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with scraping-like structures), such as the family 
Chromadoridae that dominated this habitat. In addi-
tion, the high light exposure of the leaves explains the 
higher concentration of ocellated nematodes in this 
habitat. Organic carbon and nitrogen contents had an 
impact on the Nematoda community composition, 
meanwhile average grain size only affected the abun-
dance of nematodes with elongated/filiform tails.

Keywords Leaves · Matte · Adjacent sediment · 
Epistrate feeders · Chromadoridae

Introduction

The endemic Posidonia oceanica (L.) Delile, 1813 
constitutes the most important meadow-forming sea-
grass species in the Mediterranean Sea. This marine 
phanerogam is actively involved in water oxygena-
tion and has been used as bioindicator of environ-
ment well-being (Vaquer-Sunyer & Barrientos, 2021). 
Regarding biodiversity, P. oceanica meadows sup-
port a rich and plentiful community of marine organ-
isms (Blanc & Grissac, 1984; Perès, 1984; Bourcier, 
1989). According to these studies, the ever-increasing 
threat to these meadows in the Mediterranean Sea not 
only endangers their own survival, but also the con-
servation of vast diversity of living beings that find 
shelter and nourishment within this heterogeneous 
ecosystem. Three main habitats can be highlighted 
among these meadows: the leaves and the matte 

Abstract Nematodes typically comprise the most 
abundant phylum in meiofaunal communities. We 
aim to characterize the specific ecological condi-
tions that influence Nematoda communities in Posi-
donia oceanica grasslands focusing on three habitats: 
leaves, matte, and unvegetated adjacent sediment. We 
hypothesized that the constant flux of nutrients under 
the canopy would result in a higher concentration of 
metazoans compared to the unvegetated sediment out-
side; however, the hypothesis was not confirmed by 
the obtained results. The habitat heterogeneity played 
an important role in shaping the community, yielding 
a greater richness in the matte. The resource specific-
ity of the leaves (microepiphytes) was also expected 
to shape the community by favoring nematodes capa-
ble of exploiting this resource (epistratum feeders 
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(roots and rhizomes) within the bushes and the adja-
cent unvegetated sediment outside them.

The most well-known fauna hosted in P. oceanica 
meadows include many fishes of commercial inter-
est as well as macroinvertebrates such as crustaceans, 
mollusks, and sea urchins (Cetinić et al., 1999, 2011; 
Albano & Stockinger, 2019; Borg et al., 2006). How-
ever, knowledge is comparatively less regarding the 
community of marine invertebrates of small size, 
namely meiofauna (García-Gómez et al., 2022). This 
benthic community is formed by organisms capable 
of passing through a 500 μm mesh and being retained 
in a lower 63 μm mesh size sieve (Giere, 2009). Mei-
ofauna plays an important role in the functioning of 
marine ecosystems (Schratzberger & Ingels, 2018) 
and can be a suitable model for the study of their 
health because of  their high abundance, fast regen-
eration rate, and low dispersal capacity (Woodward, 
2010; Zeppilli et  al., 2015). Our understanding of 
the diversity and ecology of meiofauna inhabiting 
P. oceanica meadows has slowly increased in recent 
decades (Martínez et al., 2021; García-Gómez et al., 
2022). The phylum Nematoda, on the other hand, 
constitutes the most abundant component of the mei-
ofauna and has been further investigated (Novak, 
1982, 1989) in these Posidonia meadows. Previous 
research showed a high diversity of nematodes within 
P. oceanica and a different community composition 
between its habitats. For instance, Moens & Vincx 
(1997) highlighted that these differences are influ-
enced by various crucial community-shaping factors, 
such as food availability of habitats and feeding strat-
egy of species, while other studies attributed this to 
habitat complexity (Mazzella et  al., 1989; Gacia & 
Duarte, 2001; Boström et al., 2006).

Regarding food sources, leaves within P. oceanica 
ecosystem are dominated by microepiphytic organ-
isms, such as diatoms and dinoflagellates, whose 
prevalence is especially clear in the summer. Moreo-
ver, during this season, the leaves reach their maxi-
mum length, which decreases hydrodynamic forces 
underneath (Mabrouk et  al., 2011) and favors the 
stability of the sediment under the canopy (Gacia & 
Duarte, 2001; Manca et al., 2012).

As a novel contribution with respect to previous 
studies on nematode communities in P. oceanica 
meadows, our research incorporates samples from 
outside the canopy for comparison to leaves and 
matte inside bushes. This work also incorporated the 

analyses of sediment granulometry and concentration 
of organic matter and nitrogen to relate it to nema-
tode communities. Finally, we introduced the study 
of functional traits that were previously unexplored 
in the nematode communities of P. oceanica. These 
traits include presence/absence of ocelli and pres-
ence/absence of denticles on the buccal cavity and 
tail shape, among others previously studied.

The aim of this study is to assess dissimilarity in 
Nematoda communities between P. oceanica’s three 
main habitats (leaves, matte, and adjacent unveg-
etated sediment) due to habitat heterogeneity. These 
are the main hypotheses tested in this study:

• We expect to find higher density of nematodes 
inside the canopy than outside due to increased 
flux of food resources.

• The diverse availability of food and the heteroge-
neity of the matte lead us to expect a greater rich-
ness of genera and families in this habitat in com-
parison to the other, more uniform habitats.

• The resource specificity of the leaves, consisting 
of microepiphytes, leads to a community domi-
nated by a group of nematodes that exploit micro-
epiphytes as food resource, potentially resulting in 
a lower evenness. Conversely, the higher variety 
of nutrients in the matte and adjacent sediment 
may host more generalist feeders and foster a more 
even community structure.

• We anticipate that nematodes occurring in P. oce-
anica show distinct functional traits as a result of 
their adaptation to the specific conditions of each 
habitat.

• With respect to matte and adjacent sediment 
habitats, we expect that sediment parameters 
(i.e.,  mean  grain size, nitrogen and organic mat-
ter content, and the percentages of sand, silt, and 
clay) will influence the genus and family composi-
tion of nematode communities.

Materials and methods

Sampling, processing, sorting and identification of 
meiofauna

A total of nine samples were collected by scuba diving 
on a P. oceanica meadow from Cala Cuartel (Santa 
Pola, Alicante, Mediterranean Spain; coordinates: 
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38° 12′ 34.04″ N, 0° 30′ 19.12″ W) on summer sea-
son, specifically on the 2nd of August 2016, when the 
phanerogam reaches its highest growth. A 1  km2 area 
within the meadow was selected, situated at depths of 
4 to 7 m (Fig. 1). Within this area, we randomly des-
ignated three sites, approximately 200 m apart, where 
one sample was collected from each of the three pri-
mary habitats. At each site, a 20 × 20 cm quadrat was 
used to sample leaves, matte and the nearest unveg-
etated area. Leaves were first cut at the ligule level 
and collected in a hermetic bag; then, the underlying 
root sediment was shoveled into another hermetic bag 
(Novak, 1982, 1989; Cvitkovic et  al., 2017). Lastly, 
the nearest adjacent sediment comprised in a quadrat 
was as well collected in a hermetic bag.

For the extraction of the metazoans, firstly the 
anesthetization by magnesium chloride technique 
was used to isolate the soft meiofauna (Higgins & 
Thiel, 1988; Schmidt-Rhaesa, 2019). Once this frac-
tion was separated, we employed the “bubble and 
blot” technique to extract the hard meiofauna (Hig-
gins & Thiel, 1988). Meiofauna was collected using a 
63 μm mesh size sieve and then fixed with 7% formal-
dehyde. Nematodes were counted from 1/5 of each 
sample, a measure taken in response to the notably 
high abundance of metazoans within the samples. 
Subsequently, this count was extrapolated to repre-
sent the entire sample. Approximately 100 nematode 
specimens were sorted and mounted on glycerine 
(Bianchelli et al., 2013; Rosli et al., 2018; Semprucci 

Fig. 1  Location of Cala 
Cuartel in Santa Pola (Ali-
cante). The rectangle with 
dotted outline delineates 
the 1  km2 meadow area 
where the sample sites were 
designated
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et al., 2018; Rebecchi et al., 2022), encircled by a ring 
of paraffin, under a stereomicroscope. Nematodes 
were identified to genus level using an Olympus© 
BX51-P microscope with differential interference 
contrast optics equipped with an Olympus© DP-23 
camera.

Granulometry and biogenic elements analysis

Sediment samples were collected under and outside 
the canopy using the referred 20 × 20 cm quadrat. The 
first 2  cm of sediment within this quadrat was care-
fully shoveled into a plastic bag. After air-drying the 
sediment, granulometry parameters were analyzed 
using the methods of Guitián & Carballas (1976). 
Particle size classes applied in this study follow the 
classification adopted from Blott & Pye (2001), 
where the following categories are included: very 
coarse sand, coarse sand, medium sand, fine sand, 
very fine sand, very coarse silt, coarse to medium silt, 
fine to very fine silt, and clay. The software Gradis-
tat v.8 (Blott & Pye, 2001) was used to obtain sedi-
ment parameters following the Folk & Ward method 
(1957). Nitrogen content of each sediment sample 
was obtained following the Kjeldahl method (Brad-
street, 1954) and organic carbon following Walkley & 
Black (1934) adapted to microplates reader, to subse-
quently calculate organic matter percentage.

Statistics

All analyses were performed on R software version 
4.2.2 (R Core Team, 2022).

To test the first hypothesis, primarily, density of 
nematodes was calculated by dividing the total num-
ber of nematodes (abundance) of a sample by the 
sampling area (20  cm2). Subsequently, habitat densi-
ties were compared using a one-way repeated meas-
ures ANOVA, employing the car package (Fox & 
Weisberg, 2019). The analysis was carried out con-
sidering the normality of data, which was verified 
through the shapiro.test function, and considering the 
site as within-subjects factor.

Richness corresponds to the total number of dis-
tinct genera and families present in a sample. For 
testing the second hypothesis, genera and family rich-
ness were calculated based on the identification of 
mounted specimens (approximately 100 specimens 
per sample) and compared between habitats using 

one-way repeated measures ANOVA with the pack-
age car (Fox & Weisberg, 2019). The analysis consid-
ered data normality, verified through the shapiro.test 
function, and considered the site as within-subjects 
factor.

Regarding the third hypothesis, genera and family 
composition of the nematode community was stud-
ied. First, Ruziicka index with the adespatial package 
(Dray et  al., 2023) was used to calculate beta diver-
sity. This index considers the abundance of each taxon 
included in the analysis, not only the presence of the 
taxon. Second, these diversity indexes were compared 
to test for differences between habitats using a permu-
tational analysis of variance (PERMANOVA) using 
the adonis2 function of the package vegan (Oksanen 
et  al., 2022). This PERMANOVA was carried out 
using the beta composition as dependent variable, the 
habitat type as independent variable, and to address 
potential non-independence of habitat samples and to 
account for variability between sites, it was included 
the site as a random factor. SIMPER routine was per-
formed to assess which genera and families contrib-
ute with the highest dissimilarities between habitats. 
To explore community evenness, Pielou’s J was cal-
culated for each sample using the function diversity 
of the package vegan (Oksanen et al., 2022).

To explore the fourth hypothesis, paired t-test 
through the function t.test was employed to exam-
ine differences between habitats with respect to 
the presence/absence of genera that typically pos-
sess ocelli based on the information extracted 
from the genus description, as they can easily get 
lost after fixation, and presence/absence of denti-
cles on the buccal cavity. PERMANOVA analyses 
were conducted to test for variations in abundance 
of nematodes in each trophic group (selective, bac-
terial feeders (1A); non-selective deposit feeders 
(1B); epistrate or epigrowth (diatom) feeders (2A); 
predators/omnivores (2B)) (Wieser, 1953) and 
nematodes with different tail shape (short/rounded, 
clavate, conical, conico-cylindrical, elongated/fili-
form) between habitats. The tail classification was 
modified from Thistle et al. (1995) that considered 
clavate–conico-cylindrical as a single group. We 
divided this group into two, clavate and conico-
cylindrical as in Maharning et al. (2023). For these 
PERMANOVA analyses, the Ruziicka index was 
used to compute beta diversity of the community, 
regarding the trophic group for one analysis and 
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the tail shape for the second one. The beta diver-
sity regarding both aspects served as the depend-
ent variable, with habitat type as independent 
variable. In addition, three PERMANOVA analy-
ses were carried out with the beta composition of 
the trophic group as dependent variable and mean 
grain size, nitrogen content, and organic matter con-
tent as independent variables. To address potential 
non-independence between habitat samples and to 
account for variability between sites, it included the 
site as a random factor.

In terms of the fifth hypothesis, sediment param-
eters (mean grain size, organic matter, and nitrogen 
content) were compared between the matte and the 
adjacent sediment using Linear Mixed-Effects Mod-
els with the function lmer in the packages lme4 
(Bates et al., 2015) and Matrix (Bates et al., 2022). 
Linear Mixed-Effects Models were also carried out 
to explore nematodes density, genera richness, pres-
ence of denticles, and abundance of nematodes with 
each tail shape in relation to sediment parameters. 
Furthermore, community composition with respect 
to genera, families, and buccal types was examined 
in relation to sediment parameters through PER-
MANOVA analyses. In these analyses, the Ruziicka 
index was utilized to calculate beta diversity of the 
community concerning its composition in families, 
genera, and the abundance of nematodes within 
each trophic group. The beta diversity related to 
these aspects served as the dependent variable. 
Each of these parameters underwent a separate 
PERMANOVA against mean grain size, organic 
matter content, and nitrogen content as explanatory 
variables. To account for potential non-independ-
ence among samples and variability between sites, 
the site was incorporated as a random factor in each 
analysis.

Principal Component Analysis (PCA) from the 
vegan package was conducted to visualize community 
structure of genera composition between sites: gen-
era composition in relation to sediment parameters; 
community composition according to nematodes 
buccal type; and community composition regarding 
nematode tail shape and its relationship with sedi-
ment parameters. Moreover, to visualize the differen-
tial genera community composition within habitats, 
data were represented with a heatmap using reshape2 
(Wickham, 2007) and ggplot2 (Wickham, 2016) 
packages.

Results

Nematoda community composition, density, genera, 
and family richness between the three main habitats: 
leaves, matte, and adjacent sediment

The study of the community composition of nema-
tode families and genera produced similar results. 
Analysis based on families showed significant 
differences between habitats (PERMANOVA: 
R2 = 0.63141; P = 0.005**), as did the analysis 
considering nematode genera (PERMANOVA: 
R2 = 0.51922; P = 0.005**, Fig.  2). In line with 
Novak (1989), the family Chromadoridae dominated 
in the leaves (81% of all nematodes in this habitat). 
However, this family was poorly represented in the 
matte and adjacent sediment (8% and 9%, respec-
tively, Table S1). The genus Chromadora accounted 
for most of the presence of this family, constituting 
70% of the community in the leaves and only 1% and 
3% in the matte and adjacent sediment, respectively. 
PCA clearly illustrates the association of the genus 
Chromadora with leaf samples (Fig.  3A). The fam-
ily Desmodoridae also showed differential relevance 
among the three habitats, with the highest numbers 
appearing in the matte (40%), less representation out-
side the canopy (21%), and minimal presence in the 
leaves (2%). In our study, Perspiria and Bolbonema 
were the main representatives of the latter family. Per-
spiria, as represented in the PCA (Fig. 3A), showed 
different distribution between the matte (15%) and 
the remaining habitats (2% outside the canopy and no 
presence on the leaves); similarly, Bolbonema showed 
the highest abundance on the sediment habitats (11% 
on matte and 16% on adjacent sediment), in contrast 
to the leaves (0.3%, see Table S2 and Fig. 3A). The 
highest abundance of the family Xyalidae was found 
in adjacent sediment samples (16%), compared to the 
low representation in matte (2%) and in leaves (0.3%). 
Moreover, the family Oncholaimidae was best rep-
resented in the adjacent sediment habitat (20%), less 
abundant in the leaves (12%), and poorly present in 
the matte (6%). 

Nematode density did not significantly differ 
between habitats (ANOVA: F = 1.037, P = 0.314, 
Fig.  4A). However, there were differences in genera 
and family richness between habitats (ANOVA for 
genera richness: F = 10.303, P = 0.026*; ANOVA 
for family richness: F = 14, P = 0.016*). The richest 
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habitat regarding genera was the matte under the can-
opy, although the significance was marginal when 
compared to the adjacent sediment (t-test: P = 0.058), 
and not significant when compared to the leaves 
(t-test: P = 0.067, Fig. 4B). Furthermore, matte fam-
ily richness was significantly higher than in adjacent 
sediment (t-test: P = 0.0067**) and leaves (t-test: 
P = 0.0445*, Fig. 4C). The sediment outside the can-
opy showed the highest evenness of nematode genera 
of all the studied habitats (Pielou’s J of 0.29, 0.30 and 
0.29), followed by the matte (Pielou’s J of 0.27, 0.28 
and 0.25) and the leaves (Pielou’s J of 0.18, 0.19 and 
0.23).

Sediment parameters as community-shaping factors

Sediment nitrogen and organic matter content were 
compared inside and outside the canopy habitats, 
showing no significant differences (%nitrogen lmer: 
t-value = 0.883; P = 0.43; %organic matter lmer: 

t-value = 1.882; P = 0.133). Nonetheless, our analy-
ses demonstrated that the matte had a significantly 
smaller mean grain size than the adjacent sediment 
(lmer: t-value =  − 4.354; P = 0.0489*, Fig. 5).

The Linear Mixed-Effects Model revealed no 
significant differences in nematode density associ-
ated with mean grain size (lmer: t-value =  − 0.639; 
P = 0.593), the percentage of organic matter (lmer: 
t-value =  − 0.264; P = 0.8049), or nitrogen con-
tent (lmer: t-value =  − 0.370; P = 0.7302). How-
ever, genera richness significantly decreased as 
mean grain size increased (lmer: t-value =  − 19.384; 
P = 0.0026**) but remained unaffected by the other 
sediment parameters included in the study (lmer: 
organic matter: t-value =  − 0.629; P = 0.5634; nitro-
gen: t-value =  − 0.661; P = 0.5448).

When comparing matte and adjacent sediment, 
the community composition of nematode gen-
era was significantly affected by sediment organic 

Fig. 2  Panels showing the number of specimens per genus from leaves, matte and adjacent sediment samples. Intensity of the color 
increases according to the number of presences. Genera that had the greatest impact on dissimilarity were included
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matter content (PERMANOVA: R2 = 0.30658; 
P = 0.0403*) and nitrogen content (PERMANOVA: 
R2 = 0.32495; P = 0.0097**), with a marginal 
effect from mean grain size (PERMANOVA: 
R2 = 0.27326; P = 0.0569, Fig.  3B). In contrast, 
the community composition of nematode fami-
lies was not significantly affected by any of the 
sediment parameters (PERMANOVA: mean grain 
size: R2 = 0.14623; P = 0.5514; organic matter: 
R2 = 0.26317; P = 0.2736; nitrogen: R2 = 0.29447; 
P = 0.1535).

Functional traits and habitat characteristics

Buccal types

The composition of the community was explored 
according to this trait, revealing significant dif-
ferences between habitats (PERMANOVA: 
R2 = 0.73627; P = 0.005**). Epistratum feeders (2A) 
were the most abundant nematodes in all three habi-
tats, constituting 82% of the community in the leaves, 
67% in the matte, and 40% in the adjacent sediment. 
The most significant dissimilarity between leaf and 

Fig. 3  Principal Component Analysis (PCA) representing 
A Nematoda community composition according to genera, B 
genera community composition in relation to sediment param-

eters, C community composition according to buccal type, and 
D community composition according to tail shape and sedi-
ment parameters; between leaves, matte, and adjacent sediment
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matte habitats was observed in selective feeders (1A), 
whose abundance ranged from 5% in the leaves to 
20% in the matte. The adjacent sediment community 
showed the highest evenness according to the buccal 
types, hosting 40% of epistratum feeders (2A), 30% 
of non-selective deposit feeders (1B), 27% of preda-
tors/omnivores (2B), and the least represented, 3% of 
selective feeders (1A) (Table S3; Fig. 6).

When analyzing nematode buccal types in rela-
tion to sediment characteristics, none of the sedi-
ment parameters, including mean grain size (PER-
MANOVA: R2 = 0.24562; P = 0.3431), organic matter 
(PERMANOVA: R2 = 0.3618; P = 0.8), or nitrogen 
content (PERMANOVA: R2 = 0.42513; P = 0.0653), 
appeared to significantly affect the community 
(Fig. 3C).

Tail

Analyses show significant differences in the composi-
tion of nematode tail shapes between habitats (PER-
MANOVA: R2 = 0.70581; P = 0.005**). The most 
abundant type of tail was the conical one, contribut-
ing with the highest dissimilarities between the three 
habitats. Conical tail constituted the 86% of the com-
munity in the leaves, 56% in matte, and 35% in adja-
cent sediment. The clavate tail was most prevalent 
outside the canopy (31%), differentiating it from the 
two other habitats (leaves = 16%; matte = 16%). Like-
wise, the elongated/filiform tail reached its highest 
abundance in the adjacent sediment, comprising 13% 
of the community, and only 3% and 7% in the leaves 

and matte, respectively. Nematodes with conico-
cylindrical and short/rounded tails maintained similar 
abundances (6, 7, and 9% for conico-cylindrical and 
2, 1, and 0.3% for short/rounded) between habitats, as 
did nematodes with short/rounded tails (Table S4).

When analyzing the effect of sediment mean grain 
size, sand, silt, and clay proportions on the rela-
tive abundance of nematodes with each tail shape 
(Table  1), the only significant differences were 
found in the nematodes with elongated/filiform tails 
(Fig.  7). This type of tail is positively correlated to 
increasing mean grain size (lmer: t-value = 5.095; 
P = 0.0276*) as well as increasing clay percentage 
(lmer: t-value = 2.830; P = 0.0474*, Fig. 3D).

Ocelli

Nematodes that typically have or may present ocelli 
were represented in our samples by the following 
genera: Araeolaimus, Axonolaimus, Bolbonema, Cha-
etonema, Chromadora, Chromadorella, Diplopeltis, 
Eurystomina, Leptosomatum, Onchium, Phanoderma, 
and Tricoma.

The 70% of nematodes of the leaves belonged to 
genera mentioned above. This percentage signifi-
cantly differed from the 18% of ocellated nematodes 
from the matte (paired t-test: t = 5.6723; P = 0.0297*) 
and the 30% from outside Posidonia bushes (paired 
t-test: t =  − 6.776; P = 0.0211*, Fig. 8A). There were 
no significant differences in the abundance of nema-
todes with ocelli between matte and adjacent sedi-
ment habitats (paired t-test: t = 3.874; P = 0.0606).

Fig. 4  Boxplots showing A Nematoda density (ind/cm2), B genera, and C family richness between habitats. Sample 3 is highlighted 
to show its dissimilarity with the rest of samples of the matte habitat regarding nematodes density
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Denticles

Nematodes that present denticles in their buccal 
armature are represented in our samples by the fol-
lowing genera: Actinonema, Chromadora, Chroma-
dorita, Cyatholaimus, Dichromadora, Euchromadora, 

Eurystomina, Longicyatholaimus, Metachromadora, 
Paramarylynnia, Pomponema, Preacanthonchus, 
Rhips, and Spilophorella.

The 72% of nematodes from the leaf community 
had denticles in their buccal cavity. This habitat had 
a significant higher relative density of nematodes 
provided with denticles than matte (paired t-test: 
t = 9.3978; P = 0.0111*) and adjacent sediment 
(paired t-test: t =  − 9.9015; P = 0.0101*), but no sig-
nificant difference was observed between the last two 
(paired t-test: t =  − 0.75056; P = 0.5312, Fig.  8B). 
This functional trait did not seem to be significantly 
affected by the organic matter content when compar-
ing the two sedimentary habitats, matte, and adjacent 
sediment (lmer: t-value = 1.992; P = 0.1841).

Discussion

Nematode density is not significantly different 
between habitats

No significant differences in nematode density were 
observed between the studied habitats, although we 

Fig. 5  Boxplots showing sediment A mean grain size (µm), B 
organic matter (%) and C nitrogen (%) of the sediment outside 
and inside the canopy. Sample 3 is highlighted to show its dis-
similarity with the rest of samples of the matte habitat regard-
ing organic matter and nitrogen content

Fig. 6  Boxplots showing percentage of nematodes with differ-
ent buccal types according to Wieser (1953): selective (bacte-
rial) feeders (1A), non-selective deposit feeders (1B), epistrate 
or epigrowth (diatom) feeders (2A), and predators/omnivores 
(2B) in the community per habitat
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expected the matte to host a higher density than the 
adjacent sediment. It is worth noting that one of the 
matte samples (sample 3) showed a significant devia-
tion from the other two samples in terms of bio-
genic element concentrations. This particular sample 
exhibited significantly lower levels of organic matter 
and nitrogen compared to the other sampled mattes 
(Fig. 5, see the surrounded sample). Nematode den-
sity is strongly influenced by nutrient concentration 
(Moens & Vincx, 1997), and, as such, the atypical 
parameters of this sample may be a possible reason 
why we did not find differences between habitats. 
This is in contrast to the rest of the matte samples, 
which were characterized by higher levels of organic 
carbon and nitrogen than the adjacent sediment 
samples.

Habitat heterogeneity and food specificity shape the 
community

The matte within the phanerogam canopy had the 
highest family richness but not the highest genera 
richness. This habitat was dominated by nematodes 
from the Desmodoridae family (40%), specifically 
Perspiria (15%), Bolbonema (11%), and Desmodora 
(9%). These results align with Novak (1989), where 
Desmodoridae was the most abundant family in the 
matte habitat in September. Desmodorids are fre-
quently reported in enriched estuarine sediments with 
low oxygen levels, although tolerance to anoxic con-
ditions may be partly species specific and/or context 
specific (Moens et al., 2013). The abundance of this 
family in the matte habitat, with high organic matter 
concentration, would support the idea of desmodor-
ids inhabiting enriched sediments. Most desmodorids 
in this study samples have conical tails, except for 
Spirinia, which have a conico-cylindrical shape. This 
is in tune with the fact that nematodes with a coni-
cal tail constitute the highest percentage in the matte 

(56%). In addition, the sediment under the canopy 
constitutes the habitat with the highest abundance of 
selective (bacterial) feeding nematodes (1A buccal 
type; Fig. 6). The constant organic matter flow from 
the canopy to the matte sediment likely promotes the 
growth of organic matter-degrading bacteria, provid-
ing an abundant food source for nematodes with such 
a feeding strategy. Furthermore, this habitat had the 
lowest abundance of nematodes with ocelli (18%). 
Since the matte is the darkest habitat under the leaves, 
photoreceptors seem a less useful adaptation in this 
environment and, therefore, could explain its low 
abundance.

The leaf habitat exhibited moderate genera rich-
ness and an uneven distribution of abundances among 
taxa. This habitat was dominated by the family Chro-
madoridae, composing the 80% of the community 
and mostly represented by the genus Chromadora. 
This habitat is also characterized by the high occur-
rence of specimens with denticles (72%) and conical 
tails (86%). Denticles are known to be used for scrap-
ing off bacteria or microalgae from substrata (Moens 
et al., 2013). During summertime, diatom populations 
and biofilms covering Posidonia leaves reach their 
maximum development (Mabrouk et  al., 2011), pro-
viding a plentiful food source for epistratum feeding 
nematodes (buccal type 2A; Fig. 6). These nematodes 
use teeth to scrape diatoms from the surface. In addi-
tion, the leaf habitat hosted by far the highest percent-
age of nematodes with ocelli, likely an adaptation to 
the well-lighted conditions on P. oceanica leaves.

The adjacent sediment outside Posidonia’s bushes 
had the lowest nematode richness and the most uni-
form community due to the lower dominance of spe-
cific genera compared to the leaves and matte. Similar 
to the matte habitat, the most abundant family in the 
adjacent sediment was Desmodoridae (21%), mainly 
represented by the genus Bolbonema (16%). In con-
trast to the other two habitats, the adjacent sediment 

Table 1  lmer results 
relating sediment mean 
grain size, sand, silt, and 
clay proportions to the 
relative abundance of 
nematodes with each tail 
shape

Mean grain size Sand (%) Silt (%) Clay (%)

t-value P t-value P t-value P t-value P

Elongated/filiform 5.095 0.0276*  − 0.056 0.958  − 0.476 0.6591 2.830 0.0474*
Clavate 0.881 0.428 1.048 0.354  − 1.480 0.213 0.521 0.630
Conical  − 2.879 0.0913  − 0.722 0.510 0.967 0.3884  − 0.376 0.7259
Conico-cylindrical  − 0.285 0.789  − 0.221 0.836 0.330 0.7579  − 0.257 0.810
Short/rounded 0.229 0.830  − 1.025 0.406 1.204 0.336 0.305 0.776
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had a relatively high presence of the Oncholaimi-
dae (20%) and Xyalidae (16%) families. Accord-
ing to Moens et al. (2013), the Xyalidae family may 
have developed adaptations to cope with physical 
disturbances (wave actions) and/or low resource 
availability. This fact would explain their relatively 
higher abundance outside the canopy where the 

lack of vegetation exposes the sediment to greater 
hydrodynamics and lower organic matter content (at 
least in two of our samples). On the other hand, the 
Oncholaimidae family is composed by nematodes that 
are omnivores or facultative predators (Moens et al., 
2013) that could leverage whatever food resources 
are available and survive the unfavorable conditions 

Fig. 7  Linear correlation between the five types of tail shape (clavate, conical, conico-cylindrical, short/rounded, and elongated/fili-
form) and the sediment A mean grain size and B percentage of clay
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of the adjacent sediment habitat. Moreover, the 
nematodes within this family have a good dispersal 
capacity (Lorenzen et al., 1987; Prein, 1988), which 
may also explain their prevalence on this exposed 
substrates (Moens et  al., 2013). The abundance of 
nematodes with elongated/filiform tails appears to 
be linked to hydrodynamic and sedimentary habitats, 
as they are most abundant in the adjacent sediment, 
which combines both characteristics. Lastly, a greater 
number of nematodes from outside the canopy had 
ocelli (30%) compared to the matte. Although both 
are sedimentary habitats, the adjacent sediment is 
more exposed to direct daylight, where photorecep-
tors may be more useful.

Sediment granulometry and biogenic elements 
concentration affect the community

Comparing the two sedimentary habitats, our results 
show a decrease in genera richness as mean grain size 
increases. This contradicts the pattern highlighted in 
numerous investigations (see Heip and Decraemer, 
1974; Tietjen, 1977; Heip et  al., 1985, 1992; Stey-
aert et  al., 1999; Vanaverbeke et  al., 2002, 2011) 
which relate increased diversity to coarser, more 
permeable sediments (Vanaverbeke et  al., 2011). 
The composition of the nematode community in our 
samples is influenced by nitrogen and organic mat-
ter content and tends to change with mean grain size, 
consistent with previous studies (Vincx et  al., 1990; 
Schratzberger et al., 2006, 2008a, 2008b). According 
to our results, genera such as Bolbonema, Viscosia 
and Oncholaimellus seem to prefer coarser sediment 

grain size, while Deontolaimus and Setoplectus may 
be associated with high nitrogen and organic mat-
ter content (Fig.  3B). Nematodes with elongated/
filiform tails are positively correlated with increasing 
clay percentage in our samples. On the other hand, 
Schratzberger et al. (2007) directly correlated nema-
todes with elongated/filiform tail abundance with 
finest sediments (but not differing between silt and 
clay categories). However, our samples also demon-
strate the preference of nematodes with this type of 
tail toward coarser grain sizes. This suggests that the 
higher abundance of nematodes with elongated/fili-
form tails is not solely associated with fine sediments 
but may be specifically linked to the clay fraction. 
Riemann (1974) proposed that this tail type could be 
an adaptation to sand and muddy sediments where 
only an incomplete interstitial system exists. These 
elongated/filiform tails would allow the animals to 
retract from dead-end interstitial passageways that are 
too narrow to turn around and escape.

Conclusions

The habitat heterogeneity within P. oceanica mead-
ows appears to influence the Nematoda community 
regarding richness and community composition, 
albeit not impacting its density. The richest habitat 
in terms of nematode genera and families was the 
matte, suggesting that habitat heterogeneity leads 
to a more diverse community. In line with the third 
hypothesis, the family Chromadoridae dominating 
the leaves are epistratum feeders (2A) that exploit 

Fig. 8  Boxplots showing 
the proportion of nematodes 
with A ocelli and B denti-
cles per habitat
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the abundant food resources provided by diatoms 
and biofilms covering the leaves of this phanerogam 
during the summer season. Noteworthy differences 
in nematode functional traits were observed among 
habitats. Specifically, epistratum feeders (2A) were 
the most abundant type of nematodes in all habitats, 
but particularly in the leaves. In addition, nema-
todes with denticles in their buccal cavity were also 
more prevalent on the leaves, where this structure 
could be employed to scrap diatoms and biofilms 
attached to leaf surface. Nematodes with ocelli were 
notably more represented on the leaves, given the 
greater sun exposure in this habitat. Concerning the 
fifth hypothesis, our results indicate that the compo-
sition of the nematode community in our samples is 
influenced by nitrogen and organic matter contents 
and tends to vary with mean grain size. More pre-
cisely, coarser grain size negatively affects genera 
richness but positively influences the presence of 
nematodes with elongated/filiform tails. Nematodes 
with elongated/filiform tails were also associated 
with the hydrodynamic adjacent sediment habitat 
and a higher proportion of sediment clay. Future 
studies could explore seasonal variations in P. oce-
anica nematode communities and investigate how 
the life cycle of the phanerogam, and beach hydro-
dynamics impact the community.
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