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Abstract Three sardine species of Harengula and 
one of Opisthonema (Clupeiformes, Clupeidae) are 
known in the Western Atlantic, where the Amazon-
Orinoco plume has been recognized as a major bio-
geographic barrier, albeit permeable to larger and 
generalist species. Here we used mitochondrial cox1 
gene DNA sequences to check the lineage delimita-
tion of both genera, testing the influence of the Ama-
zon-Orinoco barrier (AOB) and marine provinces on 
their phylogeographic structure. Results indicate that 
the two genera are differently affected by the AOB, 

including cryptic speciation in Harengula and popu-
lation structure in Opisthonema. Harengula show a 
broad distribution in the Brazilian Province (BRA) 
distinct from H. clupeola and H. jaguana from the 
Greater Caribbean Region (GCR). Divergence time 
between Harengula from the GCR vs. BRA was esti-
mated as about 2.4 Mya, which coincides with the 
period of increasing sediment and freshwater dis-
charge of the Amazon River in the Atlantic. Results 
also indicate the existence of a single species of Opis-
thonema, albeit with population structuring related 
to the marine provinces. Since species of both gen-
era are relevant to artisanal fisheries and the mainte-
nance of oceanic ecosystems, these results may help 
in fisheries management of these important marine 
resources.
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Introduction

Taxonomic uncertainties and lack of proper 
stock delimitation can seriously compromise the 
management of fisheries resources (Carvalho & 
Hauser, 1994; Ward et al., 2005). Fisheries statistics 
are particularly sensitive to species misidentification 
(FAO, 2016), a situation that is common among 
pelagic and forage fishes. Additionally,  molecular 
tools are useful in identifying hidden diversity, 
including species relevant to fisheries (Tourinho 
et  al., 2012; Thomas et  al., 2014; Lima et  al., 
2017). The use of mitochondrial DNA, despite its 
limitations, has already revealed cryptic species in 
several commercial fishes (Mat Jaafar et  al., 2012; 
Wu et al., 2016; Durand et al., 2017; Jacobina et al., 
2020), resulting in a refined understanding of species 
distributions and population structure.

Clupeids are among the most economically 
relevant forage fishes for both artisanal and industrial 
fisheries worldwide, such as sardines and herrings 
(Whitehead, 1985; Birge et  al., 2021). In addition 
to serving as food, they are also often used as bait 
for fishing larger species (Whitehead, 1985; Lopes 
et al., 2017). They are most often marine and pelagic, 
but some species exclusively inhabit freshwaters, 
whereas others are euryhaline or anadromous 
(Whitehead, 1985). Harengula Valenciennes 1847 
and Opisthonema Gill 1861 are two clupeid genera 
from the Atlantic and Pacific coasts of the New 
World. Both are represented by small to medium-
sized schooling fishes that are usually found along the 
coast but also in estuaries and lagoons (Whitehead, 
1985; Miller et al., 2005; Petry et al., 2016; Pinheiro 
et  al., 2018). Harengula is also distinct in the 
Southwestern Atlantic since it is the only clupeid in 
the Brazilian oceanic islands of the Rocas Atoll, and 

the Trindade-Martin Vaz and Fernando de Noronha 
archipelagos (Gasparini & Floeter, 2001; Sazima 
et al., 2006; Pinheiro et al., 2018).

The Atlantic thread herring Opisthonema oglinum 
(Le Sueur 1818) is the only species of the genus in 
the Western Atlantic (WA), distributed from the Gulf 
of Maine in USA to the estuary of la Plata River 
in Uruguay (Munroe et  al., 2015a). In turn, three 
species of scaled-sardines of the genus Harengula 
are recognized in the WA: Harengula clupeola 
(Cuvier 1829), Harengula humeralis (Cuvier 1829), 
and Harengula jaguana Poey 1865 (Whitehead, 
1973, 1985; Fricke et al., 2024). While H. humeralis 
is reported from the eastern Florida (USA) to the 
French Guiana (Munroe et al., 2015b) and possibly in 
the north coast of Brazil (Cervigón, 1991; Robertson 
& Van Tassell, 2023), H. clupeola and H. jaguana 
are broadly distributed from the east coast of USA 
to southern Brazil (Whitehead, 1985; Munroe et  al., 
2015c, 2019). Harengula humeralis can be easily 
distinguished from congeners based on morphology 
(Whitehead, 1985; Cervigón, 1991), but anatomical 
distinction between H. clupeola and H. jaguana is 
challenging (Rivas, 1963; Berry, 1964; Whitehead, 
1967, 1973, 1985). In the most recent revision of 
the genus, Whitehead (1985: 66) also indicated the 
likely existence of one or more subspecies of H. 
jaguana along its extensive range, as previously 
suggested by Rivas (1950). This might indicate 
population structuring or cryptic species in the genus, 
as extensively detected in several coastal species 
previously considered as having a wide distribution 
in the WA (Colborn et  al., 2001; Rocha, 2003; Luiz 
et  al., 2012; Rodríguez-Rey et  al., 2017; Dias et  al., 
2019; Petean et  al., 2020; Araujo et  al., 2022). In 
Brazil, they are usually identified as H. clupeola, but 
both species are reported, while in the oceanic islands 
a single morphotype is known but its identity is 
uncertain (Figueiredo & Menezes, 1978; Whitehead, 
1985).

Genetic structuring of clupeids can be related to 
temperature, salinity, and depth, considering that 
these oceanographic features are known to influence 
other marine taxa with pelagic larvae (Palumbi, 1994; 
Floeter et  al., 2008; Luiz et  al., 2012; Stern et  al., 
2018; Jacobina et al., 2020). In the WA, the Amazon-
Orinoco barrier (AOB) marks the limit between the 
Greater Caribbean biogeographic region (GCR), 
composed by the Carolinian and the Caribbean 
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Provinces in the north, and the Brazilian Province 
(BRA) in the south (Floeter et  al., 2008; Briggs & 
Bowen, 2012; Robertson & Cramer, 2014). The AOB 
is considered a biogeographic filter acting in the 
genetic structuring of several marine coastal fishes 
especially since the Pleistocene (Rocha et  al., 2002, 
2008; Rocha, 2003; Floeter et  al., 2008; Luiz et  al., 
2012; Reis et al., 2016; Jacobina et al., 2020; Araujo 
et  al., 2022; Quintão et  al., 2022). The effectiveness 
of this barrier varied across taxa and with increased 
sedimentation and sea-level fluctuations through 
interglacial and glacial periods (Rocha, 2003; 
Figueiredo et al., 2009; Ludt & Rocha, 2015; Araujo 
et  al., 2022). The AOB is also less effective in the 
isolation of larger species or those that are more 
tolerant to variations in salinity (Araujo et al., 2022; 
Giachini Tosetto et al., 2022).

The effectiveness of a barrier can be estimated 
by comparing the genetic structure of species with 
distinct biological attributes and from different marine 
provinces (Araujo et al., 2022). Herein we tested the 
role of the AOB in the genetic structure of two sardine 
genera along the WA based on DNA sequences of 
the mitochondrial cytochrome c oxidase subunit 1 
(cox1) gene. Since both Harengula and Opisthonema 
are pelagic fish, we expect to find a genetic signature 
of the AOB on them. However, due to the smaller 
size (common length: 10–12 cm vs. 20 cm standard 
length, respectively, Whitehead, 1985) and putative 
subspecies along its distribution, Harengula must be 
more affected by the AOB and other oceanographic 
barriers them Opisthonema. Additionally, we provide 
information regarding taxonomy and fisheries stocks, 
including the identity of Harengula from Fernando de 
Noronha oceanic archipelago, which is in the center 
of a fisheries conflict in the island (Mendes et  al., 
2020).

Material and methods

DNA extraction, amplification, and sequencing

DNA sequences were obtained from specimens 
acquired in fish markets, collected using a 5 m-long 
beach-seine (5 mm mesh) or deposited in fish 
collections from 19 localities along the Brazilian 
coast and the Fernando de Noronha oceanic 
archipelago, off northeastern Brazil (Online Resource 

1). Collection of specimens in Fernando de Noronha 
was conducted under the System Authorization 
and Information on Biodiversity permit (SISBIO 
nº 67671-1). Tissue samples were stored in 98% 
ethanol, and the voucher specimens were fixed 
in a formaldehyde 4% solution, transferred to a 
70% ethanol solution, and then deposited in the 
ichthyological collections of the Universidade Federal 
do Rio Grande do Norte (UFRN) and the Instituto 
de Biodiversidade e Sustentabilidade, Universidade 
Federal do Rio de Janeiro (NPM). Specimens were 
morphologically identified at the genus level based 
on Figueiredo and Menezes (1978) and Whitehead 
(1985).

Genomic DNA was extracted by saline 
protocol based on Bruford et  al. (1998) with 
some modifications (Online Resource 2). DNA 
amplification by PCR was performed using the 
GoTaq® Green Master mix (Promega, USA) and 
the primers FISH-BCL (5′- TCA ACY AAT CAY 
AAA GAT ATY GGC AC) and FISH-BCH (5′- TAA 
ACT TCA GGG TGA CCA AAA AAT CA) of the 
mitochondrial gene cox1 (Baldwin et al., 2009). PCR 
steps consisted in a first cycle of 2 min at 95 °C, 35 
cycles of denaturation at 94 °C for 30 s, annealing at 
54 °C for 30 s, and extension at 72 °C for 1 min, and 
a final cycle of 10 min at 72 °C, according to Baldwin 
et  al. (2009). Amplicons were sequenced in both 
directions by Macrogen Inc (https:// dna. macro gen. 
com/).

Additional sequences of specimens from USA, 
Mexico, and Caribbean were obtained from GenBank 
(https:// www. ncbi. nlm. nih. gov/ genba nk/) and 
aligned with our sequences (Online Resource 1). 
Three datasets were assembled: the first (Harengula 
dataset) includes sequences of H. clupeola, H. 
jaguana, and Harengula sp. from the WA, with 
Sardinella aurita Valenciennes 1847 as outgroup; 
the second (Opisthonema dataset) includes sequences 
of Opisthonema from the WA, also with S. aurita as 
outgroup. Finally, the third dataset (combined dataset) 
is the merger of the two previously mentioned 
datasets.

Phylogenetic analysis and lineage delimitation

Forward and reverse sequences of Opisthonema and 
Harengula were edited, and consensus sequences 
of 555 bp were defined in SeqTrace v. 0.9 (Stucky, 

https://dna.macrogen.com/
https://dna.macrogen.com/
https://www.ncbi.nlm.nih.gov/genbank/
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2012). The sequences obtained were deposited in 
GenBank (MW302057-MW32121, Online Resource 
1). Sequences of the Opisthonema, Harengula, and 
the combined datasets were separately aligned using 
the MUSCLE algorithm (Edgar, 2004), and with 
the best evolutionary models selected in MEGA 
11 (Tamura et  al., 2021). Following the Bayesian 
Information Criterion, the evolutionary model used 
for the combined dataset was Kimura 2-parameter 
with invariant sites (K2P + I), while for the 
Opisthonema and Harengula datasets were K2P with 
gamma distribution (K2P + G).

Bayesian Inference (BI) was performed in BEAST 
v. 1.10.4 (Suchard et  al., 2018) using the following 
parameters: substitution model as Hasegawa-
Kishino-Yano with invariant sites (HKY + I) for the 
combined dataset, and HKY + G for the Harengula 
and Opisthonema datasets with base frequencies as 
all equal (since there is no K2P model in BEAST, 
the equivalent of it is HKY with base frequencies 
equal). The selected clock type was strict with 
normal distribution and mean of 0.01 mutations/
Mya, a substitution rate suggested for fish mtDNA 
(Bermingham et al., 1997; Thomaz et al., 2015), and 
standard deviation of 0.001. The tree prior model was 
set as speciation with Yule process for the combined 
and Harengula datasets and coalescent with constant 
size for the Opisthonema dataset. The pInv prior 
(proportion of invariant sites parameter) selected was 
normal distribution with mean of 0.61 and standard 
deviation of 0.01 for the combined dataset. The alpha 
prior (gamma shape parameter) selected was normal 
distribution with mean of 0.24 and 0.17 and standard 
deviation of 0.01 for Harengula and Opisthonema 
datasets, respectively. The Markov chain Monte Carlo 
(MCMC) simulations were run with 20,000,000 
generations and sampled every 2,000 generations in 
all datasets. Other parameters were set as default. To 
ensure quality of the MCMC simulations, ESS values 
of at least 200 were checked using Tracer v. 1.7.1 
(Rambaut et al., 2018). TreeAnnotator v. 1.10.2 was 
used to summarize results of BEAST into a single 

tree with burn-in of 20% and a posterior probability 
limit of 0.5. The final trees for each dataset were 
visualized and edited in FigTree v. 1.4.4 (Rambaut, 
2018).

For lineage delimitations, we analyzed the 
Harengula and Opisthonema datasets using four 
single-locus methods: multi-rate Poisson Tree 
Processes (mPTP) (Kapli et  al., 2017); single-
threshold  Generalized Mixed Yule-Coalescent 
(sGMYC), and multiple-threshold GMYC (mGMYC) 
(Fujisawa & Barraclough, 2013); and Automatic 
Barcode Gap Discovery (ABGD) (Puillandre et  al., 
2012). A Maximum Likelihood tree generated on 
MEGA 7 (Kumar et al., 2016) with 1,000 replications, 
Nearest-Neighbor-Interchange with branch swap filter 
as moderate, was used as input tree for mPTP. The 
mPTP was performed on an online server (https:// 
mptp.h- its. org/#/ tree) using the default parameters. 
Ultrametric trees generated on BEAST from both the 
Opisthonema and Harengula datasets were used as 
input file for sGMYC and mGMYC. Both analyses 
were performed on an online server (https:// speci es.h- 
its. org/ gmyc/). ABGD distance-based analyses were 
run through the online server at https:// bioin fo. mnhn. 
fr/ abi/ public/ abgd/ abgdw eb. html, with the relative 
gap width of 1.0 and the remaining parameters set as 
default for all the distances available (Jukes-Cantor, 
Kimura, and simple distance). In this analysis, the 
delineation considered was the one with p-value of 
0.01, as suggested by previous studies (Puillandre 
et  al., 2012; Blair & Bryson, 2017). For the 
delimitation based on genetic distance, the genetic 
divergence (K2P) was calculated in MEGA 7 and a 
threshold value was set using the cut-off values of 2% 
of divergence for cox1 (Ward, 2009).

To detect molecular structuring in Opisthonema 
and Harengula, we used GENELAND, which does 
not require a priori assignment of samples (Guillot 
et  al., 2005). The GENELAND analysis was based 
on an uncorrelated frequency model, which is used to 
delimit clusters of possible distinct lineages (Pavón-
Vázquez et  al., 2018), with a minimum population 
number 1 and maximum population number 10. The 
spatial model was selected to infer the number of 
clusters in nine independent runs using 1,000,000 
MCMC iterations, of which every 1,000 was retained. 
A burn-in of 200 was applied and the run with the 
highest mean logarithm of posterior probability 
was used to compute the posterior probabilities of 

Fig. 1  Bayesian time-calibrated tree including sequences 
of Harengula and Opisthonema from the Western Atlantic 
(combined dataset). Clade colors represent Carolinian Province 
(blue), Caribbean Province (red), and Brazilian Province 
(green). Numbers on branches are posterior probability values. 
Blue bars over nodes are confidence intervals for dates of 
cladogenetic events. Scale in millions of years (Mya)

◂
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population membership. Additionally, a haplotype 
network was inferred using the TSC method in 
PopART software (Leigh & Bryant, 2015) to highlight 
the degree of divergence and spatial distribution of 
the molecular diversity of each taxa along the three 
marine provinces. To further investigate population 
structure, we performed Analyses of Molecular 
Variance (AMOVA) using Arlequin v. 3.5.2.2 
(Excoffier & Lischer, 2010) to test the structuring 
hypotheses regarding the AOB, the marine provinces 
and those suggested by GENELAND, for each 
taxa. Significance was inferred using 1,000 random 
permutations. Gene flow (ɸST) was also accessed in 
AMOVA, as the variance among populations within 
groups.

Results

A total of 33 cox1 sequences of Harengula and 32 
of Opisthonema from the BRA were sequenced 
and edited, then aligned with 61 sequences of H. 
clupeola, H. jaguana, and Harengula sp., and 32 
sequences of O. oglinum available in GenBank. The 
Bayesian analysis of the combined dataset (Fig.  1) 
indicated a clearly distinct assemblage formed by all 
sequences Harengula sp. and H. clupeola from BRA, 
including individuals from the Fernando de Noronha 
Archipelago, which is herein referred to as Harengula 
sp. BRA. This clade is sister of Harengula from the 
GCR, with most specimens identified as H. clupeola 
restricted to the Caribbean Province (except for a 
single Harengula sp. from Florida, USA), and all H. 
jaguana, most of them from the Carolinian Province 
(10 in 15) in well-supported clades (posterior 
probability = 1). The separation between Harengula 
sp. BRA and the clade formed by H. clupeola and 
H. jaguana was estimated at approximately 2.5 Mya 

(3.5–1.5 Mya), suggesting the Amazon-Orinoco 
plume as a barrier, but also a signature of the marine 
provinces in the genetic structuring. In Opisthonema, 
there are few well-supported clades, and the analysis 
overall failed to reveal a clear biogeographic pattern 
(Fig. 1), indicating a permeable role of the Amazon-
Orinoco plume in this widely distributed species.

Similar results were obtained in the lineage 
delimitation analyses of Harengula (Fig.  2). The 
sGMYC, ABGD, and genetic distance (Gdist) also 
indicated three lineages, two of them formed by 
H. clupeola and H. jaguana clades from the GCR, 
and another formed by Harengula sp. BRA (Online 
Resource 3). All analyses recovered both H. jaguana 
and Harengula sp. BRA clades. Lastly, sequences of 
H. clupeola from GCR were subdivided in different 
lineages in the mPTP and mGMYC analyses 
(Fig.  2). For the Opisthonema dataset, delimitation 
analyses were also incongruent among themselves, 
with mPTP, ABGD, and genetic distance (Gdist) 
indicating a single lineage. However, the sGMYC and 
mGMYC analyses subdivided O. oglinum into several 
lineages that are not concordant with the AOB or the 
marine provinces (Fig. 2).

Molecular structuring analyses also recovered three 
main lineages of Harengula separated by the AOB 
and marine provinces, one formed by sequences of H. 
jaguana and H. clupeola from Carolinian Province, 
other containing H. jaguana and H. clupeola from 
Caribbean Province, and another restricted to BRA 
(Fig.  3). In Opisthonema, while three populations 
were indicated by the analysis, we were not able to 
visually determine these clusters based on the result 
map (Fig. 4).

The haplotype network of Harengula showed a 
deep structure, with 18 mutational steps (4.8% genetic 
divergence) between Harengula sp. BRA and the 
group formed by H. clupeola and H. jaguana from 
GCR. Ten mutational steps (2% genetic divergence) 
also separate H. clupeola and H. jaguana clades 
(Fig.  5). Individuals from the Fernando de Noronha 
Archipelago share the same haplotype from the 
northeastern Brazilian coast. The haplotype network 
of Opisthonema oglinum, in turn, failed to reveal any 
clear genetic structure, except for two haplotypes 
exclusively from the Bermuda Archipelago (GCR) 
and from a few localities in BRA.

The AMOVA results for both Harengula and 
Opisthonema agree with other results. In Harengula, 

Fig. 2  Bayesian Inference tree and lineage delimitation 
analyses of Harengula and Opisthonema from the Western 
Atlantic. Clade colors represent Carolinian Province (blue), 
Caribbean Province (red), and Brazilian Province (green). 
White circles over nodes indicate high posterior probability 
values (> 0.85). Bars on the right side indicate lineages 
delimited by the following analyses: mPTP—multiple rate 
PTP; sGMYC—single-threshold of Generalized Mixed Yule-
Coalescent; mGMYC—multiple-threshold GMYC; ABGD—
Automatic Barcode Gap Discovery; Gdist—Genetic distance 
(K2P). Number inside the bars correspond to grouping

◂
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it indicated that both AOB and marine provinces (the 
same of GENELAND hypothesis) were significantly 
structuring the genetic portioning, explaining 30% 
and 27.4% of the variance (Table 1). In Opisthonema, 

the AOB was not significant, but the marine 
provinces hypothesis was (12.6%) (Table  1). ɸST 
were significant in all scenarios for Harengula, but 
not for Opisthonema (Table 1), suggesting additional 
structuring within the main lineages, as also indicated 
by a few lineage delimitation methods.

Fig. 3  Maps of posterior probabilities of population 
membership and spatial location of genetic discontinuities 
in Harengula from the Western Atlantic. Three main clusters 
(K = 3) can be visualized (d): Harengula clupeola and H. 
jaguana from Caribbean Province (a), Harengula sp. BRA 

from the Brazilian Province (b), and H. clupeola and H. 
jaguana from Carolinian Province (c). Darker colors indicate 
highest probabilities of membership and contour lines 
represent the spatial position of genetic discontinuities between 
lineages
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Considering the size of both taxa, Harengula sp. 
BRA, H. clupeola (GCR) and H. jaguana (GCR) 
presented a smaller size and a stronger influence 
of the AOB, with different species in each side of 
the barrier, than in Opistonem oglinum, larger and 
distributed along the WA (Fig. 6).

Discussion

Role of the Amazon-Orinoco barrier

Soft barriers, such as the AOB, can act as a filter 
to dispersal, which can promote speciation, but 

Fig. 4  Maps of posterior probabilities of cluster membership 
and spatial location of genetic discontinuities in Opisthonema 
oglinum from the Western Atlantic. Three main clusters 
(K = 3) were recovered (d), but it is not possible to clearly 

determine their geographical limits. Darker colors indicate 
highest probabilities of membership and contour lines 
represent the spatial position of genetic discontinuities between 
populations
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at the same time allow occasional crossings that 
may lead to the establishment of populations on 
the other side of the barrier or the maintenance of 
gene flow between both sides (Luiz et  al., 2012; 
Araujo et  al., 2022; Giachini Tosetto et  al., 2022; 
Quintão et  al., 2022). This situation was evidenced 
by the different phylogeographic patterns recovered 
in two sardine genera of the WA, suggesting 
cryptic speciation in Harengula and population 
structuring in Opisthonema. Surprisingly, the marine 
provinces hypotheses were also significant for both 
taxa (see AMOVA results), indicating additional 

oceanographic barriers, as in the case of other reef 
fishes (e.g. Haemulon aurolineatum Cuvier 1830 
and Selene setapinnis (Mitchill 1815)) along the WA 
(Araujo et al., 2022).

The Amazon River became a transcontinental river 
around 9.4–9 Mya (Gorini et al., 2014; Hoorn et al., 
2017), with a substantial increase in freshwater and 
sediment discharges estimated at around 2.4 Mya 
(Figueiredo et  al., 2009). The estimated divergence 
time of H. jaguana and H. clupeola clades in the 
Greater Caribbean Region (GCR) vs. Harengula 
sp. BRA is at around 3.5–1.5 Mya, coinciding with 

Fig. 5  Map distribution and cox1 haplotype networks of Harengula and Opisthonema oglinum in the Western Atlantic. Bars over 
lines indicate mutational steps between haplotypes. Circle size represents number of specimens with the same haplotype
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Table 1  Results of 
analysis of molecular 
variance (AMOVA) of 
cox1 data of Harengula and 
Opisthonema oglinum from 
the Western Atlantic

Groupings were used to 
test different population 
structure hypotheses. 
Values with an asterisk have 
p-value < 0.05

Structure hypotheses Percentage of 
variation

ɸST

Harengula—Amazon‑Orinoco Plume (n = 2)
Brazilian Province/Carolinian and Caribbean Provinces

0.42126

Among groups 30.09*
Among populations within groups 12.03*
Within populations 57.87*
Harengula—Provinces (n = 3)
Brazilian Province/Carolinian Province/Caribbean Province

0.39461

Among groups 27.40*
Among populations within groups 12.06*
Within populations 60.54*
Opisthonema oglinum—Amazon‑Orinoco Plume (n = 2)
Brazilian Province/Carolinian and Caribbean Provinces

0.14123

Among groups 4.51*
Among populations within groups 9.62
Within populations 85.88
Opisthonema oglinum—Provinces (n = 3)
Brazilian Province/Carolinian Province/Caribbean Province

0.17105

Among groups 12.57*
Among populations within groups 4.54
Within populations 82.90*

Fig. 6  Estimates of divergence times between the Harengula 
species and Opisthonema oglinum populations in the Western 
Atlantic and fluctuations in sea-level in the last 12.5 Mya, 
in relation to the three stages of increasing sediment and 
freshwater discharge of the Amazon River (in shades of gray: 
Phase 1, 9.4–5.6 Mya; Phase 2, 5.6–2.4 Mya; Phase 3, 2.4 
Mya-present). Figure modified from Araujo et al. (2022). The 
red dotted line corresponds to current sea-level; sea-level curve 

modified from Haq et  al. (1987) and Johnson et  al. (2006), 
following the timescale by Hilgen et  al. (2012). The yellow 
stripe indicates the estimated time interval of the emergence 
of the Amazon River (9.4–9.0 Mya). Mean and 95% high 
posterior probabilities are indicated by the dots and lines in 
each species/population comparison, respectively. Timescale in 
millions of years (Mya)
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the stage of increased sediment and freshwater 
discharge of the Amazon River, when relatively 
larger and pelagic species were more affected (Araujo 
et  al., 2022). Interestingly, the AOB might also 
act as a barrier to H. humeralis, likely restricting 
its distribution to the north of the AOB, however, 
its occurrence in the north of Brazil is uncertain 
(Cervigón, 1991; Robertson & Van Tassell, 2023).

The effectiveness of an oceanographic barrier 
depends on the biology of each species (Rocha, 2003; 
Luiz et  al., 2012; Araujo et  al., 2022). Despite both 
being pelagic and forage fishes, species of Harengula 
and Opisthonema likely differ in key biological 
traits that might account for the distinct responses 
to the AOB. Opisthonema oglinum seems to be less 
sensitive to lower salinities when compared to species 
of Harengula (Paramo et  al., 2003). Opisthonema 
oglinum is also a larger species, about 70% larger 
than H. clupeola and H. jaguana (38 vs. 22.5–21.2 
cm  total length (TL) respectively; Cervigón et  al., 
1992; Da Costa et  al., 2018), one feature that might 
also be important since body size is a key predictor 
to the dispersal capacity across the AOB (Luiz et al., 
2012; Araujo et  al., 2022). These differences are 
comparable to those seen in reef fishes during the 
last 2.4 Mya, the most intense sedimentation and 
freshwater discharge period, and average maximum 
TL of 50.6 cm, as in the population structure of O. 
oglinum, and the intermediary phase of the Amazon 
River (5.8–2.4 Mya) and 24.2 cm TL, as in the 
speciation of Harengula (Araujo et al., 2022).

Taxonomic accounts

Our molecular data of O. oglinum is in agreement 
with the literature in terms of taxonomy and 
distribution, however in Harengula, it suggests 
that H. clupeola and H. jaguana, which are closely 
related, are restricted to the Carolinian and Caribbean 
Provinces. Meanwhile, in the Brazilian Province, 
Harengula sp. BRA may represent another species 
not formally recognized that may be limited by the 
AOB (Araujo et  al. 2022), since both H. clupeola 
(type locality, Martinique Island) and H. jaguana 
(type locality, Cuba) were described based on 
specimens from the GCR (Whitehead, 1985).

Harengula is the only sardine found in the oceanic 
islands of the Southwestern Atlantic. Perhaps 
surprisingly at first, our results indicate a single 

population of Harengula inhabiting the northeastern 
Brazilian coast and the Fernando de Noronha 
Archipelago, located about 300 km off the coast. This 
suggests a higher dispersive potential across distant 
and deep marine regions or even a conservative 
molecular marker. Harengula is also known to 
inhabit the Rocas Atoll and Trindade-Martin 
Vaz Archipelago, which are located at about 240 
and ~ 1,200 km off the coast, respectively (Gasparini 
& Floeter, 2001; Simon et  al., 2013). The Fernando 
de Noronha Archipelago is part of the Fernando de 
Noronha Ridge, which also includes the Rocas Atoll 
and several seamounts along the northern portion of 
Brazil (Alberoni et al., 2020). An almost continuous 
series of seamounts is also present between the 
Trindade-Martin Vaz Archipelago and the central 
coast of Brazil (Pinheiro et  al., 2018). This might 
explain the occurrence of Harengula in these distant 
oceanic islands since seamounts are known to act 
as steppingstones for some species (Pinheiro et  al., 
2017; Lima et al., 2022; Simon et al., 2022).

Some delimitation analyses (sGMYC and 
mGMYC) indicated further subdivisions of H. 
clupeola and H. jaguana, a result that is congruent 
with previous studies that concluded that GMYC 
analyses tend to overestimate the number of lineages 
(Fujisawa & Barraclough, 2013; Hamilton et  al., 
2014). The phylogeographic structure detected may 
reflect some phenotypic differences in H. jaguana 
(six proposed subspecies), and O. oglinum (one) 
(Rivas, 1950, 1963; Whitehead, 1985). In Brazil, 
species of Harengula are either identified as H. 
clupeola or H. jaguana, without the recognition of 
subspecies. Harengula macrophthalma (Ranzani 
1842), described for Brazil, is currently regarded as 
a junior synonym of H. clupeola (Whitehead, 1985). 
However, the identity of the species of Harengula 
in the Brazilian Province remains to be elucidated 
in further studies, which would ideally include 
additional molecular markers and morphological 
tools in a taxonomic context.

Stock delimitation

Our results are also relevant for fisheries management 
of these sardine species in the Western Atlantic 
at different levels. In addition to their relevance 
to artisanal fisheries, there is a complex ongoing 
conflict involving the artisanal fishing of Harengula 
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in the Fernando de Noronha Archipelago, a Marine 
Protected Area (Freire & Pauly, 2015; Lopes et  al., 
2017; Mendes et  al., 2020; Pauly et  al., 2020). Our 
results are the first to shed light on the identity 
and geographic distribution of the species from 
the Brazilian Exclusive Economic Zone (BEEZ), 
indicating that Fernando de Noronha specimens 
belong to a putative undescribed species of 
Harengula from Brazil.

As climate change keeps intensifying, fisheries 
in Brazil are also at increasing risk of reducing 
productivity, which makes it urgent to correctly 
define and manage fishing stocks (Lam et al., 2020). 
Herrings and sardines are overall forage and low 
trophic level fishes, making them key actors in marine 
coastal ecosystems since they connect primary 
production and keystone predators (Pikitch et  al., 
2014). Future management and conservation plans 
for Opisthonema oglinum and Harengula sp. in BRA 
can benefit from the fact that these species apparently 
have a wide distribution in the extensive BEEZ. 
Additional phylogeographic studies, with more 
samples, localities, and variable markers, including 
genomics, must be done to correct delimit the 
fisheries stocks of Harengula in the BEEZ, as well as 
its irreplaceable occurrence in the oceanic islands.
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