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abundant ASVs and a high contribution of rare oli-
gotypes. The differentiation of community and gen-
otype composition from specific water bodies was 
explained to a significant extent by environmental 
variables and morphometry. The taxonomic consist-
ency of ASVs classified under the same genus name 
was assessed by phylogenetic analyses performed on 
three representative dominant genera, namely Cyano-
bium, Tychonema and Planktothrix. The analyses 
revealed eco-evolutionary adaptations in lakes and 
rivers, including some evidence for a polyphyletic 
nature. Monitoring individual genotypes in relation to 
environmental conditions will be useful to define the 
ecological amplitude of these taxa. However, the per-
sistence or ephemeral nature of some of the rarest and 
most unusual ASVs has remained unknown.

Abstract In this work, we characterised the cyano-
bacterial communities in the plankton and littoral 
biofilm of 38 lakes and in the biofilm of 21 rivers in 
the Alps and surrounding subalpine regions by 16S 
rRNA gene metabarcoding. We found little over-
lap in the distribution of amplicon sequence vari-
ants (ASVs) between the three habitats and between 
water bodies. The differences were caused by envi-
ronmental filtering acting on the selection of the most 
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Introduction

The completeness of biogeographical surveys of 
cyanobacteria based on morphological traits of spe-
cies is severely limited by several factors. The over-
lap of morphological characters and the plasticity of 
phenotypic traits that can vary with environmental 
conditions are challenging elements in the identifica-
tion of specimens by light microscopy (LM), espe-
cially when the dimensions do not allow taxonomic 
discrimination of the smallest individuals. Extensive 
experience and the ability to make use of identifica-
tion manuals and sparse literature are required, and 
yet these skills do not always guarantee the compa-
rability of taxonomic identifications by LM between 
laboratories (Lee et  al., 2014). These difficulties are 
only partially mitigated by the adoption of polypha-
sic or genetic approaches (Komárek, 2016; Wilmotte 
et  al., 2017), which are generally used to character-
ise isolated and cultured specimens (Komarek et al., 
2013), single individuals or colonies (Mareš et  al., 
2015; Kurmayer et  al., 2018; Pokorný et  al., 2023), 
and environmental monospecific samples (Zubia 
et  al., 2019). Since the description of any new taxa 
within the International Code of Nomenclature of 
Prokaryotes (ICNP) and the International Code of 
Nomenclature for algae, fungi, and plants (ICN) 
requires the designation of type materials, the phy-
logenetic analyses and taxonomic identifications are 
mostly based on strains, whereas many species have 
not yet been isolated and cultivated (Rosselló-Móra 
& Whitman, 2019; Zubia et  al., 2019) possibly due 
to metabolic limitations that prevent their cultivation 
(Brown et al., 2015).

The emergence of culture independent techniques 
based on the analysis of community and environ-
mental DNA (eDNA; Ruppert et al., 2019) by high-
throughput sequencing (HTS) has opened new per-
spectives in the study of microbial biodiversity and 
ecology (Pawlowski et  al., 2018; Johnson et  al., 
2019). Although these techniques allow the analy-
sis of virtually all the most abundant taxa, the main 
metabarcoding techniques used for the determina-
tion of bacteria and cyanobacteria suffer from many 

drawbacks mainly due to the short length and corre-
sponding low taxonomic resolution of the 16S rRNA 
gene that can be obtained after the application of bio-
informatic pipelines (around 400 nucleotides maxi-
mum) and the corresponding lack of sensitivity of 
the reference databases for the selected DNA markers 
(Salmaso et al., 2022).

The recent widespread adoption of DNA read 
denoising approaches (Callahan et  al., 2016; Near-
ing et  al., 2018) has allowed the fine distribution of 
specific classified or unclassified cyanobacterial oli-
gotypes across environmental gradients to be studied 
using exact 16S rRNA oligotypes (exact amplicon 
sequence variants, ASVs) (Berry et al., 2017; García-
García et al., 2019; Salmaso, 2019). However, despite 
these improvements, the biological significance of the 
extent of oligotype variability and the inclusion and 
significance of the range of ASVs classified within 
the same genus remain largely unexplored.

In the last decade, HTS approaches have been 
increasingly used for the taxonomic classification 
of cyanobacteria in a variety of aquatic water bod-
ies (Pushkareva et al., 2015; Lopes dos Santos et al., 
2022; Pawlowski et  al., 2022; Sandzewicz et  al., 
2023). Most of the investigations were carried out 
in selected habitats, contributing to disentangle the 
taxonomic nature, structure, and temporal dynamics 
of cyanobacteria (Guellati et al., 2017; Scherer et al., 
2017; Nwosu et  al., 2021). Due to the difficulty of 
organising coordinated initiatives with harmonised 
field and laboratory approaches, large-scale spatial 
investigations of cyanobacteria across large regions or 
different countries have rarely been attempted, and in 
such cases have focused on unique habitats (MacK-
eigan et  al., 2022) or integrative variables, such as 
cyanotoxins (Mantzouki et  al., 2018) and photosyn-
thetic pigments (Donis et al., 2021). The lack of stud-
ies over large areas and across ecotones prevented the 
assessment of the nature, distribution and overlap of 
cyanobacterial species along spatial gradients within 
and between different habitats.

In this context, within the framework of the Inter-
reg Alpine Space project Eco-AlpsWater, a large-
scale survey was coordinated in 2019 in the Alps and 
surrounding subalpine regions to characterize the 
microbial communities (bacteria, cyanobacteria and 
protists) in the plankton and biofilm of 37 lakes and 
in the biofilm of 22 rivers (Domaizon et  al., 2021; 
Kurmayer et  al., 2021; Salmaso et  al., 2022). The 
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study was based on the adoption of common proto-
cols and involved 12 partners from 6 countries. In 
this paper, we will specifically focus on the biogeo-
graphic distribution of cyanobacterial taxa as inferred 
from 16S rRNA gene sequences obtained from eDNA 
extracted from plankton and biofilm samples. Specific 
aims of this study are: (i) to assess the diversity and 
overlap of oligotypes in different aquatic habitats and 
the role of environmental variables in filtering ASVs; 
(ii) to assess the internal variability of ASVs classi-
fied under the same genus name.

Materials and methods

The methods used in the field and in the laboratory, 
and the repositories (ENA and Zenodo) where the 
raw molecular data were deposited have already been 
described (Salmaso et al., 2022). In the following, we 
will specifically highlight the methodological points 
that are most relevant or new for this work.

Study sites and sampling

Investigations were carried out in 2019 in lakes and 
rivers throughout the Alpine region (Supplementary 
Table  1 and Supplementary Fig.  1); in lakes Mond-
see, Aigueblette and Bourget, and in rivers Arve and 
Drome, the biofilm samples were collected in 2018. 
Samples were collected from the pelagic zone of the 
lakes (plankton; lake_PL) and from the biofilm in the 
littoral zone of the lakes (lake_BFM) as well as from 
the biofilm in the rivers (river_BFM). In the River 
Lech, Germany, the biofilm sampling station was 
located at the Mandichosee, a small artificial lake (1.6 
 km2) created after the river was dammed in 1978; 
in this work, this station was therefore classified as 
a lake. At Staffelsee, in Germany, plankton samples 
were collected in the northern and southern basins. 
Overall, the altitude, surface area, and maximum 
depth of the 38 lakes analysed ranged between 18 m 
a.s.l. and 2125 m a.s.l., < 0.01  km2 and 582  km2, and 
1.3 m and 410 m, respectively. The length of the 21 
rivers included in this work ranged between < 1 and 
945 km.

Plankton samples (lake_PL) were collected once 
a month throughout the year or between April and 
October at 8 key lakes (8 to 13 samples: lakes Bour-
get, Mondsee, Bled, Garda, Lugano, Ammersee, 

Starnberger See, Staffelsee) and 1 to 4 times gener-
ally during the warmer months at a further 27 addi-
tional sites, for a total of 144 samples (Supplemen-
tary Table 1). Sampling was performed at the deepest 
point of the lakes, depth-integrating the epilimnetic 
or euphotic zones. Water samples were filtered 
using Sterivex cartridges (0.22  μm, Hydrophilic 
PVDF Durapore membrane, Sigma Aldrich) within 
12  h after sampling and then immediately frozen at 
− 20 °C.

Biofilm was mainly sampled between July and 
October in lakes (from 1 to 27 stations, for a total of 
125 samples) and between February and October in 
rivers (from 1 to 6 stations, 45 samples) (Supplemen-
tary Table 1). Biofilm was collected by brushing the 
surface of at least 5 stones identified in the sampling 
areas as described in Rimet et al. (2020, 2021) (Sup-
plementary Fig.  2). Other substrates were not sam-
pled because the collection from large cobbles and 
small boulders ensured that diatom subsamples were 
also collected from both lakes and rivers for analysis 
according to the Water Framework Directive (Vas-
selon et  al., 2017; Salmaso et  al., 2022). Therefore, 
the periphyton communities considered in this paper 
are exclusively epilithic cyanobacteria. In the case 
of more than one sampling station, each lake and 
river was sampled on the same day/week or, less fre-
quently, within 1 or 2 months. Approximately 10 mL 
subsamples were collected in 50 mL sterilized Falcon 
tubes filled with ca. 40 mL of absolute ethanol. Sam-
ples were stored at 4 °C in the dark.

Environmental data

Complete measurements of environmental variables 
were only made in the pelagic areas of lakes. All 
analyses were based on standard methods fully tested 
in each laboratory (Wetzel & Likens, 2000; APHA, 
AWWA & WEF, 2018). In this work, we only con-
sidered a set of variables almost fully represented 
in all lakes, with the exclusion of lakes Anterne and 
Brevent. In the field, water temperature (Temp) was 
measured along the water column with probes, and 
transparency (Secchi) was estimated using a Sec-
chi disk. Algal nutrients were determined by col-
orimetric methods (total phosphorus, TP; soluble 
reactive phosphorus, SRP; nitrate nitrogen,  NO3_N; 
ammonium nitrogen,  NH4_N) and/or ion chroma-
tography  (NO3_N,  NH4_N). Dissolved oxygen (DO) 
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concentrations were measured with calibrated probes 
or by titration (Winkler method); percentage DO satu-
ration (DOp) was estimated from dissolved  O2, water 
temperature and lake elevation (Mortimer, 1981). 
Chlorophyll-a (Chl_a) was determined spectrophoto-
metrically from acetonic extracts or using hot etha-
nol (ISO, 1992; APHA, AWWA & WEF, 2018). For 
the unique samples collected in lakes Maggiore and 
Mantova Superiore, water temperature and dissolved 
oxygen, and water temperature, were obtained from 
technical reports, namely CNR IRSA, sede di Verba-
nia (2020) and Marchesi et  al. (2020), respectively. 
Missing Secchi disk values in lakes Staffelsee (July) 
and Bourget (October), and Chl_a in Starnberger See 
(April) were interpolated by calculating the average 
of the previous and subsequent sampling dates.

DNA extraction, library preparation and sequencing

DNA extraction from Sterivex filters and biofilm was 
performed with Mo Bio PowerWater® DNA Isolation 
Kit (MO BIO Laboratories, a QIAGEN Company, 
USA) (Vautier et  al., 2021), and NucleoSpin® Soil 
kit (Macherey–Nagel) (Vautier et  al., 2020), respec-
tively. PCR amplification of each DNA sample was 
carried out by targeting ~ 460 base fragments of the 
16S rRNA gene variable regions V3–V4 using prim-
ers 341F (5′CCT ACG GGNGGC WGC AG 3′) and 
805Rmod (5′GAC TAC NVGGG TWT CTA ATC C 
3′). All barcoded libraries were pooled in equimolar 
concentrations by Real-Time qPCR and checked on 
a TapeStation 2200 platform (Agilent Technologies, 
Santa Clara, CA, USA). The library thus obtained 
was sequenced on an Illumina® MiSeq (PE300) plat-
form (MiSeq Control Software 2.6.2.1 and Real-Time 
Analysis software 1.18.54) (Salmaso et al., 2022).

Bioinformatic analyses

After primers removal using Cutadapt 3.1 (Martin, 
2011), raw sequences were analysed using DADA2 
1.18 (Callahan et al., 2016) in R 4.0.3 (R Core Team, 
2020) following the pipeline described in Salmaso 
et  al. (2021). Taxonomic assignment of ASVs was 
performed in DADA2 using the RDP naive Bayesian 
classifier (“Wang classifier”) with a 95% minimum 
bootstrap confidence threshold, and the reference 
taxonomic database SILVA 138 (Quast et al., 2013). 
After discarding singletons and doubletons (single 

ASVs present in the whole dataset with one or two 
sequences, respectively), sequences were further 
checked for the presence of chimeras and removed if 
necessary using the uchime2_ref command in usearch 
v. 11 in the “specific” mode (Edgar, 2016) and the 
SILVA 138 reference database. The phylum Cyano-
bacteria was then separated from the remaining bacte-
ria, resulting in 2620 ASVs.

Statistical data analysis

The taxonomic, abundance and environmental data 
tables, DNA sequences and associated phylogenetic 
tree were merged into a single dataset and analysed 
in R using the package phyloseq 1.40.0 (McMurdie 
& Holmes, 2013). The phylogenetic tree associated 
with the dataset was computed by Maximum Likeli-
hood (ML) using RAxML 8.2.10 (Stamatakis, 2014) 
and the GTR CAT  model applied to the whole set of 
cyanobacterial sequences (2620 ASVs) aligned using 
Muscle v. 5.1 and the super5 command (Edgar, 2022).

Depending on the type of analysis, and as speci-
fied in the description of results, ASVs were evalu-
ated without or after rarefaction without replacement 
to a minimum number of sequences per dataset. Rar-
efaction was used specifically when the comparison 
between samples required the use of absolute abun-
dances (i.e., number of reads). In these cases, and 
considering that the absolute abundances obtained in 
the planktic and biofilm habitats were not compara-
ble, rarefaction was applied individually to the three 
habitats (lake_PL, lake_BFM and river_BFM). Dif-
ferences in the number of ASVs between habitats 
were estimated using the Kruskal–Wallis rank sum 
test (KW), whereas pairwise comparisons were per-
formed using the Wilcoxon rank sum test, with the 
Benjamini and Hochberg correction (stats package in 
R).

Comparison of communities in the three habitats 
was assessed by ordination of samples using Princi-
pal Coordinates Analysis (PCoA, aka Metric Multi-
dimensional Scaling) of a distance matrix computed 
using the unweighted UniFrac distance. UniFrac 
measures the distance between communities based 
on the lineages they contain i.e., by exploiting the 
different degrees of similarity between sequences 
(Lozupone & Knight, 2005; Lozupone et  al., 2011). 
If two habitats share similar ecological characteristics 
and species, most nodes in the phylogenetic tree will 
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have descendants from both communities. Under the 
opposite condition, most nodes will have exclusive 
descendants, with much of the branch length in the 
tree not shared between species from the two habitats 
(Lozupone & Knight, 2005). The distribution of the 
relative contribution of the cyanobacterial families 
in the three habitats was analysed by correspondence 
analysis (CA) (Greenacre & Hastie, 1987).

As the number of samples collected in each lake 
and river was different, in order to have a compara-
ble number of samples in the water bodies belong-
ing to the three different habitats, subsets of samples 
were extracted from the main database for a selected 
number of analyses (e.g., ordinations and Mantel test; 
see Results and Supplementary Table 1). The first set 
of samples (lake_PL, dataset 1) included the 8 key 
lakes sampled monthly in the pelagic zone from April 
to October, i.e., Ammersee, Bled, Bourget, Garda, 
Lugano, Mondsee, Starnberger See and Staffelsee 
(with 2 stations, Staffelsee_Nord and Staffelsee_Sud). 
Additional analyses in lakes were carried out on a 
more extended spatial set of data (dataset 2), which 
included one sample for each water body collected 
during the summer months (mostly between July and 
August; 33 stations, including Staffelsee_Nord and 
Staffelsee_Sud); this dataset did not include lakes 
Fimon, Anterne, and Brevent, which were excluded 
from the analyses due to a low number of cyanobac-
terial reads. A third dataset (lake_BFM, dataset 3) 
included 9 lakes with 10–12 (6 in Staffelsee) biofilm 
samples each (Aiguebelette, Ammersee, Bled, Bour-
get, Garda, Lugano, Mondsee, Staffelsee, and Starn-
berger See). Dataset 4 (river_BFM) included 6 rivers 
with a number of biofilm samples ranging from 3 to 
6 (Arve, Drome, Salzach, Soča-Isonzo, Steyr, and 
Wertach). These datasets were analysed by calculat-
ing a PCoA on the Bray & Curtis (B&C) dissimilar-
ity matrices after rarefying the samples to a uniform 
abundance and double square root transformation of 
ASVs abundances (Legendre & Legendre, 1998), 
and/or calculating a Canonical Correspondence Anal-
ysis (CCA) after log-transformation of the environ-
mental data and ASVs abundance data transformed as 
in PCoA, respectively.

UniFrac, B&C, and CCA (scaling 2) were calcu-
lated using the vegan package in R (Oksanen et  al., 
2020); CA was calculated using vegan and Facto-
MineR (Lê et  al., 2008), whereas PCoA was calcu-
lated using the function cmdscale in the stats package 

(Venables & Ripley, 2002). Differences in taxonomic 
composition and abundance between groups of sam-
ples were tested using PERMANOVA with 9999 per-
mutations computed using the adonis2 function in the 
vegan package applied to the same UniFrac and B&C 
matrices used in PCoA; pairwise PERMANOVA 
comparisons were performed using the pairwiseAd-
onis package.

Mantel test

Correlations between environmental variables and 
cyanobacterial ASVs in lakes were calculated by 
computing Mantel tests (Legendre & Legendre, 
1998) using the function mantel in the vegan package 
(Oksanen et al., 2020). Environmental distance matri-
ces were calculated using a set of log-transformed 
and standardized basic limnological (Temp, Secchi, 
DOp, NO3_N, NH4_N, TP, and Chl_a) and physi-
ographic (altitude, surface, maximum depth, catch-
ment area) variables. The cyanobacterial dissimilarity 
matrix was calculated using the same methods as for 
the PCoA. The significance of the statistic was evalu-
ated by 999 permutations of the rows and columns of 
the first (ASVs) dissimilarity matrix.

Blast and phylogenetic analyses

The taxonomic assignments of the most abundant 
genera in the cyanobacterial families were further 
verified by submitting the sequences to megablast 
analyses.

DADA2 distinguishes sequence variants differing 
by as little as one nucleotide by inferring the biologi-
cal sequences before introducing errors in the PCR 
amplification and sequencing steps (Callahan et  al., 
2017), thus allowing the number and distribution of 
ASVs (oligotypes) belonging to individual species or 
genera to be examined. The phylogenetic relatedness 
of ASVs attributed to individual genera and species 
by the Wang classifier in DADA2 have been explored 
in three representative dominant species, i.e., the 
genus with the highest number of ASVs (Cyano-
bium, 169), and two toxigenic genera (Tychonema 
and Planktothrix, 38 and 18 ASVs, respectively). The 
mutual phylogenetic position of ASVs in the three 
genera was examined by including in the analyses a 
selection of homologous sequences imported from 
GenBank, and using Gloeobacter violaceus Rippka, 
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J.B. Waterbury & Cohen-Bazire, 1974 (strain PCC 
7421) as outgroup. Sequences were aligned using 
Muscle v. 5.1 (Edgar, 2022), resulting in alignments 
between 385 and 419 nucleotides in length after trim-
ming to the shortest sequence. Maximum likelihood 
trees were calculated using PhyML 3.1 (Guindon 
et  al., 2010) with models obtained using the func-
tion phymltest in the R package ape (Paradis et  al., 
2004); GTR + G + I was found to be the best fitting 
evolutionary model for all trees. Branch support was 
estimated by the SH-like branch support (Anisimova 
et al., 2011). The Newick rooted trees obtained with 
PhyML were annotated with the R package ggtree 
(Yu, 2020).

The presence of a phylogenetic signal in the ASVs 
of the three selected genera was assessed by testing 
the distribution of abundances for the three habitats, 
calculating Pagel’s λ and the Abouheif-Moran test (R 
packages phytools and adephylo); the alignments and 
phylogenetic trees used in the tests were calculated as 
described above.

Results

Taxonomic characterization in the pelagic and 
biofilm habitats

The number of ASVs was much higher in the bio-
film samples than in the plankton samples (KW 
and Wilcoxon tests, P < 0.001). The median values 
of the number of ASVs in lake_BFM, river_BFM, 
and lake_PL samples were 141, 42, and 14, respec-
tively (Fig.  1A). Moreover, in the biofilm samples, 
the number of ASVs showed a wider range of vari-
ations (11–325) compared to the planktic samples 
(1–60). These differences were paralleled by the 
Shannon diversity values (Fig.  1B). While the num-
ber of ASVs shared in the three habitats was 0.7%, 
the number of ASVs shared between any of the two 
habitats was between 0.04% and 7.8% (Fig. 1C). The 
high fraction of exclusive ASVs in the three habitats 
was due to the presence of many sequences occurring 
at low frequency. The fraction of ASVs occurring 
once, twice or three times in the whole dataset was 
36%, 14%, and 8%, respectively. The frequency of 
occurrence of ASVs in the three habitats followed a 
similar pattern, but with a wider range in the number 
of ASVs detected in one or two lake BFM samples 

(Supplementary Fig.  3). After removing the ASVs 
occurring in only one or two samples, the number of 
exclusive ASVs in the three habitats decreased only 
slightly. This small decrease was caused by a persis-
tent number of exclusive ASVs in lake_BFM.

The differences due to the exclusive presence 
of ASVs in specific habitats were paralleled by sig-
nificant compositional differences between the three 
habitat types (Fig. 2). In the PCoA ordination, which 
was based solely on phylogenetic distance between 
groups of taxa, the samples showed a clear and signif-
icant separation in the three habitats (PERMANOVA, 
P < 0.001) (Fig.  2A). Some exceptions were due to 
a few samples that were representative of ecotones, 
such as the lake_BFM samples collected near the 
mouths of the Cassarate and Cuccio rivers, which are 
located around the river_BFM cluster, and the lake_
BFM sample collected at Mandichosee, which was 
located near the lake_PL cluster.

The most abundant families in lake_PL samples 
were Phormidiaceae and Cyanobiaceae (> 10% on 
the total sum of lake_PL samples). Besides Cyanobi-
aceae, lake_BFM samples showed high relative con-
tributions especially from Nostocaceae (> 10%). The 
river_BFM samples showed a higher (> 10%) relative 
abundance of Leptolyngbyaceae, Xenococcaceae, 
and an Unknown Family (Oxyphotobacteria Incertae 
Sedis), which included periphytic filamentous species 
(Supplementary Fig. 4). The biofilm samples showed 
a significant contribution (around 20% of total abun-
dances) of ASVs without any classification at the 
family level; this number decreased to less than 2% in 
the pelagic samples. Although always present with a 
lower fraction in the three habitats (average < 0.6%), 
the non-photosynthetic cyanobacteria (classes Vam-
pirivibrionia and Sericytochromatia) were identified 
with the orders Caenarcaniphilales, Gastranaerophila-
les, Obscuribacterales, and Vampirovibrionales (297 
ASVs). In this group, the only classified species was 
Vampirovibrio chlorellavorus (ex Gromov and Mam-
kayeva 1972) Gromov and Mamkayeva 1980, which 
was identified in Lake Aigueblette, whereas the other 
taxa were previously identified from metagenome-
assembled genomes (MAGs) (Soo et al., 2017). The 
strict association of most family groups with specific 
habitats is resumed in the correspondence analysis 
of Fig.  2B; to better discriminate groups in the CA 
plane, the analysis included only the most abundant 
families (> 0.2% of total abundance in each habitat, 
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thus excluding 5 families). The different distribution 
of families in the three habitats was paralleled by a 
different distribution of prevalent life-habits. The 
lake_PL samples showed a prevalence of pelagic 
filamentous and coccoid taxa. In addition to the coc-
coid taxa in the lake_BFM samples, all lake and river 
biofilm samples shared common characteristics with 
a prevalence of periphytic colonies, periphytic fila-
ments, and periphytic heterocytous filaments.

Main genera in the pelagic and biofilm habitats

Overall, the number of genera identified by the Wang 
classifier in DADA2 was 45% of the total number of 
ASVs. The fraction of the number of classified gen-
era was higher in the lake_PL samples (70%) than 
in the lake_BFM and river_BFM samples (42% and 
48%, respectively). Nevertheless, considering the 
abundances, the fraction of ASVs classified at genus 

Fig. 1  A Observed number of ASVs and B Shannon diversity 
in the lake plankton (lake_PL), lake biofilm (lake_BFM) and 
river biofilm (river_BFM) habitats; boxplots show median and 
hinges as 25th and 75th quartiles, while whiskers extend from 

the hinges to the largest value no further than 1.5 × interquar-
tile range. Euler diagrams, showing the percentage of shared 
(C) ASVs (n = 2620) and (D) genera (n = 1187) in the three 
habitats
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level increased to 96% and 56% in the lake_PL and 
lake_BFM samples, respectively, while decreasing 
to 39% in the river_BFM samples. These consid-
erations are confirmed by the tendency for a higher 
proportion of ASVs to be classified at genus level as 
their abundance increases (Supplementary Fig.  5); 
for sequences detected with abundances < 20, the 
proportion of ASVs classified at genus level was 
almost always less than 50%. By further extending 
the analysis to singletons and doubletons only (previ-
ously removed and therefore not included in this data-
set), the proportion of ASVs classified at genus level 
dropped to 15% of the total number of ASVs.

Based on the sequences classified at the genus 
level, the fraction of shared ASVs between the three 
habitats did not change appreciably (Fig. 1D).

The distribution of the most abundant genera and 
species contributed to further distinguish the cyano-
bacterial assemblages in the three habitats (Supple-
mentary Table 2). For each family, the table lists the 
most abundant ASVs, i.e., those with a relative con-
tribution > 2% on the total abundance for each single 
habitat. The taxonomic classifications at genus level 
obtained from SILVA138 were in most cases (67%) 
confirmed by those obtained from the blast analyses. 

Nevertheless, in this group of genera, in the 32% 
of cases the blast best hits provided more than one 
genus name, as in the case of Limnothrix sp. (with 
100% blast best hits: Limnothrix, Anagnostidinema, 
Jaaginema, and Planktothrix) or Tychonema CCAP 
1459-11B (with 100% blast best hits: Tychonema, 
Microcoleus, and Phormidium). Among the 33% of 
taxa classified with different genus names by SILVA 
and BLAST, most of the identifications by SILVA 
were however included in the classifications obtained 
with lower percent identities by the blast analyses. 
Conversely, a few genera classified by SILVA were 
not included in the first 50 best hits by blast, namely 
Annamia sp., Merismopedia AICB1015, Acrophor-
mium PCC-7375, and Aphanizomenon NIES81 (Sup-
plementary Table  2). The sequences of the latter 
taxon were the same as those determined from indi-
viduals isolated from the largest southern perialpine 
lakes and identified as Dolichospermum lemmerman-
nii (Richter) P.Wacklin, L.Hoffmann & J.Komárek 
2009 (Salmaso et  al., 2015b, 2015a; Capelli et  al., 
2017).

The genera listed in Supplementary Table 2 were 
those representing the most common ASVs. In most 
cases (78%), individual genera were represented by 

Fig. 2  A Principal coordinate analysis (PCoA) of planktic 
and biofilm samples in the three habitats, calculated using 
the unweighted UniFrac distance. B Correspondence analyses 
using the mean percentages of cyanobacterial families in the 

three habitats; the analysis was performed including the fami-
lies with mean abundances > 0.2% (25 families out of 28) and 
excluding the unclassified (NA) families
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more than one ASV differing by one or more nucleo-
tides (Supplementary Fig. 6). After normalisation of 
the data by log-transformation, the number of ASVs 
in each genus was strictly related to the correspond-
ing total abundances (r2 = 0.66, P < 0.001; Figure not 
shown). Considering the genera represented by more 
than one ASV, the percentage similarity between 
ASVs calculated for individual genera ranged from 
91.5% to 99.8%, with the 25th and 75th quantiles 
being 96.3% and 98.8%, respectively. These differ-
ences were due to oligotypes belonging to different or 
the same species (strains) within a single genus.

Phylogenetic characterization of ASVs

To clarify the extent of genetic divergence of ASVs 
within each genus, we examined the phylogenetic 

relationships of the oligotypes classified by SILVA 
138 in three representative genera, namely Cyano-
bium PCC-6307, Tychonema CCAP 1459-11B, and 
Planktothrix NIVA-CYA 15.

The first genus had the highest number of ASVs 
in the dataset (169) (Supplementary Fig.  6). The 
sequence similarity between the ASVs classified 
within Cyanobium PCC-6307 ranged between 93.1% 
and 99.8%, with the 25th and 75th quantiles being 
96.3% and 98.0%, respectively. The most abundant 
oligotypes of Cyanobium, with a relative contribu-
tion of > 1% to the total abundance in each habitat 
(35 ASVs), were included in the phylogenetic analy-
sis with a selection of homologous species retrieved 
from GenBank (Fig.  3). All Cyanobium ASVs were 
intermingled with several other sequences from Gen-
Bank classified under the genera Cyanobium and 

Fig. 3  Maximum likeli-
hood rooted topology of 
ASVs classified in the 
genus Cyanobium by the 
naïve Bayesian classifier 
and the taxonomic refer-
ence database SILVA 138 
based on the alignment of 
16S rRNA gene fragments 
(385 bp); the tree is rooted 
by Gloeobacter violaceous. 
The tips of the tree have 
been annotated with dif-
ferent colours to indicate 
the prevalence of ASVs in 
lake plankton and biofilm 
(> 0.5% of the total habitat, 
or exclusively present in 
one habitat). The annotation 
does not include Cyano-
bium ASVs detected in 
rivers, as they were always 
very rare (total abun-
dances < 0.2% on the whole 
dataset). The size of the 
symbols is scaled according 
to the total abundance in the 
dataset. Numbers at nodes 
indicate SH-like branch 
supports
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Synechococcus, whereas all other genera from Gen-
Bank were part of other distinct branches. The tips 
of the ASVs were annotated with different colours 
to indicate the exclusive or almost exclusive preva-
lence (> 0.5% of the total habitat) of the individual 
sequences in each habitat. Most Cyanobium ASVs 
were prevalent almost exclusively in the plankton 
and biofilm of lakes, with a very small number (7) 
of low abundance sequences identified in the biofilm 
of rivers. Furthermore, the position of the ASVs in 
the phylogenetic tree suggested the existence of two 
main clusters grouping the lake_PL and lake_BFM 
ASVs. The PCoA analysis computed on the whole 
set of Cyanobium ASVs showed the existence of two 
well distinct large groups of lake_PL and lake_BFM 
samples, with the few river_BFM samples dispersed 
between these two groups (Supplementary Fig.  7A; 
PERMANOVA, P < 0.001). The habitat phylogenetic 
structure was further confirmed by the Pagel’s and 
Abouheif-Moran tests calculated for the lake_PL and 

lake_BFM abundances (P < 0.001) on the tree built 
using all 119 Cyanobium ASVs (Figure not shown).

The genus Tychonema was represented by 38 
ASVs, with sequence similarities between 94.2% and 
99.8%, and with 25th and 75th quantiles of 96.2% 
and 98.8%. All 38 ASVs classified under this genus 
were included in the phylogenetic analysis (Fig.  4). 
ASVs showed little consistent habitat specific distri-
bution in three major clades. In the first clade, ASVs 
were mainly represented in the biofilm of rivers, or 
rivers and lakes. Excluding a taxon provisionally 
attributed to cf. Tychonema, in this cluster the taxa 
from GenBank were represented by Microcoleus and 
Phormidium species. Together with two other species 
from GenBank (Phormidium uncinatum Gomont and 
Microcoleus vaginatus Gomont), five of the ASVs 
in this group shared a common 11-nucleotide inser-
tion (5’-GTT GTG AAAGC-3’), whereas in the sixth 
ASV (10,916) the insertion had two different nucleo-
tides (5’-GTT ACG AAAGT-3’). In the second main 

Fig. 4  Maximum likeli-
hood rooted topology of 
ASVs classified in the 
genus Tychonema by the 
naïve Bayesian classifier 
and SILVA 138 taxonomic 
reference database based on 
the alignment of 16S rRNA 
gene fragments (419 bp); 
the tree is rooted by Gloeo-
bacter violaceous. Other 
features as in Fig. 3
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clade, all ASVs were detected mainly in lake biofilm 
and secondarily in river biofilm and lake plankton; 
these ASVs clustered together with other Tychonema 
species from the GenBank that are typical for ben-
thic/periphytic (Tychonema bornetii (Zukal) Anag-
nostidis & Komárek and Tychonema tenue (Skuja) 
K.Anagnostidis & J.Komárek) and planktic environ-
ments (Tychonema bourrellyi (J.W.G.Lund) Anag-
nostidis & Komárek) (Fig. 4). In the case of ASV 34, 
the individuals were mainly recorded in the pelagic 
habitats, but with a measurable presence (about 6% 
on the whole total) also in the benthic samples. The 
filaments detected in the lake_PL samples had a very 
circumscribed distribution (Supplementary Fig.  8A) 
and can be attributed to the species T. bourrellyi 
(Shams et al., 2015; Salmaso et al., 2016). The third 
clade was characterized by ASVs clustering exclu-
sively with taxa of uncertain classification identified 

in rivers, whereas the remaining ASVs clustered 
together with other unclassified clones from GenBank 
isolated from river water mats, and Hydrocoleum 
sp.. The annotation of ASVs according to habitat in 
the tree in Fig. 4 did not show any pattern. This was 
confirmed by Pagel’s λ and the Abouheif-Moran tests 
calculated for both lake_BFM and river_BFM abun-
dances (P > 0.2). Nevertheless, the PCoA analysis 
computed on the whole set of Tychonema ASVs sug-
gested a gradual transition between lake_BFM and 
river_BFM samples (Supplementary Fig.  7B; PER-
MANOVA, P < 0.001).

The genus Planktothrix included 18 ASVs, with 
sequence similarities between 84.2% and 99.8%, and 
with 25th and 75th quantiles of 91.6% and 98.0%. 
Phylogenetic analyses showed that at least half of 
the ASVs clustered with other Planktothrix species 
from GenBank (Fig.  5). Most ASVs (13 out of 18) 

Fig. 5  Maximum likeli-
hood rooted topology of 
ASVs classified in the 
genus Planktothrix by the 
naïve Bayesian classifier 
and taxonomic reference 
database SILVA 138 based 
on alignment of 16S rRNA 
gene fragments (408 bp); 
the tree is rooted by 
Gloeobacter violaceous. 
Other features as in Fig. 3. 
Abbreviations in red refer 
to exclusive ASVs detected 
in lakes Pernica (P), Pernica 
and Bled (P&B), Pernica 
and Mondsee (P&M) 
and Pernica and Mantova 
(P&Ma)
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were identified exclusively in the lake_PL samples, 
although they were also found shared between plank-
tic and benthic habitats. The two most abundant ASVs 
(oligotypes-A and -G; over 97% of total abundance) 
were almost exclusively identified in the pelagic sam-
ples, with only a few individuals recorded in the bio-
film. These ASVs, which differed by only one nucleo-
tide, were widely distributed throughout the Alpine 
region and corresponded to the species Planktothrix 
rubescens (De Candolle ex Gomont) Anagnostidis 
& Komárek (Supplementary Fig. 8B). Unexpectedly 
ASVs 1628 (Lake Pernica) and 17,290 (rivers Adige 
and Soca, and lakes Aigueblette and Ammersee) were 
included in a separate cluster, together with two uni-
dentified taxa from GenBank detected from eDNA in 
Lake Taihu or isolated from a Japanese river. The lat-
ter ASV was also detected, using the same laboratory 
and bioinformatic methods, with 100% sequence sim-
ilarity in the small Alpine Lake Valagola (NE Italian 
Alps) and in a small pond nearby Lake Garda (project 
AcquaViva, MAB-UNESCO; unpublished data). The 
remaining ASVs showed > 99% sequence similarities 
with different Planktothrix species, with the exclusion 
of ASVs 10,870, 18,882 and 18,896, which are pos-
sibly artefacts because the alignment shows higher 
variability at the 5’ end in comparison with Plankto-
thrix spp. complete genomes (Entfellner et al., 2022). 
Notably, 11 of 18 ASVs were identified exclusively or 
almost exclusively in Lake Pernica (Fig. 5).

Biogeographical distribution in the pelagic and 
biofilm habitats

Lake plankton, seasonal samples

In dataset 1, 43% of ASVs, representing 2% of the 
total abundance, occurred exclusively in one lake. 
The PCoA ordination showed a compact cluster-
ing of samples originating from the pelagic habitat 
of one lake, and an overall significant separation of 
these clusters (PERMANOVA, P < 0.001) (Fig. 6A). 
Conversely, the two stations of Lake Staffelsee did 
not show compositional differences (PERMANOVA, 
pairwise adonis, P > 0.70). The latter two stations, 
together with Lake Garda, were completely separated 
from the other lakes. Oligotypes A and G of P. rube-
scens were associated with all lakes, with the excep-
tion of Lake Staffelsee, where this species was identi-
fied with a very low number of sequences (Fig. 6B). 

T. bourrellyi (ASV34) showed a strong association 
with Lake Garda, whereas the two Staffelsee sta-
tions were characterized by the presence of several 
Snowella ASVs and a sequence variant of Cyano-
bium (ASV14), which was dominant in the biofilm 
samples. Lake Lugano showed a high abundance of 
Aphanizomenon MDT14A. Several other Cyanobium 
ASVs showed a specific association with one or more 
lakes.

The CCA calculated for this dataset showed a 
distribution of lakes and species consistent with the 
PCoA (Fig.  6C–D). The importance of the first two 
components (constrained eigenvalues) was 36% and 
24%, respectively; the significance of the CCA ordi-
nation (999 permutation tests, P < 0.01) was con-
firmed by the Mantel test computed on the same set 
of environmental variables associated to the CCA 
diagram (Table  1A). Their interpretation was not 
straightforward, mainly because the main trophic 
response variables (water transparency and Chl_a) 
showed no significant correlations with TP (P > 0.2). 
The main differences between lakes were due to the 
higher temperatures in lakes Garda, Lugano and 
Bourget; the higher values of Chl_a, Secchi and DOp 
in the large lakes (left and upper left quadrant); the 
higher concentrations of TP in Lake Staffelsee; the 
lower and higher concentrations of NO3_N in lakes 
Garda, and Ammersee and Bourget, respectively. 
Overall, based on the mean lake values of the biotic 
and abiotic variables, the ASVs showed a significant 
association with the whole set of environmental and 
morphometric variables used in the CCA (Table 1B).

Lake plankton, summer samples

In dataset 2, 48% of ASVs, representing 18% of total 
abundance, occurred exclusively in a single lake. The 
importance of the first two components (constrained 
eigenvalues) in the CCA (Fig.  7A–B) was 27% and 
21%, respectively; the CCA ordination was signifi-
cant at P < 0.01 (999 permutation tests). In the CCA 
plane, the full set of lakes showed a distribution 
organized along a trophic and climatic gradient (tem-
perature, TP, Chl_a), and a composite gradient point-
ing towards large and transparent waterbodies with 
high DOp and NO3_N content. After linearisation 
by logarithmic transformation, TP and Chl_a were 
highly and positively correlated (r = 0.81, P < 0.001); 
in turn, these two variables were negatively correlated 
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to the Secchi disk depth (r = −  0.77 and r = −  0.70, 
respectively; P < 0.001). The results obtained by the 
CCA were confirmed by the Mantel test calculated 
on the same set of environmental and morphomet-
ric variables (Table  1C). As expected, the majority 
of ASVs were represented by different oligotypes 
of Cyanobium, scattered around the CCA plane 
(Fig. 7B); the most eutrophic water bodies were lakes 

Pernica, Frassino, Ragogna, Fiè allo Sciliar, Slivnica, 
Mantova Superiore, and Serraia. These lakes were 
associated with different ASVs of Microcystis, Lim-
nothrix, Pseudanabaena, Snowella, and an oligo-
type of Planktothrix identified exclusively in lakes 
Pernica and Mantova Superiore (Figure  5). On the 
opposite side of the gradient, the larger lakes showed 
a different group of taxa, represented by Planktothrix 

Fig. 6  A PCoA of monthly plankton samples collected 
between April and October in 9 lake stations (8 lakes). B Per-
centage contribution of each ASVs to the cyanobacterial gen-
era calculated from average abundances in each lake station; 
for each genus, horizontal lines in the bars indicate different 
oligotypes; genus names follow the SILVA 138 taxonomy. 
Aphanizomenon NIES81 corresponds to Dolichospermum lem-
mermannii. C Canonical Correspondence Analysis (CCA) of 
the same sample set; ASVs with abundances < 15 reads were 

not included in the analysis. For each individual lake, the posi-
tion in the graph is indicated by the centroid calculated on the 
corresponding sample set; Temp, water temperature; TP, total 
phosphorus; NH4_N, ammonium nitrogen; NO3_N, nitrate 
nitrogen; DOp, dissolved oxygen saturation (%); Chl_a, chloro-
phyll-a; Secchi, Secchi disk transparency. D Same as (C), with 
labels showing genus names. For ease of visualisation, species 
names are given in 9 characters; Cn and NA indicate the genus 
Cyanobium and unclassified ASVs, respectively
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(mostly P. rubescens), Dolichospermum, Tychonema 
and, partly, Pseudanabaena and Snowella. Notably, 
in a few of the eutrophic lakes (Pernica, Frassino and 
Mantova Superiore), 1 or 2 oligotypes of Cylindros-
permopsis (Raphidiopsis) were detected. Looking at 
the first 150 most abundant genera, the proportion of 
unclassified genera was always low, with the excep-
tion of lakes Frassino and Serraia, which showed a 
high contribution of unclassified taxa at order level 
(Oxyphotobacteria Incertae Sedis) and unclassified 
Nostocaceae, respectively (Fig. 7C). In Lake Serraia, 
a blast analysis of the unclassified ASVs identified 
several species of Dolichospermum and Anabaena 
sharing the same sequence with 100% identity.

Lake biofilm

The 47% of ASVs, corresponding to 4% of the total 
abundance, were exclusively present in a single lake 
(dataset 3). The lake_BFM samples showed a com-
pact and significant clustering in the PCoA ordina-
tion within each lake (PERMANOVA, Adonis and 
pairwise Adonis, P < 0.001) (Fig.  8A). In addition 
to ASVs identified at the genus level, the differences 
between lakes were also due to a large (25–50%) 
contribution of ASVs classified at taxonomic levels 
above the genus (Fig. 8B; “NA”); most of the unclas-
sified ASVs showed no classification even at the 
order level. The average composition and distribution 
of ASVs in the individual lakes were significantly 
related to environmental and lake morphometric vari-
ables (Table 1D).

River biofilm

The 59% of ASVs, representing 15% of the total 
abundance, were found exclusively in a single river 
(dataset 4). In PCoA ordination, BFM samples 
showed a compact and significant clustering within 
each river (PERMANOVA, adonis, P < 0.001) 
(Fig.  8C). This was consistent with the high vari-
ation in the proportions of several genera between 
lakes (Fig. 8D). Differences were also associated to 
a large proportion (30–80%) of unclassified ASVs at 
the genus level. The majority of unclassified ASVs 
belonged to the Leptolyngbyaceae family.

Discussion

Investigations in a large number of lakes and riv-
ers in the Alpine region allowed us to assess a high 
diversity and very limited overlap of ASVs and gen-
era of cyanobacteria in the pelagic areas of lakes 
and in the epilithic biofilm of lakes and rivers. In 
addition, the analysis of the composition of oligo-
types classified under the same genus names in 
three selected taxa revealed the presence of known 
sequence variants among the most abundant reads, 
but also several sequences with undetermined or 
uncertain classification.

Table 1  Association of cyanobacterial community structure 
with environmental factors based on (A) monthly plankton 
samples collected between April and October in 9 lake stations 
(8 lakes); (B) lake averages of monthly plankton samples col-

lected between April and October in 9 lake stations (8 lakes); 
(C) plankton samples collected during the summer months in 
33 lake stations (32 lakes); (D) averages of biofilm samples 
collected in 9 lake stations (9 lakes)

The different groups of samples refer to datasets 1–3 described in the “Statistical data analysis” section. Analyses based on the six 
environmental variables (Env.) include Temp, Secchi, DOp,  NO3_N, TP, and Chl_a; the seven variables additionally include NH4_N. 
Lake physiographic variables (Morph.) include lake elevation, surface area, maximum depth, and catchment area

Dataset Habitats N. stations N. cases Factor Mantel r P

(A) 1 Lake plankton—April–October 9 64 Env. (7 var) 0.35  < 0.01
(B) 1 Lake plankton—April–October 9 9 Env. (7 var) 0.44  < 0.01

(Averages) 9 9 Morph. (4 var) 0.42  < 0.01
(C) 2 Lake plankton—Summer samples 33 33 Env. (6 var) 0.49  < 0.01

33 33 Morph. (4 var) 0.37  < 0.01
(D) 3 Lake biofilm—Averages 9 9 Env. (7 var) 0.48  < 0.01

9 9 Morph. (4 var) 0.45  < 0.05
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Biodiversity of ASVs in the three aquatic habitats

The number of ASVs identified in lake biofilms was 
an order of magnitude higher and three times higher 
than the corresponding values determined in plank-
ton and river biofilms, respectively. These differences 
can be explained by the high diversity and concentra-
tion of bacterial and cyanobacterial communities that 

develop in benthic substrates and the corresponding 
complexity of trophic interactions (Besemer, 2015; 
Zancarini et al., 2017; Farkas et al., 2020). However, 
excluding cyanobacteria and keeping only the other 
bacterial phyla (over 39,000 ASVs), the number of 
ASVs in lake_BFM samples was about 3 and 2.5 
times higher than the corresponding values in lake_
PL and river_BFM, respectively, highlighting a strong 

Fig. 7  A Canonical correspondence analysis of plankton sam-
ples collected during the summer months in 33 stations (32 
lakes); labels show lake names; ASVs with abundances < 25 
reads were not included in the analysis. B Same as (A), with 
labels showing genus names. For ease of visualisation, species 
names are given in 9 characters; Cn and NA indicate the genus 

Cyanobium and unclassified ASVs, respectively. C Percentage 
contribution of each ASVs to the cyanobacterial genera calcu-
lated from abundances in each lake; the graph shows the first 
150 most abundant ASVs; for each genus, horizontal lines in 
the bars indicate individual oligotypes (e.g., several oligotypes 
attributed to Planktothrix can be observed in Lake Pernica)
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environmental filtering of cyanobacteria in lake_PL 
samples compared to bacteria. Furthermore, the flow 
regime was a negative factor affecting the biodiversity 
of cyanobacteria in the river biofilm compared to the 
lentic environments. These considerations implicitly 
assume the ecological adaptation of cyanobacteria 
to different habitats and lifestyles. At the functional 
level of organisation, the plankton and biofilm com-
munities were characterised by the prevalence of 
known planktic (mostly coccoid and filamentous) and 
periphytic taxa (at least those classified at the genus 
and/or family level), respectively, with a clear domi-
nance of different families in the pelagic samples and 
in the biofilm of lakes and rivers (Stevenson et  al., 
1996; Wehr & Sheath, 2003). These differences were 

further supported by the extremely low number of 
ASVs shared between the three habitats. These results 
demonstrate the existence of strong environmental 
filtering not only at the morpho-functional level, but 
also at higher taxonomic levels (Fig. 2B), followed by 
differences also in the selection of oligotypes in the 
three individual habitats. The main drivers are differ-
ences in water and substrate matrices, which require 
adaptations to the diluted planktic lifestyle or the 
development of organisms in crowded substrates with 
high organic and nutrient content.

The differences between habitats were also con-
tributed to by a high number of ASVs occurring in 
one or a few samples exclusive to one of the three 
habitats. These ASVs cannot be considered to be 

Fig. 8  A PCoA of biofilm samples collected in 9 lakes and B mean percentage contribution of the most abundant genera calculated 
for each individual lake. C, D Same as in (A, B), but referring to biofilm samples collected in rivers
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of high discriminatory value, as they occur at very 
low frequencies and are generally low in abundance 
(Zhang et al., 2016; Lee et al., 2021).

Diversity estimates based on the number of ASVs 
must be interpreted correctly, taking into account the 
multicopy nature and intragenomic variability of the 
16S rRNA gene (Větrovský & Baldrian, 2013). As 
reported by Schirrmeister et  al. (2012) and Stodd-
ard et al. (2015), the number of 16S rRNA copies in 
cyanobacteria is generally between 1 and 5, i.e. much 
lower than the 18S ribosomal gene copies in protists 
(> 500,000 in ciliates; Wang et  al., 2017). Further-
more, Espejo & Plaza (2018) showed that polymor-
phic sites in intragenomic 16S rRNA genes are rare 
and occur at much lower frequencies than those found 
in different species. Therefore, ASVs do not represent 
species or clones, but rather different amplicon vari-
ants (oligotypes) of the same or different species and 
clones (Eren et  al., 2013). Their variability contrib-
utes to the differences in sequences attributed to indi-
vidual species or genera.

Cyanobacterial biodiversity in lakes and rivers

A complete assessment of biodiversity in ecosystems 
should consider all their habitat components. In lakes, 
these include the limnetic zone, and the littoral and 
wetland zone with their constitutive variety of sub-
strates, benthic communities and vegetation (Wetzel, 
2001). Similarly, river substrate diversity and zona-
tion are influential in controlling microbial biomass 
and diversity (Tett et  al., 1978; Nowicka-Krawczyk 
& Zelazna-Wieczorek, 2013). In this work, the peri-
phytic communities were only sampled in the bio-
film developing on stones (epilithon; Supplementary 
Fig.  2), thus excluding the communities developing 
on other substrates (i.e. epiphyton, epipelon, epip-
sammon, and epizoon) or other metaphytic commu-
nities composed of microbial/cyanobacterial organ-
isms originating from true floating populations that 
aggregate among macrophytes and debris of the lit-
toral zone (Stevenson et  al., 1996; Wetzel, 2001; 
Timoshkin et  al., 2016). Each of these components 
can be considered as habitats hosting specific and 
adapted microbial communities, including cyano-
bacteria (Stevenson et al., 1996; Zębek et al., 2021). 
For example, Levi et  al. (2017) and Wijewardene 
et  al. (2022) showed that epiphytic communities 
have unique and different structures and functions 

compared to other periphyton biofilms in freshwater 
habitats, therefore contributing to the overall micro-
bial diversity of benthic areas of lakes and rivers. The 
development of epiphytic cyanobacteria can become 
massive, as in the case of the recent colonization of 
reed stems by Gloeotrichia pisum Thuret ex Bornet 
& Flahault after a large rise in the water level of Lake 
Kinneret flooded the macrophyte stands (Lang-Yona 
et al., 2023).

The importance of studying cyanobacteria grow-
ing on other substrates or in metaphytic mats is also 
dictated by the potential development of toxigenic 
and geosmin-producing cyanobacteria not only in 
open waters, but also in the littoral zone of lakes and 
rivers (van Breemen et al., 1991; Quiblier et al., 2013; 
Harland et al., 2014). In this work, many of the most 
abundant genera identified in the epilithic samples 
are recognised as toxin-producing (e.g., Aphano-
capsa, Cyanobium, Geitlerinema, Limnothrix, Mer-
ismopedia, Microcystis, Oscillatoria, Phormidium, 
Pseudanabaena, Synechococcus) (Jakubowska & 
Szeląg-Wasielewska, 2015; Bernard et al., 2017) and/
or geosmin-producing species (e.g., Calothrix, Phor-
midium, Oscillatoria, Nodosilinea, Geitlerinema, 
Pseudanabaena) (Suurnäkki et  al., 2015; Senavi-
rathna & Jayasekara, 2023). The development of lit-
toral mats or periphyton populations of toxic cyano-
bacteria is a common cause of fatal poisoning in dogs 
(Wood et al., 2007, 2010; Backer et al., 2013; Fastner 
et  al., 2018; Bauer et  al., 2020), livestock and other 
animals that drink contaminated water (Huisman 
et al., 2005; Stewart et al., 2008), whereas in benthic 
mats cyanobacteria have been found to be the main 
source of geosmin (Gaget et al., 2022). In the future, 
the development of benthic cyanobacteria could pos-
sibly be intensified due to an increase in the transpar-
ency of the littoral zones following restoration and re-
oligotrophication (Chorus et al., 2021). This process 
could be further sustained by climate change, which 
favours an intensification of extreme events, including 
a higher frequency and persistence of flow reduction 
episodes in streams (van Vliet et al., 2013; Robichon 
et  al., 2023) and water temperatures and stability in 
lakes (Paerl & Huisman, 2009; Burford et al., 2019).

Despite their importance and toxigenic poten-
tial, benthic cyanobacteria have received much less 
attention than pelagic species (Burford et al., 2019; 
Salmaso et al., 2022). This represents a gap in our 
knowledge, which becomes even more important 
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when considering the much higher cyanobacterial 
biodiversity found in this work in a limited fraction 
of littoral substrata compared to pelagic cyanobac-
terial populations.

Taxonomic classification of ASVs

The higher proportion of ASVs classified in the 
lake_PL samples compared to the biofilm habitats 
can be interpreted considering the greater com-
pleteness of the taxonomic databases with informa-
tion on the planktic cyanobacteria (Salmaso et  al., 
2022). This bias was contributed by the greater 
number of studies on toxigenic and non-toxigenic 
cyanobacteria in open lake waters in the context of 
eutrophication (Meriluoto et al., 2017) and the main 
focus on biomonitoring of diatoms in river and lake 
biofilm (Kelly et al., 2014; Levi et al., 2017). Based 
on abundance values, the proportion of ASVs clas-
sified to genus level in the lake planktic samples 
was extremely high. Conversely, the number of 
unclassified ASVs remained high in the lake_BFM 
and river_BFM samples, even when considering 
abundances. In the case of the lake_BFM samples, 
several taxa were also unclassified at order rank, 
highlighting the existence of unknown groups.

Wang’s classification of genera, based on the 
SILVA database, gave broadly comparable results 
to the blast analyses, and fully equivalent results at 
the family taxonomic level. Even where discrepan-
cies occurred, the genera were almost always listed 
under the best blast hit results. Although providing 
results that can be used for ecological assessment, 
these divergences are not always satisfactorily for 
a complete taxonomic survey of ecosystems. Com-
pared to blast, which provides complete information 
even for sequences shared by different species and 
even genera, Wang’s classifier reports the classifica-
tion at the immediately higher rank in such cases. 
Together with the incompleteness of taxonomic ref-
erence archives, this may help to explain the high 
proportion of unclassified ASVs at genus and spe-
cies level. A paradigmatic example is Lake Serraia 
(Fig. 7C), where more than 85% of the unclassified 
ASVs were represented by a unique sequence attrib-
uted to the family Nostocaceae and shared by sev-
eral genera of Dolichospermum and Anabaena.

Phylogenetic assessment of ASVs taxonomy

Most of the ASVs classified at the genus level were 
represented by a variable number of oligotypes with 
different abundances and sequence identity. The phy-
logenetic analysis of ASVs within the genera Cyano-
bium, Tychonema and Planktothrix allowed to clar-
ify several taxonomic and ecological aspects of the 
nature and significance of the observed variability, 
but also raised some questions about the nature and 
biological significance of some ASVs.

The Cyanobium sequences were interspersed with 
several other taxa classified under the Cyanobium 
and Synechococcus genera in GenBank. This is in full 
agreement with several other studies that showed no 
comprehensive and coherent phylogenetic relation-
ships (Lopes et  al., 2012) and identical sequences 
shared between these two picocyanobacterial genera 
(Bukowska et  al., 2014), possibly due to difficulties 
in annotating and discriminating the isolated mor-
photypes deposited in the taxonomic databases. On 
the other hand, several studies based on isolates and 
physiological assessment demonstrated the existence 
of physiologically distinct groups of strains within 
Cyanobium and Synechococcus taxa, with different 
pigment composition, salt tolerance and ecologi-
cal niches (Callieri & Stockner, 2002; Ernst et  al., 
2003; Jezberová & Komárková, 2007; Callieri et al., 
2022), as well as specific biosynthetic traits in marine 
environments (Doré et  al., 2023). These results are 
consistent with the differences in the distribution of 
two different clusters of ASVs in the lake_PL and 
lake_BFM samples, indicating the existence of differ-
ent groups of strains adapted to different ecological 
niches in the pelagic and benthic littoral zones of the 
lakes, respectively.

The Tychonema ASVs were in different major 
branches of the phylogenetic tree, together with well-
known or poorly classified homologous sequences 
from GenBank. Excluding one doubtful genus (cf. 
Tychonema), one of the major clades (1) included dif-
ferent sequences from GenBank attributed to Micro-
coleus and Phormidium. These two genera were the 
subject of many recent taxonomic revisions (Palinska 
et al., 2011; Strunecký et al., 2013; Niiyama & Tuji, 
2019), although some questions remain (Komárek 
et al., 2014). As a further element indicating a close 
relationship of clade-1 with Microcoleus and Phor-
midium, six Tychonema taxa identified in the biofilm 
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samples showed the presence of two 11-nucleotide 
insertions, the most common of which was identical 
except for a one nucleotide shift in alignment to a pre-
viously described 11-insert, e.g. by Taton et al. (2003) 
and Jungblut et al. (2016). The one nucleotide shift is 
due to slight differences in the alignments provided 
by the major rewrite of Muscle5 based on new algo-
rithms (Edgar, 2022) compared to previous versions 
and other alignment software used in former works. 
This insert appears to be widespread, although its 
presence has not always been emphasised (e.g., acces-
sion numbers KF770970 and EF654074; Fig. 4). The 
heterogeneity observed in clade-1 is consistent with 
the results of a phylogenomic analysis by Strunecký 
et  al. (2023), who found that strains previously des-
ignated as Tychonema are monophyletic with Micro-
coleus, and Tychonema may become a Microcoleus 
species. This is confirmed by the Genome Taxonomy 
Database (Parks et  al., 2022), where several former 
Tychonema strains are now classified into the genus 
Microcoleus. The second major clade contained only 
Tychonema strains, both planktic (T. bourrellyi) and 
benthic (T. bornetii and T. tenue). When compari-
sons are restricted to the 16S rRNA region used for 
metabarcoding (V3-V4), different strains of Tycho-
nema spp. may share identical sequences. In such 
cases, species discrimination should integrate other 
distinctive features, such as habitat preferences and 
morphometric characters (Salmaso et  al., 2016). In 
the planktic samples, Tychonema was essentially rep-
resented by one unique ASV, which could be attrib-
uted to T. bourrellyi. Its distribution still seems to be 
mostly restricted to the southern perialpine regions 
(Supplementary Fig. 8A). On the other hand, the ben-
thic Tychonema populations showed a wider distri-
bution, covering areas throughout the Alpine region 
and evolving, as the planktic ecotypes, with toxigenic 
strains producing anatoxin-a, as demonstrated in 
some of the recent cases of animal poisoning caused 
by toxic clumps and mats of Tychonema sp. in the lit-
toral area of Lake Tegel (Fastner et al., 2018) and in 
the reservoir Mandichosee (Lech River) (Bauer et al., 
2020, 2022). Compared to the previous two clades, 
the remaining ASVs clustered closely with unclas-
sified cyanobacterial clones from GenBank, raising 
doubts about their taxonomic assignment and nature.

The ASVs designated as Planktothrix were almost 
all represented by the two planktic oligotypes “A” 
(ASV2) and “G” (ASV7). Both genotypes constitute 

the 16S rRNA genes in a strain (4 gene copies per 
chromosome), e.g., strain PCC7821 or strain no758 
(both originally isolated from Scandinavia) contain 
these two oligotypes (pos. 97, A vs G) (Entfellner 
et al., 2022). A few rare and quite unusual oligotypes 
(ASVs 1628 and 17,290) coincided with unclassified 
sequences, both deposited in GenBank and recently 
determined in other alpine or perialpine waters. These 
oligotypes most likely do not belong to the genus 
Planktothrix, and their taxonomic position needs to 
be clarified. In contrast, some other unusual ASVs 
showed no correspondence with classified or unclas-
sified sequences in the reference databases. Further 
investigation is needed in the basins where these 
sequences were identified to verify the consistency 
and non-transitory nature of these ASVs. The largest 
number of unusual sequences was found in Lake Per-
nica. This lake is highly eutrophic (Ambrožič et  al., 
2008) due to its location at the edge of the Alpine 
chain in northeastern Slovenia, which is relatively 
flat and intensively farmed, and therefore has differ-
ent characteristics from the other Alpine or perialpine 
lakes included in this study. Accordingly, P. rube-
scens, which is typical for Alpine lakes and found in 
the majority of lakes in this study, was never detected 
in Lake Pernica, whereas P. agardhii is commonly 
observed during regular monitoring (data from Slo-
venian Environment Agency). In particular, ASV172, 
ASV2539, ASV8752, ASV31079 were most closely 
related to phylogenetic lineage 3 including tychop-
lanktic genera such as P. tepida or P. pseudagardhii 
(Entfellner et al., 2022).

Commonness and rarity of ASVs: implications for 
taxonomic classification

Of the three genera analysed in the previous section, 
Tychonema and Planktothrix have been the subject 
of several studies that have allowed their ecologi-
cal, taxonomic, and genetic characterisation, espe-
cially in planktic environments. Compared to other 
less known taxa, this can help in the interpretation 
of the observed diversity and in the assessment of 
the uniqueness of some of the rarest ASVs found in 
this work. In both genera, the oligotypes that showed 
a clear taxonomic classification were by far the most 
abundant, whereas the ASVs that showed discrepan-
cies in their classification were among the rarest oli-
gotypes. This was consistent with the analysis of all 
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2620 ASVs included in this work, which showed a 
tendency for the proportion of taxonomic assignments 
at the genus level to increase in the most abundant 
species (Supplementary Fig.  5). In the same sam-
ples, similar results were found using a slightly dif-
ferent approach (blast analysis on 16S rRNA and 18S 
rRNA genes) in both cyanobacteria and phytoplank-
ton (Salmaso et al., 2022). These observations can be 
explained in two complementary ways. On the one 
hand, the most abundant species are also those that 
were more likely to be isolated and genetically char-
acterised. On the other hand, we cannot exclude that 
some of the rarest species could be ephemeral arte-
facts that survived the most stringent quality filtering 
and/or oligotypes that evolved separately in specific 
water bodies (e.g., Lake Pernica). In the case of some 
rather rare ASVs, their presence was also fully con-
firmed in other water bodies in the Alps or in Asia, 
suggesting that an increase in the range of environ-
ments analysed could help to resolve the assessment 
of abundance, rarity, and uniqueness of ASVs.

Compositional patterns and environmental drivers in 
lakes and rivers

Analyses of samples collected in lake plankton 
and littoral epilithic biofilm from lakes and rivers 
revealed individual compositional patterns unique 
to each water body. Looking at the most abundant 
ASVs, the monthly lake_PL samples differed due to 
several ASVs that were classified within a limited 
number of taxa restricted to well-known genera such 
as Cyanobium, Planktothrix, Snowella, Aphanizome-
non, Dolichospermum and, restricted to Lake Garda, 
Tychonema. Based on the whole set of ASVs, the 
compositional patterns were strongly linked to a num-
ber of physical and trophic factors. In this dataset, 
the lack of correlation between trophic variables was 
unexpected at first sight but was actually explained 
by their small range of variation (e.g., mean values 
of TP between 7 and 15 µg P  L−1). Furthermore, the 
higher values of transparency and Chl_a were found 
in the largest and deeper lakes, where the contribu-
tion of mineral turbidity is generally lower than in 
the smaller water bodies (Havens & James, 1999; 
Jones et  al., 2008; Nõges, 2009). Conversely, the 
analysis of lake_PL samples collected annually dur-
ing the summer months in a larger number of lakes 
allowed to identify a distribution of lakes and taxa 

along a trophic, physical, and physiographic gradi-
ent. Overall, genera that developed predominantly 
in larger, deeper lakes and smaller, shallower lakes 
were recognised as belonging to typical functional 
groups living in oligo- and mesotrophic waters and in 
more eutrophic and/or turbid waters, respectively (see 
Reynolds et al., 2002).

This work has allowed, for the first time, the iden-
tification of Cylindrospermopsis (Raphidiopsis) 
sequences in some eutrophic lakes in Italy and Slo-
venia (Salmaso et  al., 2022). Within this genus, the 
toxigenic species Raphidiopsis (Cylindrospermop-
sis) raciborskii (Woloszynska) Aguilera & al. (Sup-
plementary Table 2) has been recognised as an inva-
sive species of tropical origin (Sukenik et  al., 2012; 
Kokociński et  al., 2017). In Italy, this species was 
previously identified in lakes in Lombardy by micro-
scopic analysis (M. Austoni, pers. comm.). Its identi-
fication highlights the potential of eDNA analysis as 
an effective tool for the early detection of invasive and 
toxigenic cyanobacteria during geographical surveys.

The existence of compositional patterns unique to 
each water body was also confirmed in the biofilms 
collected at different lake and river stations. Analo-
gous to the lake_PL samples, the compositional dif-
ferences in the lake_BFM samples were correlated 
with a number of trophic, physical, and physiographic 
variables, further highlighting the strong environmen-
tal filtering at the level of individual lakes. However, 
analysis of biofilm community structure in lakes and 
rivers was severely hampered by the high number of 
unclassified ASVs, which limited comparisons at the 
genus level to about 50% of the ASVs.

Conclusion

Our work revealed a distinct biodiversity and low 
overlap of amplicon sequence variants in individual 
lakes and rivers, with the development of specific 
families and broad morpho-functional types. Within 
each pelagic and benthic habitat, the individual char-
acter of the water bodies indicated a strong role of 
environmental filtering in the selection of major gen-
era and ASVs. All habitats and water bodies were 
characterised by a high proportion of low abundance 
ASVs occurring in one or a few samples. Due to their 
stochastic nature, these taxa only partially contrib-
uted to the characterisation and functioning of the 
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community, despite their contribution to increasing 
biodiversity.

Ecological interpretation of the data was hampered 
by the low proportion of ASVs classified at least to 
genus level, particularly in biofilm samples and for 
many of the rarest ASVs. This was mainly due to the 
incompleteness of taxonomic reference databases for 
species living in poorly studied environments and the 
limited genetic information provided by the short 16S 
rRNA gene currently used for metabarcoding. The 
incompleteness of taxonomic data for benthic envi-
ronments was also highlighted by a consistent pro-
portion of ASVs that showed no classification even at 
taxonomic levels higher than family.

In the lake biofilm, the number of individual 
ASVs was ten times higher than the number of ASVs 
detected in the pelagic zone. This large imbalance in 
the biodiversity of these two habitats is even more 
significant when considering that in our work the bio-
film was only representative of the epilithic fraction 
and therefore only provided a rough estimate of the 
biodiversity complexity of the littoral zone. Despite 
their importance in terms of biodiversity and as a 
potential substrate for the colonisation of toxigenic 
populations, benthic  and periphytic habitats in lakes 
and rivers have been much less studied. Besides dia-
toms, which are the main target of biomonitoring 
studies, a consistent inclusion of other components of 
the microbial community would allow a better char-
acterisation of the functionality of lakes and rivers.

The phylogenetic analysis of three selected genera, 
namely Cyanobium, Tychonema and Planktothrix, 
allowed the identification of heterogeneous phyloge-
netic clades, indicating both the polyphyletic nature 
of the taxa and the specificity of the results obtained 
with the taxonomic classifiers and reference databases 
used. In the case of the two filamentous cyanobacte-
ria, the ASVs were placed either in clades along very 
well characterised species (e.g., planktic and ben-
thic Tychonema or Planktothrix) or in branches that 
were poorly or not taxonomically characterised. In 
the eutrophic Lake Pernica, Slovenia, some unusual 
sequences were identified and classified as “Plankto-
thrix”. However, the non-ephemeral nature of these 
and many other rare unclassified ASVs remains 
unknown.

Although limited to three representative genera, 
the phylogenetic analyses allowed clarification of the 
taxonomic nature and positions of ASVs that would 

otherwise be classified in a single genus. In general, 
this approach should be used whenever there is inter-
est in delving deeper into the taxonomy and differen-
tial distribution of ASVs in specific cyanobacterial 
taxa, including ecotypes. A revealing example was 
the small picocyanobacteria, which are usually clas-
sified into broad functional groups, but in our work 
were separated into at least two major ecotypes 
restricted to pelagic habitats and lake biofilms.
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