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Abstract  In this study, we aim to investigate how 
the functional properties of microalgae help to deline-
ate the major groups of aquatic habitats. Using func-
tional trait-based and Reynolds’ functional group-
based approaches similarities of the microalgal flora 
of all aquatic habitats occurring in Hungary were 
compared. The habitats covered the whole size spec-
trum of standing waters (10-2–108 m2) and water cur-
rents (watershed: 102–1011  m2), , limnological and 
chemical properties. Both functional trait-based and 
functional group-based habitat classifications over-
rode the hydromorphology-based typology, how-
ever, functional group-based clusters showed closer 

resemblance to limnological-hydromorphological 
types than clusters created by trait-based approaches 
both for qualitative and quantitative data. Most of 
the aquatic habitats that have similar limnological 
characteristics showed resemblance in the functional 
properties of their microflora. Rivers and river-related 
habitats were the most diverse functionally. These 
were followed by standing waters with extended 
macrophyte coverage. The small, unique habitats 
displayed the lowest functional richness. The occur-
rence of several functional groups in some extreme 
habitats implies two alternative explanations: first, the 
habitat template of the groups is wider than defined in 
the original description; second, detailed information 
on the autecology of species assigned to a functional 
group necessitates the creation of new groups specific 
for the unique habitats.
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Introduction

Phytoplankton plays a key role in freshwater eco-
systems and has great ecological importance by pro-
viding the base of the aquatic food web and taking 
place in natural purification processes of freshwaters 
(Falkowski et  al., 2008; Naselli-Flores & Padisák, 
2022). Due to its prominent ecological role, phyto-
plankton is considered a key target in several moni-
toring programmes (Batten et al., 2019). Water qual-
ity assessment of rivers, lakes and the majority of the 
scientific investigations focus on large water bodies, 
therefore their limnological and biological character-
istics are well-described in the literature. However, 
microalgae can occur anywhere, where the condi-
tions are suitable for them, from the small telmata 
through the cave waters to the marshlands. It has been 
demonstrated that small and medium-sized water 
bodies (area:104–105 m2) are characterized by a con-
siderable amount of variation in terms of their envi-
ronmental parameters (Zawal et  al., 2013; Várbíró 
et  al., 2017). This enables the small water bodies to 
maintain higher species diversity than the large ones 
(Hawksworth, 1996; Turner & Corlett, 1996; Gibb & 
Hochuli, 2002; Honnay et al., 1999; Williams et al., 
2004). Their importance also lies in the fact that they 
can host ecologically valuable or floristically unique 
species (Kiss & Ács, 2002; Kristensen & Globevnik, 
2014; Kuczyńska-Kippen, 2020). Currently, fewer 
data are available regarding the distribution of fresh-
water algae, and even less of those precious taxa that 
inhabit specific, sometimes endangered waterbodies.

The hydromorphological properties of freshwa-
ters have a pronounced influence on the formation of 
habitat types at a given area (Kofoid, 1903; Murray & 
Pullar, 1904; Huitfeldt-Kaas, 1906), and on the com-
position of the occurring assemblages. The recogni-
tion that waters with similar physical properties are 
also similar in their biological characteristics led to 
the description of the first stagnant- and flowing water 
types (such as shallow and deep lakes, rhithral and 
potamal rivers, etc.) (Borics et  al., 2016). The first 
comprehensive typologies for the Hungarian waters 
appeared in the sixties (Sebestyén, 1963) and in the 
seventies (Dévai, 1976). After the introduction of the 
Water Framework Directive (EC, 2000) in Hungary, a 
more complex typology (based on five variables: alti-
tude, size, depth, bed material and the type of water 
transport) had to be defined. Using this typology, 

stagnant surface waters were categorized into 17 
water types, while the flowing waters were grouped 
into 25 types (GD, 2004; GD, 2010) in Hungary. 
These hydromorphological classifications follow a 
“top-down logic” (Zenker & Baier, 2009), during 
which the typological classification starts from the 
geographical, physical, chemical and hydromorpho-
logical properties of water. Water bodies can be also 
classified by the examination of the common features 
of the biological elements (phytoplankton, benthic 
diatoms, macrophytes, benthic invertebrates, fish) 
(Borics et  al., 2014a). In contrast to the hydromor-
phological typology, biological typology is a bottom-
up classification, in which similarities in the commu-
nity composition of assemblages are considered in 
grouping of waters (Davy-Bowker et al., 2006). In the 
case of phytoplankton, several metrics can be applied 
(diversity metrics, taxon ratios, etc.) to separate or 
merge the biological water types. However, aquatic 
ecosystems can be evaluated not only at the level of 
species but also at a higher organizational level, i.e., 
based on associations or functional groups (Borics 
et al., 2007). This seems to be a promising approach 
because it has been demonstrated that functional 
diversity may be a stronger determinant of ecosys-
tem processes than species diversity (Huston, 1997; 
Hooper & Vitousek, 1997; Tilman et al., 1997; War-
dle, 1999). The functional approaches in phytoplank-
ton research received a large impetus from the work 
of Reynolds et al. (2002), who assigned phytoplank-
ton species into so-called functional groups. This 
system shows a close resemblance to the associations 
in the phytocoenological system of Braun-Blanquet 
(1951). Most of the species in Reynolds’s functional 
groups have similar morphological and physiological 
characteristics, but it is not an obligation. The most 
important is that the species of this group show simi-
lar responses to the constraints of the environment, 
thus they have to be considered as response groups 
(Violle et  al., 2007). This approach has been devel-
oped for lakes and ponds, but the applicability of the 
concept has not been studied for small, unique water 
types, in which besides the planktic habitats, benthic 
and metaphytic habitats also occur.

In order to explore the habitat selection of the dif-
ferent phytoplankton functional groups, we reviewed 
the published literature on microalgal research in 
Hungary over the last 140 years and created a species-
by-site matrix containing a wide range of species and 
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localities. In the matrix, each species has been classi-
fied into one functional group and each locality was 
grouped into one hydromorphological type. Our goal 
was to produce a phytoplankton-based bottom-up 
typology and compare that with the hydromorpholog-
ical water types. We assume that this approach helps 
to better understand the background of species occur-
rences and reveal those characteristics of the environ-
ment that help the microalgal species to survive in 
their habitats. The main questions were the following:

•	 Which algae (functional traits/functional groups) 
characterize the various habitat types?

•	 Are there any differences between the functional 
trait-based and functional group-based typologies?

•	 Do the similarities in limnological characteristics 
of the habitat types coincide with the similarities 
in their microflora?

•	 Which are the functionally most diverse habitats?

Materials and methods

Data sources of species inventory

We prepared a microalgal database for Hungary. Lit-
erature data were collected from various algal hand-
books (Felföldy, 1972, 1981, 1985; Németh, 1997; 
Schmidt & Fehér, 1998, 1999, 2001; Grigorszky 
et al., 1999; Uherkovich et al., 1995), from the recent 
literature, including published results of floristic stud-
ies and data derived from the grey literature (e.g., 
unpublished Ph.D. theses, governmental reports). 
This literature contained not only the descriptions of 
species but also the localities of occurrences. Finally, 
we further expanded the database by the inclusion 
of phytoplankton monitoring data of Water Manage-
ment Directorates, covering the region of Hungary. 
The species-by-site matrix contains mostly planktic 
and metaphytic species, benthic diatoms were not 
recorded in this database.

Habitat types

Based on the limnological characteristics of the local-
ities, we assigned them into habitat types by applying 
the following type descriptor variables: water catego-
ries (surface and subsurface waters; water currents 

and standing waters), chemical composition (organic, 
high alkalinity, moderate alkalinity), origin (artificial 
or natural), water balance (stationary or temporary), 
size (> 10km2), depth (deep: mean depth > 4  m). 
The habitat typology is summarized in Supplemen-
tary Table  1. These types covered all aquatic habi-
tats in the region from the various small, water-filled, 
ephemeral holes (phyto- lito- and dendrotelmata) to 
the large lakes and rivers.

Classification of species

During the functional classification of species, we 
applied functional trait-based and functional group-
based approaches.

Functional trait (hereinafter FT) has been defined 
as a morphological, physiological, or behavioural fea-
ture that is measurable at the individual level. Phyto-
plankton species were characterized by 12 FT accord-
ing to Litchman & Klausmeier (2008): flagellated, 
filamentous, single-celled, colonial, large flagellated, 
larger than 40 µm, nitrogen-fixing, mixotrophic, vacu-
olated, silicious and pennate. All these were defined 
as binary traits (0 = lacking; 1 = having the trait).

Functional group (hereinafter FG) has been defined 
as the group of taxa that shows similar responses to a 
wide range of environmental factors of their habitats. 
Phytoplankton species were assigned to 31 FGs using 
the criteria of Reynolds et  al. (2002) and Padisák 
et al. (2009). Each group was named by letter codes 
and each species was classified into one FG.

Comparison of the FT and FG across water types

In order to compare the different water types at FT 
and FG levels, we created qualitative matrices, in 
which we marked with 1, if the FT/FG occurred and 
we marked with 0, if the FT/FG lacked from the habi-
tat type.

Calculation of trait frequency value

Having only floristic data in the literature, the fre-
quency cannot be given explicitly at the site level. 
However, as a proximate measure of FT/FG fre-
quency, we can calculate the frequency of the FT/
FG in the given habitat type using the number of sites 
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where the FT or FG occurred and the overall number 
of sites in the given habitat type. The resulting values 
fall between 0 and 1 and can be considered as the fre-
quency values of FTs and FGs (Eq. 1) in the habitats.

Fij: FT/FG frequency value of ith FT/FG in the jth 
water type.

NLij: number of localities where the ith FT/FG 
occurred in the jth water type.

TNLj: total number of localities in the jth water 
type.

Statistical analyses

In order to study the similarities between habitat 
types we used agglomerative hierarchical clustering 
methods. Data analyses were carried out on both the 
qualitative and the quantitative data. We used Jaccard 
dissimilarity (Eq.  2) (Jaccard, 1901) for the binary 
and Bray–Curtis dissimilarity (Eq. 3) (Bray & Curtis, 
1957) for the quantitative data to express similarity 
(Legendre & Legendre, 1983). The hierarchical clus-
tering has been based on Ward’s algorithm.

J (FT/FG, Hj): Jaccard dissimilarity.
FT/FG ∩ Hj: the number of common elementsof 

FT/ FG in the jth habitat type.
FT/FG ∪ Hj: the number of unique elements of FT/

FG in the jth habitat type

BCjk: Bray–Curtis dissimilarity.
xij: the total number of FT/FG counted on site i 

and j.
xjk: the total number of FT/FG counted on site i 

and k.
To identify the relationships between the FT-based 

versus FG-based, and the qualitative versus quantita-
tive approaches a Mantel test was applied (Mantel, 
1967). All analyses were performed in R 4.1.0 and 

(1)Fij =
NLij

TNLj

(2)J(FT∕FG,Hj) =
∣ FT∕FG ∩ Hj ∣

∣ FT∕FG ∪ Hj ∣

(3)BCjk =

∑
i

���
xij − xik

��
�

∑
i

�
xij − xik

�

RStudio Build 446 (R Core Team, 2021), using pack-
age vegan version 2.6–4 (Oksanen et al., 2020).

To reveal differences in the functional richness 
of the habitats, we calculated cumulative frequency 
values of FTs and FGs (Σ Fij) and displayed them in 
ranked order distribution.

Results

Description of the species‑by‑site matrix

The presence/absence matrix contains 2489 taxa in 
rows, representing 12 phyla (Bacillariophyta, Bigyra, 
Charophyta, Chlorophyta, Cryptophyta, Cryptista, 
Cyanobacteria, Euglenozoa, Haptophyta, Miozoa, 
Ochrophyta, Rhodophyta) and includes 1145 locali-
ties in columns, representing wide range in size and 
hydrology, from tiny telmata to the large rivers (e.g., 
Danube) and lakes (e.g., Lake Fertő and Balaton) of 
Hungary.

FT and FG‑based classification of the habitat types 
using qualitative data

Using qualitative (binary) data at FT level, the habitat 
types could be classified into 5 groups (Fig. 1). Cryo-
biotopes, cave waters, soil surfaces, ricelands and tel-
mata have been separated from the majority of water 
types at the first and second node of the dendrogram. 
In these types, only a few traits were represented. In 
case of the other large and less unique habitats, the 
binary data revealed the presence only of two large 
clusters, with a seemingly arbitrary grouping of 
hydromorphologically and limnologically different 
habitats (Fig. 1).

The clustering using the qualitative dataset and the 
FG has given a more detailed grouping of the habi-
tats (Fig. 2). The habitats are divided at the first node 
into 2 clusters. Those, usually small habitats that 
share only a few common FGs with other habitats, are 
located in one branch of the cluster. Except for ponds 
(< 1 ha) and large saline lakes, all habitats of the clus-
ter have a temporary character. The other branch of 
the cluster included all perennial waters. Many of 
these habitats formed limnologically similar sub-
groups, however, there were several strange clusters 
(marked with red boxes in Fig.  2) which were very 
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different in their limnological/hydromorphological 
characteristics, like the cluster of Lake Balaton with 
streams.

FT and FG‑based classification of the habitat types 
using quantitative data

FT-based typology using quantitative data provided 
more detailed habitat grouping than the qualitative 
approach. Applying trait frequency values at FT level, 
we found several well-explainable clusters (indi-
cated by green boxes in Fig.  3) on the dendrogram: 
(1) rivers and river-related habitats; (2) very small 
aquatic and semiaquatic habitats; (3) shallow large 
and medium-sized lakes; (4) small benthic habitats; 
(5) macrophyte-dominated habitats; (6) medium-
sized deep lakes with no or negligible presence of 

macrophytes. The habitat types, falling into these 
clusters show close resemblance in their limnological/
hydromorphological characteristics. Moreover, cryo-
biotopes formed a separate branch in the dendrogram. 
This approach, however, also resulted in strange clus-
ters, like bog lakes and soda pans, which have consid-
erable differences in their pH and ionic composition.

Based on the frequency values of FGs the analy-
sis provided two well-explained clusters (Fig.  4). 
In the first cluster three subgroups can be identi-
fied. The (1) cryobiotopes, being one of the most 
extreme habitats, have been separated at the second 
node. The other two large clusters in this branch 
of the dendrogram were the (2) very small aquatic 
and semiaquatic habitats and (3) the shallow, 
medium-sized, macrophyte-dominated standing 
waters. In the other branch of the dendrogram (4) 

Fig. 1   FT-based clas-
sification of the habitat 
types using qualitative data 
(Jaccard-distance)
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medium-sized lakes with no or negligible presence 
of macrophytes, moreover (5) rivers and river-fed 
habitats made two large clusters. Within the large 
clusters, there were several separable groups at the 
branch ends, which show close resemblance in their 
limnological and hydromorphological character-
istics. These were the pools and small temporary 
wetlands; ponds (< 1  ha) and soda pans; ricelands 
and bog lakes; brooks and canals; oxbows, streams 
and reservoirs. Two habitats appeared at unexpected 
positions in this cluster. Lake Balaton was placed in 
the subgroup of the shallow, medium-sized, macro-
phyte-dominated standing waters, while the large 
saline lakes were positioned in the group of rivers 
and river-fed habitats.

Relationships between the applied approaches

We applied the Mantel test to evaluate the strength 
of the correlation between the results of the func-
tional (FT/FG-based) and qualitative/quantitative 
approaches. The test yielded the values in Table 1. 
Dissimilarity matrices showed significant correla-
tions in all four comparisons. The weakest correla-
tions were found when the qualitative and quanti-
tative matrices’ results were compared both in the 
case of FT- and FG-based approaches. The corre-
lations were stronger when the FT and FG-based 
approaches were compared using the same type 
of data matrices (i.e., qualitative and quantita-
tive). The strongest correlation was found when 

Fig. 2   FG-based clas-
sification of the habitat 
types using qualitative 
data (Jaccard-distance). 
Reliable groups are marked 
with green boxes. Strange 
clusters -which are very 
different in their limnologi-
cal/hydro morphological 
characteristics- are marked 
with red boxes
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the quantitative matrices of the FT- and FG-based 
approaches were contrasted.

Functional richness of the habitats

Functional richness of the habitats has been expressed 
as the cumulative frequency distribution of FTs 
(Fig.  5a) and FGs (Fig.  5b). The data showed con-
siderable differences among the habitats. The largest 
values were characteristic of the water currents and 
for other river-related habitats in the case of both FTs 
and FGs. Large- and middle-sized standing waters 
are positioned in the middle range of the ranked 
occupancy distributions. The very small unique habi-
tats (cave waters, soil surfaces, springs and telmata) 
had the lowest values. The order of the habitats was 
quite similar in the case of both approaches. Larger 

differences between the positions of habitats in the 
ranked occupancy distribution appeared in the case of 
Lake Balaton and springs.

FTs and FGs characteristic for the habitats

Among the eleven FTs there were several ones (flag-
ellated, single-celled, > 40 µm, colonial, mixotrophic) 
that occurred in the majority (> 20%) of the sites in 
each habitat type (Table  2), excluding cryobiotopes 
as very special habitats. Except for very small, unique 
habitats, although in lower frequency, each trait was 
present in each habitat type. Thus, the differences 
among the habitats appeared rather in the lack or 
low-frequency occurrence of the trait than in their 
dominance.

Fig. 3   FT-based classification of the habitat types using 
quantitative data (Bray–Curtis distance). Reliable groups are 
marked with green boxes, strange groups are marked with 

red boxes. Next to the groups, we have indicated the common 
properties of those water types that belong to the same group
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As to the FGs, the types showed more conspicuous 
differences (Table 3). Although there were many FGs 
(especially X1, F, J) that occurred in almost every 
habitat in high frequency (> 20%) (Table 4), several 
of them (e.g., A, B, H2, M, S1, S2, YPh, Z) occurred 
only in low-frequency or were absent in some habi-
tats. It was especially true for the small, unique habi-
tats, like cryobiotopes or telmata in which only 10 
FGs were present.

Discussion

In this study, we applied functional-based approaches 
to categorize all types of aquatic habitats, where 
algae occurred in Hungary. Similar approaches were 
applied during the implementation of the Water 
Framework Directive (WFD, 2000), when hydromor-
phological river- and lake types had to be validated 
biologically (Borics et  al., 2014b; Bolgovics et  al., 
2017a). There are two basic differences between the 
present clustering of water types and the WFD-com-
pliant typologies. The first is that the WFD types are 
constrained types because standing waters and water 
currents have to be treated and classified separately. 
While during the validation of the WFD-compli-
ant typologies separation of lakes and rivers was an 
obligation, in this study, similarities in the composi-
tion of algal assemblages of all aquatic habitats were 
analyzed, independently of their size, hydrology or 
chemical character. The other difference is that in the 
WFD-compliant typologies compositional differences 

Fig. 4   FG-based classification of the habitat types using 
quantitative data (Bray–Curtis dissimilarity). Reliable groups 
are marked with green boxes, strange groups are marked with 

red boxes. Next to the groups, we have indicated the common 
properties of those water types belonging to the same group

Table 1   Mantel statistic based on Pearson’s product-moment 
correlation; number of permutations: 999

FGbray/ FTbray dissimilarity matrix based on Bray–Curtis 
distance, FGjaccard/ FTjaccard dissimilarity matrix based on 
Jaccard-distance (FG-Functional groups; FT- Functional traits)

Comparision R P-value

FTbray × FTjaccard 0.5218 0.003
FGbray × FGjaccard 0.6891 0.001
FGbray × FTbray 0.8962 0.001
FGjaccard × FTjaccard 0.8308 0.001
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are much less pronounced than differences in their 
biomass. In contrast, the present types reflect com-
positional and functional similarities among limno-
logically different environments, regardless of their 
a priori categorization. Reynolds et  al. (1994) drew 
attention to the similarities of phytoplankton in riv-
ers and shallow lakes and explained the background 
of this pattern. However, here we revealed some sur-
prising similarities of otherwise apparently different 
systems, for example, cave waters—springs that were 
located in the same cluster branch in the FT-based 
classification (Fig.  3), or the Lake Balaton—marsh-
lands group in the FG-based clustering (Fig.  4). 
These results imply that several a priori different 

habitats might share some common, but less obvious 
characteristics that override the basic differences and 
enable the development of functionally similar algal 
assemblages.

The bottom-up grouping of habitats had various 
outcomes because of differences in the applied statis-
tical and functional classification approaches.

Experiences of habitat clustering using qualitative 
data

Using qualitative data, we found only a few FT- and 
FG-based habitat clusters that show close resem-
blances in their limnological/hydromorphological 

Fig. 5   Cumulative 
frequency distribution of 
FTs (a) and FGs (b) across 
habitat types
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characteristics. The reason lies in the applied sta-
tistical method. The Jaccard index is a simple and 
intuitive measure of dissimilarity between data 
samples (Verma & Aggarwa, 2020). However, since 
it uses qualitative data, it is sensitive to the num-
ber of common traits between the habitat types. 
Because phytoplankton species are very good dis-
persers (Padisák et  al., 2016), aquatic habitats are 
under continuous propagule pressure. This means 
that species, which otherwise have little chance to 
survive and build stable populations in a given habi-
tat, can be almost continuously present there even 
in low numbers. In very small habitats, because 
of the large sample volume/habitat volume ratios, 
the species detectability is high (Buckland et  al., 
2011; Bolgovics et  al., 2019), therefore, acciden-
tally occurring, low abundance species can be read-
ily observed. This could be a reason why using the 

incidence-based approach the biologically based 
habitat groups contained hydromorphologically 
highly different water types.

Experiences of habitat clustering using quantitative 
data

For quantitative data, we applied the Bray–Curtis 
dissimilarity index. Using this approach biologi-
cally based groups could be easily reconciled with 
those, based on hydromorphological properties. 
Most of the groups created in this way were well-
explainable, especially those, that are based on the 
FGs.

The river-related habitats and those, that provide 
habitat for planktic diatoms and contain several ben-
thic algae have been clustered into clearly separa-
ble groups at both FT and FG levels (Figs. 3 and 4). 

Table 2   Percentage distribution of each trait found in the different habitat types. Percentage distributions: < 5%, 5–10%, 
11–20%, > 20%. Percentages refer to the ratio of occupied localities within the type

Functional traits: 1- Flagellated; 2- Filamentous; 3-Single-celled; 4-Colonial; 5-Large flagellated; 6-Larger than 40 µm; 7-Nitrogen-
fixing; 8-Mixotrophic; 9-Heterotrophic; 10-Vacuolated; 11-Silicious; 12-Pennate

Main groups Habitat types  < 5% 5–10% 11–20%  > 20%

Rivers and river-fed (river related) 
habitats

Brooks 9 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Rivers 9 1, 2, 3, 4, 5, 6, 7, 8, 10, 11
Canals 9 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Oxbows 9 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Reservoirs 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Large saline lakes 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Streams 9 11 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12

Cryobiotopes Cryobiotopes 2, 3, 4, 6, 7, 10
Very small aquatic and semiaquatic 

habitat with benthic habitats for algae
Pools 11,12 7, 10 1, 2, 3, 4, 5, 6, 8
Ponds (< 1 ha) 11,12 7, 10 1, 2, 3, 4, 5, 6, 8
Small temporary wetlands 11,12 7, 10 1, 2, 3, 4, 5, 6, 8
Ricelands 11, 12 1, 2, 3, 4, 5, 6, 8
Soil surfaces 10 2, 7 1, 3, 4, 5, 6, 8
Telmata 2 1, 3, 4, 5, 6, 8

Shallow large and medium sized lakes Lake Balaton 7, 10, 11, 12 1, 2, 3, 4, 5, 6, 8
Fishponds 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12

Very small benthic habitats Springs 12 1, 2, 3, 4, 5, 6, 7, 8, 10
Cave waters 10 1, 2, 3, 4, 5, 6, 7, 8

Habitats with extended macrophyte 
coverage

Soda pans 7, 10, 12 1, 2, 3, 4, 5, 6, 8, 11
Marshlands 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12
Bog lakes 12 1, 2, 3, 4, 5, 6, 7, 8, 10, 11
Water-filled pits 11,12 2, 7, 10 1, 3, 4, 5, 6, 8

Medium sized lakes with no or negligi-
ble presence of macrophytes

Lakes 5, 7, 10, 12 1, 2, 3, 4, 6, 8, 11
Pit lakes 7, 10, 12 4, 5 1, 2, 3, 6, 8, 11
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These habitats show close resemblance in several of 
their limnological and hydromorphological charac-
teristics. Very small aquatic and semiaquatic sites 
are rich in benthic elements, while in habitats with 
extended macrophytes stands, metaphytic elements 
like desmids or euglenophytes occur in large numbers 
(Görgényi et  al., 2019). The very small aquatic and 
semiaquatic habitats constituted a separate group. The 
common feature of these habitats is that they provide 
well-illuminated solid substrates for benthic algae.

Using both FT- and FG-based approaches, only the 
cryobiotopes show no similarity with any other types 
of habitats. This habitat type provides conditions only 
for a narrow set of species (Kol, 1968).

The FG-based approach appeared to be the best in 
creating reliable groups of habitats. The five clusters 
we identified, represent limnologically different sub-
groups of habitats.

In the cluster of “Rivers and river-fed habitats” 
besides the water currents, standing waters (oxbows 
and reservoirs) can also be found. These waters are 
continuously or occasionally flushed by the nearby 
rivers, which shapes their biotic assemblages (Stević 
et al., 2013; Bortolini et al., 2017), resulting in diverse 
microflora and dominant occurrence of B, C, D, func-
tional groups (Table  3). The appearance of “Large 
saline lakes” in this cluster can also be explained by 
the large relative abundance of benthic and mero-
planktic algae that frequently occur in both habitats 
(Padisák & Dokulil, 1994). Several benthic diatoms 
that constitute an important part of the microflora of 
these waters (Navicula salinarum Grunow, Nitzschia 
liebethruthii Rabenh. or Halamphora spp.) are eury-
haline taxa with wide salinity tolerance (Van Dam 
et al., 1994).

The lakes, pit lakes and fishponds constituted the 
habitat cluster of “Medium-sized lakes with no or 
negligible presence of macrophytes”. Partly because 
of the presence of high fish stock and partly because 
of the steep lake basin walls (Schultze et al., 2022), 
the littoral macrophyte coverage in these lakes is 
considerably smaller than in the unaffected, natural 
habitats. As it was previously demonstrated, in these 
water bodies, due to the relatively small diversity 
of phytoplankton (Görgényi et  al., 2022) and the 
enhanced mixing of water (caused by the fish stock 
or the large fetch; Borics et al., 2015), planktic dia-
toms from the A, B, C functional groups—that are 
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Table 4   The most frequent 
FG-s of each habitat type

Habitat types Most frequent FG Frequency occur-
rence of FG’s (%)

Cave waters X1 18
X2 11

Springs N 13
P 9

Streams C 9
MP 8

Brooks C 9
J 8

Rivers X1 7
F 6

Canals X1 8
C 7

Oxbows X1 8
J 7

Reservoirs C 11
X1 7

Soda pans X1 11
F 10

Soil surfaces X1 20
F 11

Bog lakes P 9
N 8

Ponds (< 1 ha) X1 14
F 13

Small temporary wetlands X1 14
W1 10

Telmata W1 22
X2 17

Pools X1, J, F 9
TC 7

Fishponds C, X1 9
F 8

Water-filled pits F, J, W1, X1 10
X2 8

Lake Balaton F, J, X1 10
T, X2 6

Ricelands N, P 16
J 11

Cryobiotopes H1, K, Lo, S2, TC, X1 12
J, M, MP, T, Z 6

Marshlands W1 13
J 10

Pit lakes C 25
B, D 17

Large saline lakes W1 10
F, J, Lo, X1, X2 6
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sensitive to sinking—can be characteristic for these 
habitats.

The “Medium-sized, shallow, macrophyte-dom-
inated waters” also created a characteristic group. 
These waters have extended littoral zones, or as in the 
case of the bog lakes and marshlands the entire basin 
belongs to this realm. The littoral macrophytes pro-
vide ideal habitats for many benthic and metaphytic 
species (Lukács et al., 2023, in this volume), consid-
ered the most diverse compartment of the lake eco-
systems (Vadeboncoeur et al., 2011). Several planktic 
species from the F and J functional groups and flagel-
lates from the W1, W2 and X2 groups prefer these 
habitats. Only Lake Balaton could be considered as 
an unexpected habitat in this cluster. Because of the 
enormous differences in size and limnological char-
acteristics, their close relationship is really surprising. 
However, the river Zala, which feeds Lake Balaton, 
crosses a huge marshland (Kis-Balaton) before enter-
ing the lake. This marshland connection provides 
many marsh-dweller species to the flora of Lake 
Balaton.

The “Very small, aquatic and semiaquatic habi-
tats” constitute a unique habitat cluster, too. Because 
of their small size, planktic diatoms, planktic spe-
cies from the F, J and X group, and small flagellates 
from the X2 functional group are missing from these 
waters. In contrast, tichoplanktic elements (TIC) are 
the most characteristic of this cluster.

Finally, “Cryobiotopes” constitute a single clus-
ter. Species inhabiting this special environment 
must adapt to extreme environmental conditions in 
terms of temperature, light and nutrient availabil-
ity (Kawecka 1986). Although species from ten FGs 
occurred in this habitat type, we note here, that these 
species were so-called cryoxene elements that acci-
dentally occurred on ice or snow surfaces. Cryobiont 
and cryophyilic algae (Kol, 1968) were not found in 
the microflora.

Ranked FT and FG occupancy of the habitats

Despite the theoretical differences between the FT 
and FG-based approaches, the order of the habitats 
in the ranked FT and FG occupancy distributions 
appeared to be quite similar. Both approaches posi-
tioned river-related habitats in the first quarter of the 
distributions. This is surprising considering that riv-
ers are highly selective environments allowing only 
a few groups to dominate (Rojo et  al., 1994). How-
ever, rivers are continuously, or at least periodically 
connected to the wide array of aquatic habitats in 
their watershed. Elements of the microflora of these 
habitats enhance the diversity of both large potamal 
(Borics et al., 2014a) and small rhithral rivers (Bolgo-
vics et al., 2017b).

Relationships between the applied approaches

Habitat clusters of the quantitative FT and FG-based 
approaches showed considerable resemblance (Figs. 3 
and 4), which was corroborated by the high correla-
tion value (R = 0.896; P = 0.001) yielded by the Man-
tel test. Classification of the habitats provided by the 
two approaches resulted in hidromorphologically and 
limnologically well-identifiable habitat groups, but 
the simplest, FG-based approach provided the most 
interpretable classification. In phytoplankton ecol-
ogy, FTs are based on those morphological, physi-
ological and behavioural features of algae (Weithoff, 
2003; Litchman & Klausmeier, 2008) that affect their 
fitness (Violle et  al., 2007) and basically influence 
their functioning and ecological roles in the planktic 
assemblages. Trait-based analyses have been used 
to show that phytoplankton functional composition 
responds to changes in mixing regimes (Becker et al., 
2009; Wang et  al., 2011), anthropogenic stresses 
(Abonyi et  al., 2012), and hydrological changes in 
rivers (Stanković et al., 2012; Abonyi et al., 2014). In 
contrast, FGs have rather been developed for describ-
ing characteristic functional community compositions 
in the specific set of environment conditions. FGs 

Table 4   (continued) Habitat types Most frequent FG Frequency occur-
rence of FG’s (%)

Lakes C 13

D 10
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can be considered as kinds of response groups, con-
taining species that respond similarly to the particu-
lar environmental conditions (species with the same 
habitat template (niche)). These functional groups 
separate species on the basis of their habitats and not 
on the similarity of their features. As this approach 
is associated with very detailed environmental tem-
plates, it is generally acknowledged, that it is the 
most optimal classification approach for the aquatic 
ecology research and aquatic environment evalua-
tion (Salmaso et  al., 2015). The FG-based approach 
is very relevant, as it plays a significant role in stud-
ies aimed at assessing ecological status of waters 
required by the Water Framework Directive (EC Par-
liament & Council, 2000). Moreover, this approach 
has also been used to describe the seasonal dynamics 
of phytoplankton (Padisák et al., 2003; Salmaso and 
Padisák, 2007; Wang et al, 2018), to explore the bio-
mass (productivity)—diversity relationship in algae 
(Borics et  al., 2012, 2014a; Skácelová and Lepš, 
2014; Török et  al., 2016), and to better understand 
the response of algal assemblages to climate change 
(Domis et al., 2007).

Theoretical differences between the FT‑based and 
FG‑based approaches

As it was shown above, results of habitat grouping 
using FT-based and FG-based approaches showed 
some differences that can be traced back to the 
differences between the organizational levels and 
inherent components of the two terms (Violle et al., 
2007). FTs are acting at the level of individuals and 
can be defined as measurable morphological, physi-
ological or phenological characteristics that directly 
impact the growth, reproduction and survival of the 
individuals. In contrast, the FGs appear at the level 
of communities and include those species that are 
associated with similar combinations of environ-
mental factors (Gitay & Noble, 1997). Reynolds’s 
FGs show a close resemblance to Braun-Blanquet’s 
macrophyte associations (Braun-Blanquet, 1932) 
since the groups have a well-defined niche or habi-
tat template. These differences in the functional 
approaches resulted in differences in the grouping 
of habitat types.

Reynolds’s FG approach was developed to help 
understand the recruitment and functioning of 
lakes’ phytoplankton (Reynolds et al., 2002). Later 

it was extended and applied to rivers (Borics et al., 
2007; Várbíró et al., 2007) and some new coda were 
also proposed (Padisák et al., 2009). In recent years, 
some studies have been published explicitly focus-
ing on how the habitat templates of Reynolds’ FGs 
fit or diverge from the original description. Nagy-
László et al. (2020) showed that the niche position 
and niche breadth of several FGs in riverine envi-
ronments differed from that established for lakes. 
Investigating phytoplankton of tropical drinking 
water reservoirs, Amorim & Moura (2022) re-cre-
ated the habitat templates of some Reynolds’ FGs. 
They described both wider and narrower ranges 
of the relevant components of the FGs’ habitat 
templates.

We experienced that the extreme habitats, like cry-
obiotopes, cave waters, macrophyte-dominated bog 
lakes, small pools and telmata have been separated 
well by the FG approach. This result implies that the 
FG approach can be applied for habitat classification 
even in those cases when the habitats are different 
from those that were used for the development of the 
original FG concept (Reynolds, 2002).

However, the functional approaches have some 
shortcomings. Grouping of species into a single FG 
is acceptable in the case of those genera, which have 
only a few species in freshwaters (Phacotus, Uro-
glena, Gonyostomum, etc.). The approximately 500 
Chlamydomonas species that have been described 
from various aquatic habitats, like large lakes and 
rivers, small ponds or pools of a couple of square 
meters, from among Sphagnum tussocks (Ettl, 1983) 
have now been assigned to the X2 codon (Padisák 
et  al., 2009). Moreover, centric diatoms have also 
widespread distribution, yet they have been assigned 
only to three codas (A, B and C). This, at the level 
of our present knowledge, is understandable, but no 
doubt, it is a rough simplification of reality.

Unique microflora of the special habitats

Reviewing the microflora of extreme habitats, 
Padisák & Naselli-Flores (2021) provided an exten-
sive outline of the microalgae of unique habitats like 
high salinity or low pH lakes and ponds, or those that 
have extremities in light availability, mixing regime 
or temperature. In this study, several unique habitats 
were included of which extremities lie in their very 
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small size (telmata), in their low temperature (cryo-
biotopes) or in the lack of light (cave waters).

Telmata are distinct aquatic microhabitats char-
acterized by small size (10–2 m2) and ephemerality. 
These can be considered as hidden freshwater habi-
tats supporting unique microflora and microfauna 
(Mogi, 2004). Not surprisingly, only a little is known 
about the algal diversity and the compositions of the 
microalgae communities of the telmata. Most of the 
studies focused on bromeliad phytotelmata. Recent 
taxonomic studies showed that the main microalgal 
groups reported from bromeliad phytotelmata were 
mostly unicellular (X1) and colonial (F, J) species of 
chlorophytes (Ramos et al., 2018a), zygnematophytes 
(N) (Sophia, 1999; Ramos et al., 2017a, 2018b), dia-
toms (benthic forms, TIB) (Lyra, 1971), cyanobac-
teria (TIC) (Ramos et  al., 2018b, 2019), dinoflagel-
lates (Lo) (Ramos et  al., 2016) and euglenophytes 
(W1) (Ramos et  al., 2017b). However, apart from 
these studies, there are no or very few specific stud-
ies aimed at exploring the microflora of other types 
of telmata. In addition to phytotelmata the database 
used for this study contains data also for litotelmata 
and anthropogenic telmata. Compared to the litera-
ture data these telmata provided a much larger set of 
FGs, such as F, J, P, N, T, W1, W2, X1, X2, X3.

The cryobiotopes, i.e., snow or ice surfaces, can be 
characterized by low temperature and high light inten-
sity. Kol (1968) devoted a complete book present-
ing the unique microflora of these habitats. Besides 
many benthic forms, she described several flagellated 
(X2) and colonial (F) chlorophytes, dinoflagellates 
(Lo), desmids (N, P), euglenophytes (W1), chryso-
phytes (E) and cyanobacteria (TIC, K, Lo) from these 
biotopes. Later findings (Vincent & Vincent, 1982; 
Izaguirre et  al., 2021) also confirmed that besides 
cyanobacteria, flagellated species of chrysophytes and 
chlorophytes are also characteristic of this biotope. In 
our database, both flagellated chlorophytes (Carteria, 
Chlamydomonas spp.—X2) and colonial (Chroococ-
cus spp.—Lo, Aphanocapsa spp.—K) or filamentous 
(Oscillatoria, Phormidium spp.—TIC) cyanobacteria 
were present in high frequency.

Cave waters also can be considered as unique 
habitats. Although cave waters are characterized 
by the lack of light, several groups might occasion-
ally occur in these habitats. The most trivial ones 
are those cyanobacteria and green algae that form 
thin crusts on rock surfaces (Palik, 1960a, b; Hajdu, 

1966; Scott, 1909; Sánches et  al., 2002; Popkova & 
Mazina, 2019). The majority of these taxa occur at 
those places in caves, where anthropogenic illumina-
tion makes it possible (Pasic & Mulaomerovic, 2014). 
However, species that lack photosynthesis have an 
alternative way of nutrition (using organic materi-
als) may also occur in cave waters (Hajdu, 1966). The 
investigated cave waters in Hungary contain simi-
lar taxa from the above-mentioned phyla, including 
Chroococcus spp. -Lo, Chlamydomonas spp. -X2, 
Volvox, Pandorina spp. -G and Chlorella spp. -X1 
species. We note here that the structure of limestone 
enables surface water to infiltrate, and thus obligate 
autotrophic elements might occur in cave waters.

Conservation outlook

The use of functional approaches in ecology (both 
FT- and FG-based ones) reduces system complexity 
and helps to identify the key mechanisms that gov-
ern the operation of the systems. However, there are 
several cases when the fine taxonomic resolution can-
not be set aside. While in the case of environmental 
quality assessment, much emphasis has been given to 
the functioning of the systems, and thus, the response 
of major algal groups to environmental loads has 
been quantified (Carvalho et al., 2013), in the case of 
nature conservation, diversity and presence of unique 
or rare species has great importance (Görgényi et al., 
2022), as they increase the resilience of ecosystems 
against disturbances. Nevertheless, it does not mean 
that functional approaches have no relevance in 
nature conservation issues. Similarities in the func-
tional composition of the systems make possible 
the replacement of functionally equivalent species 
between them. Replacement of the natural elements 
of the habitats by functionally equivalent invaders 
means a real danger for the natural flora (Szabó et al., 
2019; Živković et al., 2019) and fauna (Russell, 2014; 
Kaldre et al., 2017). Similar processes have also been 
recorded for microalgae. The serious bloom-forming 
Raphidiopsis raciborskii (Wołoszyńska) Aguilera 
et al. appeared first in canals and rivers in Hungary 
(Bancsi et  al., 1978) but because of its functional 
equivalence with other filamentous cyanobacteria, the 
species became a serious invader in other aquatic hab-
itats like shallow lakes and ponds that show a close 
resemblance to rivers in several limnological charac-
teristics (Padisák et al., 1997; Borics et al., 2000).
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Conclusion

The present study revealed the functional similari-
ties and differences among the whole range of aquatic 
habitats in Hungary from the point of view of micro-
algae. Quantitative approaches have given more reli-
able habitat clusters than qualitative ones. Habitats 
in these clusters showed close resemblance in their 
limnological characteristics. Rivers and river-related 
habitats appeared to be the functionally most diverse, 
while the small aquatic (and semiaquatic) habitats 
showed the smallest functional richness. Official mon-
itoring of microalgal assemblages (both planktic and 
benthic ones) focuses on the large (> 50  ha—stand-
ing waters; catchment area > 10km2—watercourses) 
waterbodies, but as the present study revealed smaller 
habitats also possess remarkable functional richness. 
This functional richness gives them resilience to dis-
turbances and may help them to preserve their unique 
species pool.
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