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Abstract We present a nonadiabatic treatment of the hydrogen-antihydrogen system. The
technique used to describe H-H̄ collisions is based on the coupled rearrangement chan-
nels method. Within this approach the total, nonadiabatic wave function of the system is
divided into two parts: an inner and an outer one. To describe the inner part a set of square-
integrable 4-body functions is used. These functions are obtained by a diagonalization of the
total Hamiltonian projected on a chosen L2 subspace, they explicitly contain components
of various arrangement channels expressed in terms of corresponding Jacobi coordinates.
The outer part of the total wave function reflects its asymptotic character. Our procedure
leads to the system of non-local integro-differential equations that are solved iteratively and
simultaneously determine both the shape of the outer part of the wave function and the
coefficients in the four-body expansion of the inner part. Using this formalism we perform
the one-channel calculation of the elastic scattering to obtain the S-matrix and nonadiabatic
scattering length.
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1 Introduction

The studies of interaction of antiatoms with ordinary matter have become possible thanks
to the spectacular progress in the productions and trapping of cold antihydrogen. In 2011
antihydrogen atoms were trapped for ca. 1000 s [1], this in consequence allowed the first
spectroscopic measurements for antiatoms, which were performed in 2012 [2]. Experiments
with antiatoms can provide us with the information crucial for testing the fundamental
symmetries underlying the modern physical [3].

The theoretical description of antimatter interacting with matter is centered around the
simplest but not yet fully understood bench-mark system consisting of hydrogen and anti-
hydrogen atoms [4]. The H̄ − H pair is the simplest neutral atomic system containing both
the ordinary matter and antimatter. The very important and difficult feature of this system
is that unlike H2 it cannot form a stable molecular structure even at the Coulombic level of
description, instead various decay processes are possible.

This four body system has in the past been treated by means of approximate methods. The
first theoretical description of the hydrogen-antihydrogen scattering was given by means
of the Born-Oppenheimer approximation [5]. In the more recent publications the ultra-cold
H̄−H collisions have been studied by means of the adiabatic distorted-wave approximation
[6–8], the optical-potential method [9], Kohn variational method [10, 11], close-coupling
method [12], and coupled channel method [13, 14].

In the present paper we are trying to improve on the previous treatment by employing the
fully nonadiabatic description of the 4-body system, namely the Coupled Rearrangement
Channel Method (CRCM). This technique allows to include different possible arrangement
channels of the system under consideration.

2 Method

The system under consideration can, for a given energy, undergo rearrangement to different
physical channels, which have distinct asymptotic features, i.e. the system can ‘dissociate’
into pairs of different monomers. Depending on the total energy of the system, in each
rearrangement channel several physical channels can be opened, which correspond to
different dissociation limits. The wave function should posses this channel structure, and
therefore, following [5, 6] we are representing the total wave function as a sum of two terms.

� =
∑

c

φ(c)
a (rc)φ

(c)
b (qc)Y

(c)(R̂c)
χc(Rc)

Rc

+
∑

v

bv�v , (1)

where c labels open physical channels (possibly in different rearrangement channels), φ(c)
x

is a wave function of an isolated monomer x in channel c, rc and qc are the internal coordi-
nates of the monomers, the yet unknown functions χc satisfying the appropriate boundary
conditions are added to describe the relative motion of the monomers in each open channel
c. The �v functions are square-integrable and are chosen to be solutions of the eigenvalue
problem of the total 4-body Hamiltonian projected onto subspace P that is spanned by the
L2 basis functions

HP�v = Ev�v . (2)

The HP Hamiltonian is defined as HP = PHP .
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Function (1) must fulfill the time-independent Schrödinger equation with the total 4-body
Hamiltonian H

(H − E)� = 0 (3)

By projecting (3) onto the monomers’ functions in each channel and onto the �v functions
one can find the equations for the functions χ , which in the case when only one channel is
opened take form of the following integro-differential equation

[
− d2

dR2 + J (J + 1)

R2 − k2 + U(R)

]
χ(R) =

∫ ∞

0
W(R,R′)χ(R′)dR′ (4)

where k2 = 2μ(E − ea − eb). The function U in equation (4) is given by

U(R) = 2μ〈φa(r)φb(q)|H − ha − hb|φa(r)φb(q)〉rqR̂ , (5)

where hx stands for a monomer’s Hamiltonian. One can easily recognize that U is the first
order interaction potential between monomers a and b. The non-local integral kernel W can
be written in a form which resembles the expression for the second order correction in the
perturbation theory

W = 〈φa(r)φb(q)Y (R̂)|(H − E)R(H − E)|φa(r)φb(q)Y (R̂)〉rqR̂ , where R =
∑

v

|�v〉〈�v |
E − Ev

.

(6)
The scattering boundary condition can be imposed on the asymptotic form of the wave

function:

lim
R→∞χ(R) = u(−)(kR)− Su(+)(kR) , (7)

where u(±)(kR) = Rh
(±)
0 (kR) , with h

(±)
J being the Ricatti-Hankel functions.

3 Results

We have performed one-channel computations for the elastic scattering in the H–H̄ chan-
nel with J = 0. To obtain the scattering length the collision energy was chosen to be 10−9

hartree. For this energy several calculations were done with different length of the expan-
sion in (1). Functions �v entering this expression have been obtained by diagonalizing the
4-body matrix eigenvalue problem in the basis of 16 320 functions. The value of the scatter-
ing matrix element S is obtained by matching the calculated χ function to the form given by
(7) in an asymptotic region. The integro-differential (4) was solved by means of the compact
finite difference method [15]. From the S value, the phase shift δ can be easily computed as

δ = ln S

2i
. (8)

Using δ the value of the scattering length can be estimated as

a = − tan δ

k
, (9)

where k is a momentum of the relative motion of the monomers. The value of the scatter-
ing length obtained in the present work a = 7.3 bohr can be compared with the previous
result obtained within the Born-Oppenheimer approximation a = 8.1 bohr [7]. This gives
approximately 10 % difference between nonadiabatic and BO calculations.



88 K. Piszczatowski et al.

 0

 200

 400

 600

 800

10-9 -8 10-7 10-6 10-5 10-4 10-3

σ0 el
as

t [
a.

u.
2 ]

Collision energy [a.u.]

Fig. 1 The cross-section for the elastic H-H̄ scattering as a function of the collision energy

Knowing the value of the scattering matrix S one can not only calculate the scattering
length, which characterizes the zero energy collisions, but also the scattering cross-section
σ , which is a function of the collision energy. In our case we are considering the elastic
collisions for J = 0, and the cross-section for the elastic scattering is given by

σ 0
elast =

π

k2
|1 − S|2 . (10)

The results for the cross-section in the elastic H-H̄ collisions is presented in Fig. 1.

4 Conclusions

We have presented the nonadiabatic description of the elastic hydrogen–antihydrogen
scattering. The method used here allowed us to provide the proper description of the rear-
rangement region, i.e. the inner part of the wave function, which caused the main difficulties
in the previous calculations. The improvement was possible due to the use of the four-body
technique, where the inner part of the wave function is described by explicitly coupling of
the two most important arrangement channels (i.e., hydrogen–antihydrogen and protonium–
positronium). One of the benefits of our method is a possibility to improve the accuracy of
the 4-body calculations for the S-matrix in a self-consistent way. The present method pro-
vides much better description of the inner (below ca. 1 bohr) region than it is done in the
Born-Oppenheimer picture, where simple Coulombic interaction between nuclei has been
adapted to described the nuclear motion below the critical distance (i.e., the distance below
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which the leptons are no longer bound by the proton-antiproton dipole). In our procedure
no assumptions of this kind are made and forces between all particles are explicitly taken
into account.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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