  al. [24]. Future experimental 
investigations with NFS experiments in high external fields can serve to determine the 
sign of the quadrupole splitting and may shine more light on the binding properties of 
catalytically active iridium complexes.

4 � Conclusions

In this work it has been shown that the 193Ir NFS is an excellent alternative to conventional 
193Ir  Mössbauer spectroscopy. Moreover, we have shown that it is possible to calculate 
Mössbauer parameters like the isomer shift and the quadrupole splitting using state of the 
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Fig. 7   DFT calculated Kohn-Sham molecular orbitals with 5d character obtained from the optimized struc-
ture of [IrCl(COD)]2. Numbers in brackets represent the number of the molecular orbitals as given in the 
output-file of Gaussian16
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art DFT methods with satisfying accuracy. The combination of experimental 193Ir  NFS 
and quantum chemical DFT methods may represent an important technique for future 
characterisation of the magnetic and electronic properties of iridium containing molecular 
systems.
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org/​10.​1007/​s10751-​023-​01836-3.
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