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Abstract
A gas-filled miniature Radio-Frequency Quadrupole (mini-RFQ) was recently implemented
into the SHIPTRAP laser ablation ion source to thermalize the laser-ablated ions and thus
improve production efficiency as well as sample preparation. This source provides reference
ions of various elements for online experiments with the SHIPTRAP mass spectrometer.
In addition, it can be used to provide long-lived rare and radioactive isotopes available
only in small sample sizes for high-precision mass measurements or to study systematic
uncertainties. The performance of the laser ablation ion source was simulated using the
COMSOL Multiphysics modeling software package. These studies indicate that a revised
mechanical geometry and an optimized RF field improve the performance significantly.

Keywords Penning traps · Mass spectrometry · Laser ablation ion source · Surface
ionization ion source

1 Introduction

In several areas of physics, high-precision measurements of atomic masses and mass dif-
ferences, so called Q-values, are required. Penning-trap mass spectrometry (PTMS) is
the most precise and accurate method for mass measurements of stable and short-lived
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nuclides [1]. The SHIPTRAP spectrometer [2] located at the GSI Helmholtzzentrum für
Schwerionenforschung Darmstadt, Germany, is one of the Penning trap-based facilities
that performs direct high-precision mass measurements of isotopes produced on-line in
fusion-evaporation reactions as well as delivered from off-line ion sources. Aside from
the experiments investigating heavy and super-heavy elements [3, 4], the physics program
of SHIPTRAP comprises the very neutron-deficient nuclides below tin [5, 6] as well as
high-precision measurements of Q-values contributing to neutrino physics [7].

According to the principles of PTMS, an ion’s mass-to-charge ratio, m/q, is deter-
mined through a direct measurement of the ion cyclotron frequency ωc in a strong and
homogeneous magnetic field B:

ωc = q

m
B. (1)

In order to calibrate accurately the strength of the magnetic field in a Penning trap, it is
necessary to perform reference measurements of an ion with well-known mass mref. Even-
tually, the mass of the atom under investigation is determined from the experimental result
for the frequency ratio of its ion:

m = q

qref

ωc,ref

ωc

(mref − qref·me) + q·me, (2)

where qref is the charge state of the reference ion and me is the electron mass.
In order to minimize systematic frequency shifts, the mass-to-charge ratio of the refer-

ence ions and the ions of interest have to be similar [8]. The SHIPTRAP setup is equipped
with a surface ion source as well as with a laser-ablation ion source providing reference ions
of various elements and with different mass-to-charge ratios. Thanks to these installations,
ions can be produced at stable count rates for long measurement times and for studies of
systematic uncertainties. In particular, the laser ablation ion source has allowed many off-
line measurements with stable and long-lived ions as, for instance, to measure the electron
capture Q-value of 163Ho with a sub-ppb uncertainty (see Ref. [7]), using a sample of about
1016 atoms.

To further boost the performance of the laser ion source and to enable measurements of
long-lived rare and radioactive isotopes available in sample size as low as 1014 atoms, fur-
ther improvements of the current laser ablation ion source in terms of production efficiency
and sample preparation are required. In this work, the description of of a new-designed laser
ablation ion source is given along with simulation studies.

2 Experimental setup

The SHIPTRAP setup (see Fig. 1) is located behind the velocity filter SHIP [9], which sep-
arates fusion-evaporation products with kinetic energies of several tens of MeV from the
faster primary beam. In order to prepare the reaction products for Penning trap mass mea-
surements, the ions are slowed down and thermalized in collisions with helium gas inside
a buffer-gas stopping cell operated at cryogenic temperature (usually 40 K) and at a gas
pressure around 7.5 mbar, depending on the initial energy of the fusion-evaporation prod-
ucts. More details on the operation and the recent optimizations of the cryogenic cell can
be found in Ref. [10]. By using a combination of electrostatic and radio-frequency fields
in addition to the gas-flow, the ions are extracted from the gas cell into a radio-frequency
quadrupole (RFQ) section at low-vacuum (∼ 10−2 mbar) and then guided towards the
RFQ buncher. In this region, through collisions with ultra-pure He buffer-gas at a pressure
of about 10−3 mbar, the ions are cooled, collected and transmitted in bunches. Thereafter,
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Fig. 1 Schematic view of the SHIPTRAP setup and its major components (modified from Ref. [10]): the
cryogenic-gas stopping cell, the extraction RFQ and the buncher for ion preparation, the reference ion sources
and the Penning traps. The triangles indicate detector positions

single ion bunches are injected into the double Penning-trap system located inside a 7 T
superconducting magnet. The first trap is called purification trap (PT) and allows isobaric
purification of the species of interest with a mass resolving power of about 100,000 using
the side-band cooling technique [11]. The ions of interest are then transferred into the mea-
surement trap (MT) where their radial motion is excited. Finally, the ions are ejected from
the MT to a position-sensitive detector where the ion motion is projected to determine
the cyclotron frequency. The employed Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR)
technique has been developed at SHIPTRAP recently [12].

At present, there are three reference ion sources: a laser ablation ion source and two
surface ion sources (see Fig. 1). These are installed in separate beamlines connected to the
main beamline by an electrostatic quadrupole bender. By using this bender the ions are
guided towards the traps. A second surface ion source is installed recently as replacement
for surface ion source 1, which will be removed in order to make a connection to a second
beamline branch where a single-ion mass spectrometry is currently under development.

2.1 Reference ion sources

The section that contains the reference ion sources is schematically presented in Fig. 2.
Within the surface ion source, the ions of 39K, 85Rb and 133Cs are produced by heating the
source, with an electric current leading to emission of positive ions and neutrals. Since the
ions are emitted continuously, in order to chop the ion beam the electrostatic voltages of
plate 1 and 2 are switched between positive and negative values such that the ions are either
repelled back or transferred through the lenses and the deflector towards the beamline.

The second branch in Fig. 2 shows another type of ion source that is based on the laser
ablation process. When a solid target is irradiated with focused, high-power laser pulses, a
plasma is created from which positive ions of the surface material can be extracted. The ion
yield in the laser-ablation process depends on the laser wavelength and pulse length, as well
as on the laser pulse energy. The laser ion source installed at SHIPTRAP, shown in Fig. 2,
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Fig. 2 The layout of the surface ion source 2 and the laser ablation ion source which contains the mini-RFQ
section

exploits a frequency-doubled Nd:YAG laser at 532 nm (Continuum, Minilite series) to irra-
diate a small target sample and produce ions. The energy of the laser pulse is adjustable up
to 25 mJ, while the pulse length is 5 ns at a maximum repetition rate of 15 Hz. In order to
increase the power density on the target, the laser beam is focused using optical lenses. The
target usually consists of a thin metallic foil or a liquid-solution deposited and dried on a
titanium supporting foil. The target holder can accommodate multiple samples and is driven
by a step motor that allows fine rotation in order to scan the position of the same sample as
well as to access another target. Once ablated from the surface of the sample, the ions are
injected into a mini-RFQ [13], which consists of an injection electrode, four parallel rods
and an ejection electrode. Here, it is possible to confine the ions axially by applying electro-
static voltages to the injection electrode, the rods and the ejection electrode in a way that a
potential minimum is created in the mini-RFQ volume. The radial confinement is achieved
by applying a radio-frequency (RF) voltage with a frequency of about 500 kHz to the rods
such that each rod has a π phase difference with respect to the adjacent one. Through the
collisions with helium buffer-gas atoms at a pressure around 0.01 mbar, the ions are ther-
malized and accumulated in the potential minimum inside the RFQ structure. By lowering
the bias potential of the ejection electrode, a bunch of cooled ions is ejected, accelerated
and guided by an electrostatic gradient generated by the following electrodes towards the
deflector in a high-vacuum regime. The bunch of ions is here deflected and guided through
electrostatic lenses to the main section of the beamline. As shown in Fig. 2, some of the
electrostatic electrodes and neighboring lenses are segmented and help to correct the ion
trajectory while the others are usually used as an Einzel lens to focus the ions.
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Fig. 3 Mini-RFQ simulations of the electric potential using the COMSOL Multiphysics software: a DC
potential distribution during the injection and the cooling process shown in longitudinal plane, b DC potential
distribution during the ejection process shown in longitudinal plane, and c DC and RF potential distribution
shown together in radial plane

3 Laser ablation ion source

In order to increase the sensitivity for experiments on rare isotopes, the laser-ablated ions
have to be produced, transported and injected into the PT with maximum efficiency and
minimum energy and time spread. This requires that the ions are captured and cooled right
after the ablation process. To thermalize the laser-ablated ions and to collect them in a
bunch, we have implemented a mini-RFQ with a similar design as the one used at the mass
spectrometer TRIGA-TRAP [13]. As the name mini-RFQ suggests, it is a very compact
device: the four rods are 20 mm long with a diameter 11.5 mm and a rod spacing of 10 mm.
The typical operating parameters to confine ions with a mass to charge ratio of about 200
are UDC = 55 V and the amplitude of the RF field is URF = 65 V at a frequency of
500 kHz. The quadrupole rods are placed in between the injection and the ejection electrode.
The injection electrode contains a circular cutout the center of which is slightly offset from
the center axis of the quadrupole, while the ejection electrode has a conical shape with an
initial diameter of 2 mm. Depending on the voltage applied to these electrodes, the ions are
either injected and trapped by an up to 10 V potential well or ejected from the mini-RFQ by
increasing the Direct Current (DC) potential of the injection and lowering the potential of
the ejection electrode. The ablation target is mounted at 17 mm distance below the injection
electrode and they are kept at the same potential.

Fig. 4 Positions of ions extracted from the ion trajectory simulations considering: a non optimized condi-
tions, b adjusted geometry and increased RF amplitude at the end of cooling process, c adjusted geometry
and increased RF amplitude during ejection from the mini-RFQ, and d adjusted geometry and increased RF
amplitude during extraction after the inner canal of the first electrode
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Fig. 5 The axial (a) and the radial (b) kinetic energy of a trapped ion in the Mini-RFQ. The red line represents
an exponential fit to the simulated data shown in blue color

Aiming at improving the overall efficiency of the laser ablation ion source, we performed
simulation studies of the mini-RFQ in the described configuration using the COMSOL
Multiphysics modeling software [14]. The goal was to optimize ion-bunch production and
transmission, as well as the operational parameters which have a major influence on the effi-
cient injection into the PT, such as the energy spread of the bunch, which should be smaller
than few eV and its time distribution in the order of few microseconds.

In the simulations, 200 singly-charged ions with a mass of 193 u, where u is the unified
atomic mass unit, and an initial kinetic energy of 1 eV were used. We assume that these
ions are ablated out of the target randomly within a cone with an opening angle of 90◦.
Figure 3a shows a mapping of the DC potential distribution during the injection of the ions
into the mini-RFQ and during the cooling process, while Fig. 3b shows the DC potential
during ejection of the ions from the mini-RFQ. The distribution of the RF potential, which
confines the ions radially, together with the DC potential distribution is shown in Fig. 3c in
radial plane.

The ion motion is simulated using hard-sphere collisions with helium gas at a pressure
of 0.01 mbar. The collision cross section is calculated from the van der Waals radii of the
ion and the helium atom. However, once the ion energy approaches thermal velocities, the
viscous drag model gives a more appropriate description of the ion motion. A sharp line
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Fig. 6 Extended simulation: a the DC potential distribution during extraction and transportation and b the
ion trajectories showing extraction and transportation to the main beamline

separating the validity of the two models cannot be clearly defined and as, in terms of ion
losses, the ion bunch preparation for an efficient injection into the Penning trap system is
more sensitive to the injection and the ejection from the mini-RFQ than to the cooling pro-
cess (assuming that after a few milliseconds the ions reach thermal equilibrium), we decided
to use the hard-sphere collisions model. The final ion positions after a storage time of 2 ms
are shown in Fig. 4a. In the simulation, we observed strong losses mostly during the ion
injection due to the poor geometrical acceptance of the injection electrode. Additionally, the
ions hit the quadrupole rods due to the low RF amplitude, which according to the Mathieu
equations [15] results in unstable ion trajectories.

To reduce such losses and improve the mini-RFQ efficiency, its geometry is modified
to accommodate the target plate at the same height as the injection electrode. In order to

Fig. 7 The phase space of the ions in x-direction at four different time steps corresponding to: a the end of
cooling process, b the ejection from the mini-RFQ, c the extraction through the first electrode, and d the
detection
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Fig. 8 The phase space of the ions in y-direction at four different time steps corresponding to: a the end of
cooling process, b the ejection from the mini-RFQ, c the extraction through the first electrode, and d the
detection

operate the mini-RFQ well within the stability region defined by the Mathieu equations
for a mass to charge ratio of 193, an RF amplitude of to URF = 110 V was chosen at a
frequency of 500 kHz. The simulation is extended to the ion transfer through the first extrac-

tion electrode. Figure 4b and c and d show the expected performance with the improved
configuration and illustrate the ion cooling, the extraction and the transport, respectively.
The positions of the ions are taken at three different time steps. The first time step repre-
sents the end of a 2 ms cooling process through the collisions with helium gas, which is
completed without any ion losses. The second time step is taken during the ejection from
the mini-RFQ, which occurs without ion losses, as well the third time step, which is taken
after transmission of the ions through the ejection electrode and the following electrostatic
element, i.e. an electrode in Pierce geometry with a cylindrical channel [16].

The cooling time, i.e. the minimum time needed to thermalize the ions into the minimum
of the potential well created inside the mini-RFQ is also studied. Figure 5 shows the trend
of the axial and radial kinetic energy of one ion over a cooling period of 2 ms at a helium
gas pressure of 0.01 mbar. Since the mini-RFQ is not vacuum-wise decoupled from the rest
of the ion source, its buffer-gas pressure cannot be further increased without deteriorating
the good vacuum and hence the ion transmission towards the deflector to the main beamline
section. The ion axial motion inside the mini-RFQ is cooled within half a millisecond with a
damping constant of 0.16 ms. As the model calculates the deflection angle for ion-atom col-
lisions, the elastic scattering is included: this can result in a very small increase of the axial
energy. The radial motion in general is damped in a similar manner, but remains at a radial
kinetic energy of about 0.2 eV. The higher fluctuations of the radial energy are probably
caused by the RF field according to the ion’s radial distribution in the radial pseudopotential.

The simulations described above are further extended to the transfer of 500 ions through
the extraction electrodes, the quadrupole deflector and the lenses in the high-vacuum regime
(see Fig. 2). The DC potential distribution that is applied to the ion optics in order to guide
the ions towards the beamline is shown in Fig. 6a where the color code refers to the applied
voltage. Figure 6b shows the ion trajectories together with their kinetic energy, which are
indicated by the color code. By comparing the number of ablated ions with the number of
detected ions, a transmission efficiency of 93% is obtained.
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Fig. 9 The energy distribution of the ions at four different time steps corresponding to: a the end of cooling
process, b the ejection from the mini-RFQ, c the extraction through the first electrode, and d the detection.
The red line represents a fit of a Gaussian to the simulated data points

In Figs. 7 and 8, the phase space diagrams corresponding to the time steps introduced
in Fig. 4b and c and d as well as at the position of the detector (shown in Fig. 6b) are
displayed. Due to the the conical shape of the mini-RFQ extraction electrode and the Pierce
geometry of the following element, the created DC potential distribution is focusing the
ion bunch such that the ion trajectories follow straight lines during extraction. Indeed, as
shown in Figs. 7b and 8b, during extraction the ions’ radial distribution becomes narrower
in comparison with their radial distribution right after the cooling process shown in Figs. 7a
and 8a. Figures 7c and 8c show the phase space of the ions after passing through the aperture
of the Pierce-shaped electrode. The final phase space distribution at the position of the
detector is shown in Figs. 7d and 8d.

The energy distribution of the ions at the same time steps are presented in Fig. 9. At
the end of cooling process the average ion energy is around 0.05 eV. A potential difference
between the ejection electrode and the first extraction electrode assures the acceleration
of the ions towards the beamline and, therefore, shifts the energy distribution to the mean
energy of around 256 eV with a FWHM of about 12 eV (see Fig. 9b). The simulation indi-
cates that the bunch length during extraction increases to about 1 μs. The transport voltage
applied to the beamline segments shifts the energy distribution further to the mean energy
of 902 eV as shown in Fig. 9c while the energy spread remains similar. Figure 9d shows the
final energy distribution registered at the position of the detector with the mean energy of
1000 eV with 13 eV FWHM and the corresponding bunch length of around 1 μs.

4 Conclusion and outlook

An efficient performance of the laser ablation ion source is essential for studying long-lived
rare and radioactive isotopes which are available or can be handled only in small quantities.
In order to boost the ion production efficiency, a mini RFQ has been implemented for a more
efficient capturing of the ablated ions, to decrease the energy spread and reduce the phase
space volume of the laser-ablated ions and thus ensure an efficient transport and injection
into the traps.
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In this work, simulation studies of the existing setup have been presented. They indicate
that ion bunch production can be improved with a different configuration of the target plate,
closer to the mini-RFQ injection electrode. The simulated ion bunch production and trans-
mission efficiency for the optimized conditions is 93%. The energy spread of the detected
ion bunch is in the order of 13 eV while the time spread is within 1 μs, which meets the
requirements for efficient trapping in the purification trap of SHIPTRAP.

Following the results of the presented simulation studies, a new mini-RFQ with improved
geometry has been machined and it is ready for installation into the SHIPTRAP ion source
section. At the same time, a new RF inductor (coil) with better impedance matching and
thus better amplification power has been implemented in order to allow the use of even
higher RF amplitudes for the mini-RFQ rods.

Depending on the mass-to-charge ratio of the ion of interest, either the laser ablation or
the surface ion source can be used to provide the most suitable reference ion. In addition,
they can also be used to study systematic uncertainties in a mass measurement.
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10. Kaleja, O., Andelić, B., Blaum, K., Block, M., Chhetri, P., Droese, C., Düllmann, C., Eibach, M., Eliseev,
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M., Ketter, J., Ramirez, E.M., Nesterenko, D.A., Novikov, Y.N., Schweikhard, L.: A phase-
imaging technique for cyclotron-frequency measurements. Appl. Phys. B 114(1), 107 (2014).
https://doi.org/10.1007/s00340-013-5621-0

13. Schneider, F., Beyer, T., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, C.E., Eberhardt,
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