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and functional perspectives, and then evaluate the 
response at the trait state level. We observed a decline 
in taxa richness and abundance, but not structural 
diversity, in response to flow intermittency. Resist-
ance traits are more important than resilient traits 
in structuring macroinvertebrate communities in 
newly intermittent stream sections. Taxa in intermit-
tent sections exhibit a smaller trait space, indicating 
lower functional redundancy. The macroinvertebrate 
response to intermittency lacks a predictable pattern, 
suggesting time-dependent and trait-state-specific 
colonization by adapted taxa and community assem-
bly with resistance and resilience strategies. As river 
drought increases due to climate change, recognizing 
the temporal dimension becomes crucial for under-
standing ecological responses to intermittency.
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Introduction

Global change affects stream communities directly 
and indirectly through changes in flow regimes 
(Arnell & Gosling, 2013; Schneider et  al., 2013). A 
global increase in the spatial and temporal extent of 
river drying, representing a fundamental shift in the 
hydrological regime of newly intermittent streams 
(Carey et al., 2021; Zipper et al., 2021; Lucas-Picher 
et  al., 2022) is predicted to continue (Palmer et  al., 

Abstract  Transitioning from perennial to non-
perennial flow regimes causes ecological shifts in 
aquatic communities. Aquatic macroinvertebrates 
deploy resistance and resilience strategies to cope 
with flow intermittency, crucial in rivers with long-
term seasonal dry episodes. Less is known, about 
how these strategies support community persistence 
in streams that only recently have experienced drying, 
and where local assemblages lack such adaptations. 
Our study conducted two four-season campaigns, 
separated by a one-year break, to assess macroinver-
tebrate responses in newly drying intermittent streams 
by comparing intermittent and perennial stream sec-
tions. We characterize communities from structural 
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2008). The interactive effects of global change and 
anthropogenic pressures, such as water abstraction 
and impoundment, lead to more frequent dry phases 
by influencing stream flow dynamics (Messager et al., 
2021; Cunillera-Montcusí et  al., 2023). Intermittent 
rivers constitute more than 50% of the total length of 
the current global river network (Datry et  al., 2014; 
Messager et  al., 2021). Low-order streams are more 
at risk of drying due to their small size and low dis-
charge because they can form more than 70% of river 
networks, the global river network is also strongly 
affected by drying (Lowe & Likens, 2005; Döll & 
Schmied, 2012; Datry et  al., 2014, 2018). The shift 
from perennial to non-perennial flow regimes causes 
substantial changes in community and ecosystem 
dynamics (Aspin et  al., 2018; Crabot et  al., 2021a, 
2021b; Carey et al., 2023).

The taxonomic alpha diversity of macroinverte-
brates is generally lower in intermittent compared to 
perennial streams across regions, seasons, network 
positions and stream types (Bonada et al., 2007; Soria 
et al., 2017; Carey et al., 2023). Environmental filter-
ing acts on traits rather than species, and therefore, 
the functional aspects of communities are receiving 
increasing attention. Resistance and resilience are the 
most important strategies that enable aquatic organ-
isms to survive drying events (Bogan et  al., 2015, 
2017; Chessman, 2015; Strachan et  al., 2015; Aspin 
et al., 2019). Resistance reflects the ability of the spe-
cies—and cumulatively the community—to survive 
the dry phase locally, while resilience describes the 
capacity to recolonize after water returns (Bogan 
et al., 2017; Carey et al., 2021).

Our knowledge of how macroinvertebrate assem-
blages respond to drought originates from the regions 
where seasonal drought is a natural phenomenon 
and has occurred historically or has been observed 
in the past decade (e.g. Australia: Rolls et al., 2016, 
Mediterranean: Bonada et  al. 2007, United King-
dom: Hill et  al., 2019; Sarremejane et  al., 2020b; 
and several regions reviewed in Acuña et al., 2017). 
In contrast, shifts from perennial to intermittent flow 
are a relatively new phenomenon in the Continen-
tal biogeographical region (including the Pannonian 
ecoregion, Vanneuville et al. 2012) of Europe (Rubel 
& Kottek, 2010; Arnell & Gosling, 2013; Bartholy 
et  al., 2014). Despite predicted increases in climatic 
extremity and associated river drying (IPCC, 2021), 
few studies have characterized ecological responses 

to the transition from perennial to intermittent flow, 
including the mechanisms and processes that drive 
macroinvertebrate community responses to unprec-
edented river drying (Řezníčková et  al. 2007; Pařil 
et al., 2019; Crabot et al., 2021a, 2021b). Character-
izing how macroinvertebrate communities respond 
to the first dry phase in newly intermittent rivers can 
help to develop strategies that support the resilience 
of ecosystems adapting to climate change.

This study aimed to report the response of mac-
roinvertebrate assemblages in previously perennial 
streams to the first appearance of drying. We char-
acterize communities from a functional perspective 
and evaluate the response at the trait state level. To 
achieve this, we surveyed macroinvertebrate assem-
blages during and after the first drying event at mul-
tiple sites in a river network, and compared the per-
ennial and intermittent sections, to characterize how 
assemblages adapted to perennial flow response to 
the first drying event in newly intermittent streams. 
We hypothesized that traits promoting resistance and 
resilience strategies are more important in structuring 
macroinvertebrate communities in newly drying inter-
mittent stream sections compared to perennial ones.

Material and methods

Study area

Field sampling was performed across a dendritic 
river network, the Bükkösdi-víz catchment, located 
in the Mecsek mountains in south-west Hungary 
(Fig.  1) within the Pannonian ecoregion (Vanneu-
ville et  al.2012). The recent climate is mainly tem-
perate with a slight sub-Mediterranean influence, 
resulting in a moderately cool and dry climate. 
The annual temperature is 10.0–10.2  °C, the total 
annual sunshine duration is more than 2,000  h, and 
the average annual precipitation is approximately is 
around 760  mm, with slight differences among sea-
sons (Ács et al., 2015; Mezősi, 2017). In the vicinity 
of the sampling site, as evidenced by data spanning 
the years 1991 to 2020, summer exhibits warm tem-
peratures (mean: + 21.4  °C) accompanied by notable 
precipitation (mean: 72.3 mm), while winter is char-
acterized by cold temperatures (mean: + 1.2  °C) and 
low precipitation levels (mean: 38.7  mm). Spring is 
marked by moderate temperatures (mean: + 11.6  °C) 
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and precipitation (mean: 53  mm), whereas autumn 
experiences a gradual decline in temperatures 
(mean: + 11.6  °C) coupled with an increase in pre-
cipitation (mean: 60.3 mm) (OMSZ, 2024). Between 
1981 and 2020, Hungary experienced a 1.7  °C 
increase in annual mean temperature, with the south-
western region, including the study site, showing 
a 1.5  °C rise. From 1901 to 2020, there was a 10% 
decrease in annual precipitation within the study area. 
Additionally, during this timeframe, the number of 
days with precipitation decreased by 17  days, while 
the longest dry period increased by 4  days (IEA, 
2021). In line with global warming, regional tempera-
tures are rising, and the study area is also becoming 
increasingly dry, rendering it one of the most vulner-
able counties to drought and susceptible to the antici-
pated effects of drying (Buzási et al., 2021).

Sampling design

We studied 40 stream sections on first- to third-order 
streams including 18 perennial and 22 newly inter-
mittent sections (Fig. 1). Sections alternating among 

flowing, non-flowing and dry phases were collectively 
called intermittent sections. Streams are character-
ized by a negligible amount of aquatic macrovegeta-
tion (less than 5% coverage), and rocky streambeds. 
In the upper part of the catchment, streams are in 
near-natural reference conditions; modest settlements 
are situated along the primary stream branch (along 
the third-order main stem), with minimal anthro-
pogenic impact. All study stream  sections belong to 
the same type in the European Union Water Frame-
work Directive typology, i.e. high-altitude, calcare-
ous streams with small or medium catchment areas, 
and they share the same regional species pool (Boda 
et al., 2023). During the Summer of 2012, a notable 
occurrence of drying phases was observed in certain 
sections, coinciding with the region’s record-breaking 
heatwave duration, particularly in the southeastern 
part of Europe, encompassing Hungary (Ionita et al. 
2021). However, apart from a single short-term (five 
weeks) drying event in 2012, the studied streams 
were characterized by stable, perennial flow until 
2018, when drying was observed in September in sev-
eral sections of streams. Macroinvertebrate sampling 

Fig. 1   The study area is 
within the Bükkösdi-víz 
catchment, located in the 
Mecsek mountains in south-
west Hungary
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was initiated immediately after the onset of the first 
drying event.

Macroinvertebrate sampling

Macroinvertebrates were sampled seasonally in 
two four-season campaigns separated by a one-year 
break: in September 2018, February, April and July 
2019; then in July and October 2020, and February 
and May 2021. Samples were collected if flowing 
water was present. Macroinvertebrate samplings were 
performed seasonally in eight sampling campaigns. 
Samples were collected using a standardized kick-
and-sweep method with a 1-mm-mesh kick net with a 
25 × 25 cm frame ensuring that all major habitat types 
were sampled in proportion to their occurrence (Boda 
et al., 2023). Each sample comprised 12 and 10 sam-
ple units in the first and second years, respectively. 
Each sample unit covers a 0.25 × 0.25  m area, thus 
the total sampling area was 0.625 m2 for 10 sampling 
units, and 0.75 m2 for 12 sample units, respectively. 
To account for the different numbers of sampling 
units in years 1 and 2, abundance data were converted 
to individuals m−2. Samples were pre-sorted in the 
field to identify protected species, which were regis-
tered and released. The rest of the sample was pre-
served in 70% ethanol. In the laboratory, all samples 
were sorted and all individuals were identified to spe-
cies level, except for Diptera and Turbellaria, which 
were identified to family level.

In addition to the dates of the biological sam-
plings, the entire sampling area, including all sam-
pling sections, was checked on two additional occa-
sions (in September and December 2020), resulting 
in a total of 10 instances when the wet or dry phases 
in the streambed were registered during the sampling 
campaigns (Online Resource Table S1).

Data analysis

To investigate the spatial autocorrelation, a Mantel 
test was conducted using Pearson’s product-moment 
for correlation with 999 permutations comparing 
compositional distance with both direct geographi-
cal and (along-stream) hydrological distances. 
We first created dissimilarity matrices for the taxa 
data by calculating the pairwise community dis-
similarities using the Bray–Curtis distance, then for 
the spatial distance, we calculated the dissimilarity 

matrices on pairwise Euclidean geographic and 
pairwise hydrological distances. The correlation 
between the geographical and hydrological distance 
was also tested. We calculated four structural met-
rics to compare macroinvertebrate assemblages in 
perennial and intermittent sections: mean taxa rich-
ness, abundance, Shannon diversity and evenness. 
The model matrix contains the calculated structural 
metrics, type (intermittent and perennial), sections 
and time. A linear mixed model was performed 
using the restricted maximum likelihood (REML) 
estimation method via the ‘lmer’ function in the 
lme4 R package (Bates et  al., 2014), with section 
type (intermittent, perennial) as a fixed effect and 
sections and time (sampling date) as random effects.

A taxon can be referred to as a trait complex. 
As each taxon can possess several ’trait states’ (i.e. 
trait categories or trait modalities), taxa can have a 
resistance-related trait state for one trait and a resil-
ience-related trait state for another, while also pos-
sessing a non-related trait state. The functional trait 
data were gathered from the website freshwaterecol-
ogy.info (Schmidt-Kloiber & Hering, 2015) and the 
DISPERSE database (Sarremejane et  al., 2020a). 
To ensure the highest coverage, we used genus- and 
family-level data. If a trait was included in both data-
bases, we used the database that had a higher data 
coverage for our dataset. We selected 62 trait states 
across 12 trait categories, including biological traits 
and ecological preferences associated with drying 
(Online Resource, Table S2).

Drought-relevant traits can be linked to either 
resilience or resistance, as they are the two main 
mechanisms for survival that act in different ways 
(Stubbington et  al., 2017). Based on (Stubbing-
ton et al., 2017), See Table 4.3.1), for each trait, we 
identified the trait states that do/do not promote sur-
vival in case of flow intermittency (Online Resource, 
Table S2). For instance, a small body size trait state 
enhances resistance by promoting movement into 
the hyporheic zone during drying episodes, whereas 
large body sizes do not (Fig. 2). The same principle 
applies to resilience, where certain types of repro-
duction (such as ovoviviparity, terrestrial clutches, or 
asexual reproduction) increase resilience by promot-
ing survival during dry episodes, but other states (e.g. 
isolated eggs and free clutches) do not (Fig. 2). Con-
sidering these distributions, all 62 trait states were 
assigned to one of four trait groups: Resilience (RL), 
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non-Resilience (non-RL), Resistance (RT), and non-
Resistance (non-RT) (Online Resource, Table S2).

We then compiled a biotic matrix (sampling occa-
sion × genus) of relative abundance data (percentage 
of individuals / m2) and a trait matrix (genus × trait 
state) filled with the values of fuzzy codes from the 
trait databases. We calculated community-weighted 
means (CWM) to estimate community trait values 

weighted by the abundance of taxa in that commu-
nity. Thus, combining these two matrices, a CWM 
matrix (sample × trait state) was calculated using 
Canoco (ter Braak & Smilauer, 1998). As a result, we 
got the CWM values for all sampling sections (both 
for intermittent and perennial sections) and the date 
for each state, respectively. The mean CWM values 
for each perennial and intermittent section, pertaining 

Fig. 2   Conceptual explana-
tion for the interpretation 
of traits, trait states and 
establishment of state 
groups. The flow chart 
shows the division of body 
size and reproduction traits, 
as examples of how traits 
were categorized into trait 
states and state groups
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to each trait state, were calculated, respectively. T-test 
was used to calculate the difference between CMW 
values of intermittent and perennial sections. For 
each intermittent section, we subsequently computed 
the difference between the CWM values of trait states 
and the mean CWM values derived from all peren-
nial sections. Utilizing a bar chart, we graphically 
illustrated the range of these differences, spanning 
from the highest to the lowest, with the median value 
prominently displayed within each bar. To visualize 
the differences for each trait state in each intermittent 
section, respectively, we created heatmaps in the R 
package ggplot2 (Garrett et al., 2018).

We plotted the trait states in each trait group asso-
ciated with intermittent and perennial sections using 
the Indicator Taxa Analysis function in the biomoni-
toR package (Laini et  al., 2022) with the Indicator 
Taxa Analysis function (IndVal; Dufrêne & Legendre, 
1997). The function plot_indicator_taxa implements 
the group-equalised IndVal for both presence-absence 
and abundance data (De Cáceres & Legendre, 2009). 
We visualized significant relationships and trait states 
with indicator values higher than 60 with a Sankey 
diagram that links indicator trait states (De Cáceres 
& Legendre, 2009) to perennial and intermittent 
sections.

We quantified the amount of functional trait space 
occupied by the macroinvertebrate assemblages in 
intermittent and perennial sections. Two trait states 
(respiration: hydrostatic vesicle [aerial]; reproduc-
tion: asexual) that showed zero variance were omitted 
from the analyses. Following Schmera et  al. (2022), 
the values of trait states belonging to the same trait 
were standardised to an interval [0,1], then a cen-
tred principal component analysis of incomplete data 
(Podani et al., 2021) was used to produce functional 
trait space. The multidimensional convex hull volume 
for the first five axes was calculated following the 
methodology outlined by Cornwell et al. (2006).

Results

We collected 598,573 individuals belonging to 280 
taxa, from which 160 were identified species level 
and at 13 higher taxa (10 Gastropoda, 1 Bivalvia, 7 
Hirudinea, 6 Crustacea, 19 Ephemeroptera, 14 Odo-
nata, 3 Plecoptera, 23 Heteroptera, 35 Coleoptera, 

4 Megaloptera, 30 Trichoptera, 7 Diptera and 1 
Turbellaria).

The total number of taxa in perennial sections 
was higher (N = 161) than in intermittent sections 
(N = 142). Forty taxa were found exclusively in per-
ennial sections, 21 taxa in intermittent sections and 
121 taxa were observed in both sections. Linear 
mixed effect models showed that taxa richness was 
higher in perennials compared to intermittent sections 
(P = 0.041). Similarly, abundance was higher in per-
ennial compared to intermittent sections (P = 0.005). 
In contrast, Shannon diversity and evenness were 
comparable in both section types (P = 0.550, 
P = 0.278 respectively; Fig.  3, Online Resource, 
Table S3).

There was no significant correlation between 
the taxonomic composition matrix and either the 
geographical (r = 0.139, P = 0.095) or hydrologi-
cal (r = 0.695, P = 0.001) distance matrices, com-
positional similarity among sites was comparable 
regardless of distances between sections. There was 
a significant correlation between the geographical and 
hydrological distance (r = 0.694, P = 0.001).

The range of changes in the intermittent sections 
varied highly among intermittent sampling sections 
(Fig. 4b). The largest range of changes was observed 
at the following trait states the ≥ 1-year adult life 
span (als4), 2 similar-sized pairs of wings (wpt5), 
aerial active dispersal strategy (dis4), ovoviviparity 
reproduction (rep1) (RL); gill and tegument respira-
tion (res2 and res1) [non-RT]; and No wings (Wpt1), 
burrower (lsr5) [non-RL]. RT states have generally a 
smaller range of changes (Fig. 4b). Individually, the 
smallest range of changes showed by clutches, free 
reproduction (Rep 5, non-RL), the housings against 
desiccation (ref3, RT), rheobiont in current prefer-
ence (cup6, non-RT). Out of the 62 trait states, only 
three—the housings against desiccation (ref3-RT), 
rheobiont in current preference (cup6-non-RT) and 
preference for fast current velocity (cuv4-non-RT)—
showed uniform pattern as they had negative devia-
tions (red colour) in all intermittent sections com-
pared to the mean of CWM of all perennial sections 
(Online Resource, Fig.  S1). The section-specific 
changes varied highly among intermittent sampling 
sections (Online Resource, Fig. S1).

In case of all-section changes in RT states, CWM 
values for 7 out of 8 states were higher in intermit-
tent compared to perennial sections (Fig. 4a). For RL 
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states, CWM values were higher in intermittent and 
perennial sections for six and nine states, respectively 
(Fig. 4a).

Most of the trait states were related to the peren-
nial sections, and seven trait states were associated 
with intermittent sections (Fig. 5). Strong, significant 
relationships with section type were identified for 32 
trait states: 16 with intermittent sections and 16 with 
perennial sections, whereas other states were not 
linked to either section (Online Resource, Table S3). 
No state group was detected where all the states are 
related only to perennial or intermittent sections. 
(Fig. 5). Macroinvertebrate assemblages from peren-
nial and intermittent sections occupied 98% and 87% 
of the total functional space, respectively (Online 
Resource, Fig. S2).

Discussion

The information we have on how macroinvertebrate 
assemblages respond to a drought mostly originates 
from regions where seasonal drought is a natural 
phenomenon, while our knowledge of how communi-
ties in perennial streams respond to drying is rather 
limited. We carried out two, four-season campaigns 
separated by a one-year break to examine the initial 

responses of macroinvertebrate assemblages to the 
drying of historically perennial streams by compar-
ing macroinvertebrate assemblages from actual per-
ennial and intermittent sections. We found that the 
richness and abundance of macroinvertebrate assem-
blages were lower in intermittent sections, but this 
is not reflected in diversity metrics. Resistance traits 
are more important than resilient traits in structuring 
macroinvertebrate communities in newly intermittent 
streams; however, trait states showed a section-spe-
cific and uneven response to drying. Our results also 
showed that taxa in intermittent sections occupied a 
lower amount of trait space than those of perennial 
ones, meaning that newly intermittent streams may be 
characterized by lower functional redundancy.

Drought-related disturbances generally reduce 
structural biological attributes such as taxa richness 
or abundance (Arscott et  al., 2010; Bogan et  al., 
2013; Stubbington et  al., 2017; White et  al., 2018; 
Sarremejane et  al., 2020b), which means that the 
less-resistant or less-resilient taxa vanish from the 
macroinvertebrate assemblages (Chase, 2007) when 
the drought intensity or severity increases. In line 
with previous findings, we found significantly lower 
taxa numbers and abundances in intermittent than 
in perennial stream sections (Boulton, 2003; Datry 
et al., 2014; Leigh & Datry, 2017). However, most 

Fig. 3   Macroinvertebrate 
community metrics in per-
ennial (p) and intermittent 
(i) stream sections: a Taxa 
richness, b Abundance, c 
Shannon diversity, d Even-
ness (Linear mixed effect 
models)
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of the taxa (66%, N = 121) can be found in both 
perennial and intermittent stream sections. Taxa 
that lack drying-resistance traits are able to tolerate 
short periods (from days to weeks, but not longer 
than a month) of drying, while taxa with resilient 
strategies can swiftly recover upon flow resumption, 
enabling rapid assemblage recovery (Pařil et  al., 
2019). A reduced number of drought-sensitive taxa 
consequently immediately decrease the diversity 
of a community (Arscott et  al., 2010; Soria et  al., 

2017). Generally, taxa richness is significantly lower 
in intermittent than in perennial rivers (Soria et al., 
2017). However, diversity changes can be affected 
by the timing, frequency and periodicity of drying 
(Crabot et  al., 2020, 2021b). Greater decreases in 
alpha diversity occur more frequently at sites that 
are rarely dry compared to those that dry seasonally 
(Sarremejane et  al., 2020b), and recent intermit-
tency had a profound effect on species composition 
in streams affected by drying (Carey et al., 2023). In 

Fig. 4   Functional trait state responses of macroinverte-
brate communities to stream intermittency.  a Significant 
(T-test, P < 0.05) negative (red) and positive (green) differ-
ences between the mean CWM values of trait states in inter-
mittent compared to the mean CWM values in perennial 
streams for all sections, b The total range of the differences 

(bars) between the CWM values of trait states of intermittent 
sections and the mean CWM values derived from all perennial 
sections. The mean (●) and the total range (bars) of the inter-
mittent sections are given. The gradient of colour represents 
the extent of differences from mean CWM values calculated 
from all perennial sections
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contrast, in our study, the decrease in taxa richness 
did not result in reduced diversity, as also found 
by Řezníčková et  al. in Central European streams 
(2007). The modest reduction in taxa richness in our 
intermittent streams may indicate an initial response 
to the drying phenomenon, potentially escalating 
to a more pronounced and enduring decline during 
persistent drought (Hill et al., 2019). Alternatively, 
it could result from a rapid recovery process from 
nearby aquatic habitats, as connectivity consider-
ably influences recolonization (Sarremejane et  al., 
2020b). Such decreases in taxa richness and abun-
dance may represent a trade-off involving the non-
selective elimination of the least abundant taxa 
(Pimm et  al., 1988; Sarremejane et  al., 2020b), 
the taxa eliminated by the drought and the abun-
dance shift caused by taxa that exclusively occurs 
in intermittent sections. Even though the realign-
ment of abundance features is a typical pattern in 
response to flow intermittency (Hille et  al., 2014; 
Sarremejane et al., 2018, 2020b), no significant dif-
ference in evenness was observed (Fig. 4). Despite 
the reduced structural metrics, like richness and 
abundance in intermittent sections, diversity met-
rics such as Shannon diversity and Evenness did not 
differ between intermittent and perennial sections. 

This implies that the structural realignment in the 
intermittent sections was not reflected in the diver-
sity metrics.

Generally, resistance and resilience strategies 
strongly respond to the flowing intermittency gradi-
ent. As flow intermittency increases, taxa with trait 
states that confer resistance and resilience to drying 
become more common in macroinvertebrate com-
munities (Crabot et  al., 2020, 2021a). Our findings 
reveal a prevalence of traits promoting resistance 
strategies in intermittent sections, driven by the fol-
lowing ecological factors: (i) shortened durations 
of water availability, which can limit larval and egg 
development of aquatic organisms; (ii) small size 
facilitating survival in interstitial water during dry 
episodes (Stubbington et al., 2019); (iii) the presence 
of resistance forms such as diapause or dormancy, 
eggs, or cocoons enabling organisms to withstand 
severe drying (Stubbington & Datry, 2013); (iv) lim-
nophilic taxa showing a preference for slower cur-
rents (Hill et  al., 2019); and (v) aerial respiration 
unaffected by drying due to independence from dis-
solved oxygen, which is less available in warmer shal-
low water (Stubbington, 2012; Crabot et al., 2021b). 
However, this intermittency-related increase cannot 
be observed for resilience trait states, as responses 

Fig. 5   Sankey diagram illustrating significant linkages 
between intermittent and perennial sections and trait states. 
Only states with indicator values higher than 60 are shown; 
others are listed in Online Resource, Table  S3. All relation-

ships are significant (P < 0.05); dark purple: Resistance trait 
states, light purple: non-Resistance trait states, dark green: 
Resilience trait states, light green: non-Resilience trait states
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in these states are highly varied. The resistance trait 
states seem to be more sensitive to initial drying than 
the resilience ones, as more positive general changes 
occurred among resistance trait states than among 
resilience trait states (Fig. 4). Furthermore, with the 
increasing severity of drying, trait states that infer 
flow intermittency resistance or resilience may be 
selected at the expense of non-resistance and non-
resilience states (Townsend & Hildrew, 1994; Aspin 
et al., 2018; Crabot et al., 2020, 2021b). Contrary to 
this, an unambiguous and mutually exclusive phe-
nomenon in the relationship of intermittency-related 
and non-related states was not observed in our study. 
The section-specific and uneven response to the ini-
tial drought may be due to the transitional nature of 
hydrological regimes from perennial to intermittent 
across the whole catchment and the difference in their 
duration of flow cessation among the intermittent 
sections. Alternatively, it may indicate that taxa will 
inevitably continue to include some non-resistance 
and non-resilience trait states because any taxon only 
needs a few resistance or resilience traits to survive. 
Traits should be sorted along predictable lines for dis-
turbance gradients (Southwood, 1977; Townsend & 
Hildrew, 1994). Drying as the primary hydrological 
determinant (Leigh & Datry, 2017) creates different 
habitats in perennial and intermittent sections that can 
accommodate taxa with different traits. This means 
that when the severity of drying increases, most (if 
not all) of the resistance- and resilience-related states 
are higher in the intermittent stream sections (Aspin 
et  al., 2018; Crabot et  al., 2021a). However, in our 
study of newly intermittent streams, we detected no 
such single trend for all states in a state group. The 
opposite phenomenon was observed since there is 
at least one state from each state group that can be 
linked more likely to perennial or intermittent sec-
tions (see Fig. 5). The potential endpoint of states or 
state groups at the conclusion of the transition pro-
cess cannot be easily predicted, as flexible phenology 
or growth rates are not necessarily indicated by life-
history traits (Carey et  al., 2021). While phenology 
typically evolves in response to stable water regimes, 
populations can adapt to new conditions through phe-
nological plasticity (Robinson & Buser, 2007).

Assemblages can fill different niches in the func-
tional trait space between different types of habitats 
(Schmera et  al., 2022). Thus, evaluating the func-
tional traits space of macroinvertebrates helps identify 

functional differences among groups, enhancing our 
understanding of ecological communities in dry-
ing environments. We found that the functional trait 
space in intermittent sections is reduced compared 
to perennial sections, which suggests that intermit-
tent sections have less complexity in their functional 
structure and that, consequently, communities in 
newly intermittent streams may have reduced capacity 
to cope with environmental change. Taxa replacement 
and an overall decrease in taxa numbers may reduce 
functioning, suggesting that functional redundancy 
should have a minor role in the assemblages in peren-
nial streams. These streams may be characterized by 
lower functional redundancy than historically inter-
mittent drying networks (Boersma et  al., 2013; Sar-
remejane et al., 2020b; Crabot et al., 2021b). Changes 
in structural and functional aspects, however, are con-
text-dependent, and they are strongly influenced by 
environmental elements such as connectivity (Sarre-
mejane et al., 2020b; Crabot et al. 2021a), proximity 
of refuges (Gill et al., 2022), climatic characteristics 
(Vander Vorste et  al., 2021), and temporal and spa-
tial aspects of the drought (Aspin et al., 2019; Crabot 
et  al., 2020, 2021a; Chanut et  al., 2023). Therefore, 
these influencing factors of drought can have long-
lasting effects on stream communities, potentially 
triggering substantial and irreversible changes (Cas-
sidy et al. 2020).

Along with the intensification of climate change, 
the temporal aspects of the adaptation of aquatic 
organisms to drying are gaining more interest (Crabot 
et  al., 2020; Carey et  al., 2023). In this study, we 
showed that resistance is a more important strategy 
than resilience in intermittent streams; however, the 
response at the trait state level is section-specific 
and uneven to initial drying. The macroinvertebrate 
community does not have a well-defined response 
to a never-experienced environmental stress. More 
broadly, our results illustrate the need to consider the 
temporal context (in terms of time elapsed since the 
first appearance of drying), especially when evaluat-
ing ecological responses to drying.
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