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Abstract The application of modern molecular 
methods and phylogenetic approaches saw an explo-
sion in cyanobacterial taxonomy in the first two dec-
ades of the twenty-first century. The relative ease of 
description of new taxa and the pressure to publish a 
high number of scientific papers has created apparent 
confusion. The situation is particularly complicated 
for ecologically oriented limnological research and 
practical hydrobiologists especially have numerous 
criticisms of this trend. On closer observation, how-
ever, the situation is not as tragic as it first appears. 
More than a thousand new species have been discov-
ered or renamed and only 18 percent are freshwater 
planktonic species, which garner the most interest in 
routine analyses. Most new taxa are described from 
terrestrial habitats. Despite the increase in studies 
from tropical areas, most of the new species are from 
the temperate zone, which probably does not account 
for the reality. Significant advances in modern taxon-
omy are visible mainly for the trichal types, but other 
groups such as the pleurocapsal species are consid-
erably less studied. In this article I try to show that, 
despite all the difficulties and limitations, it is not 

necessary to consider these rapid changes as a com-
plication in common cyanobacteriological research.

Keywords Blue-green algae · New species · 
Phylogeny

Introduction

Blue-green algae or Myxophyceae Wallroth 1833; 
Phycochromaceae Rabenhorst 1865; Schizophyceae 
Cohn 1879; Cyanophyta Steinecke 1931; Cyanobac-
teria Stanier 1974 or Stanier ex Cavalier-Smith, 2002 
respectively; Oxyphotobacteria Gibbons & Murray 
1978; Cyanoprokaryota Komárek & Anagnostidis 
1998 or Cyanobacteriota Oren, Mareš & Rippka 
2022 are an extremely interesting group of organ-
isms. From an anthropocentric point of view, we 
mainly consider their role in the toxic aquatic blooms 
of eutrophic fresh and salt waters (Huismann et  al., 
2018), but their real importance is much deeper. In 
the past, they played a crucial role in the process of 
increasing the oxygen content of the Earth’s atmos-
phere (Great Oxidation Event—2.4–2.0 billion years 
ago, Lyons et  al., 2014), and today they play an 
important role in global oxygen, carbon, and nitrogen 
cycles. Thanks to a wide range of original adapta-
tions such as photosynthesis, akinetes, heterocytes, or 
aerotopes, they can adapt to almost any condition on 
the planet, and thus inhabit almost all of freshwater, 
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marine and terrestrial biomes, as well as a variety of 
extreme habitat types (Whiton, 2012).

Given this importance, the effort to describe their 
diversity is understandable (Komárek et  al., 2014). 
Taxonomy is the most comprehensive way to grasp 
the diversity of all groups of organisms. Although 
this discipline is considered to be a somewhat old-
fashioned field of scientific inquiry, it has adopted 
the results and methods of modern approaches very 
rapidly. This development has greatly benefited tax-
onomy as a scientific discipline, allowing us to take 
our knowledge of the organisms we study to a new 
level. However, there’s always a quid pro quo. The 
conservatism of the results of the “pre-molecular” 
taxonomic research had a certain advantage of sta-
bility in the application of the results. After all, it 
took almost 70 years from the monographic system-
atic treatment of cyanobacteria by Geitler (1932) to 
publish the at least somewhat differently constructed 
monographs by Komárek & Anagnostidis (1998, 
2005) and Komárek (2013). (The works of Elenkin 
(1936), Desikachary (1959) or Starmach (1966), with 
all due respect, represent only minor additions to 
Geitler, 1932.)

Maintaining a basic overview of the current situ-
ation today requires considerable effort. The seg-
ment of the scientific community that works in fields 
other than taxonomy (e.g., practicing hydrobiologists) 
views the situation as chaotic. Like a real jungle, the 
taxonomic cyanobacterial “jungle” is an ambigu-
ous space, orientation is very difficult. Where only 
yesterday there were clear paths, today there are no 
routes, even seemingly easy trails are obstructed by 
hard-to-pass barriers. You will appreciate an expe-
rienced guide. The main objective of the following 
basic overview of trends in cyanobacterial taxonomy 
should reduce this negative impression. Because if 
you follow its rules, you can get along even in the 
jungle quite well (Kipling, 1894).

Materials and methods

Literature describing new taxa of cyanobacteria has 
been continuously collected as part of long-term pro-
jects (Hoffmann et  al., 2005; Kaštovský et  al., 2010 
and Komárek et  al., 2014) by checking the Web of 
Science database (https:// www. webof scien ce. com) 
and Google Scholar (https:// schol ar. google. com) 

using a combination of the keywords “Cyanobacte-
ria, Cyanophyta, Cyanoprokaryota, Myxophyceae” 
or “blue green algae,” respectively, and “new species, 
new genus, new taxa, new taxon, spec nov, taxonomy, 
phylogeny” or “species.” Researchgate (https:// www. 
resea rchga te. net), CyanoDB2 (https:// www. cyano db. 
cz, Hauer & Komárek, 2022) and AlgaeBase (https:// 
www. algae base. org, Guiry & Guiry, 2022) were used 
as supporting and cross-checking sources. I selected 
January 1, 2000, as the starting point for data collec-
tion. Species described before this date will continue 
to be referred to as “old,” whereas species described 
after this date will be referred to as “new.” Data col-
lection was terminated on July 1, 2022.

For the analysis, the descriptions of new species 
that fully or at least mostly fulfilled the basic taxo-
nomic criteria of the International Code of Nomencla-
ture for Algae, Fungi and Plants (Turland et al., 2018) 
were used. Fossil species were not included in the 
review, mainly because subsequent analysis of ecol-
ogy and classification would be highly speculative.

For all species, the following data were indexed: 
(1) year of description, (2) if species are only renamed 
or newly discovered, (3) if only morphospecies (no 
molecular data), (4) if cryptospecies, (5) continent of 
known occurrence (more than 2 continents as “world-
wide”), (6) biome of known occurrence (polar and 
subpolar, boreal-temperate, Mediterranean/dry sub-
and tropical, humid sub- and tropical, according Beck 
et al., 2018), (7) habitat of occurrence: (in categories 
freshwater plankton, freshwater nonplankton (pri-
marily periphyton and benthic species), high salinity 
plankton (marine, brackish, and inland saline waters), 
high salinity nonplankton (primarily periphyton and 
benthic species from marine, brackish, and inland 
saline waters), and species from special biotopes 
(caves, hot springs, etc.)). Even in these categories 
there are species with two records (e.g., occurring in 
both planktonic and periphytic or species from polar 
and boreal temperate areas).

For better orientation of the results, they were 
visualized in graphs using MS Excel (Microsoft 
Corporation).

Results

In total, 274 papers describing a new cyanobacterial 
taxon were published in the monitored period, 86 of 
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these are younger than January 1, 2020. In addition 
to the 3733 existing “old” nonfossil species of cyano-
bacteria, 1073 new taxa have been described. Of this 
number are 626 are new for science and 447 have 
been renamed as of January 1, 2000. The trend in the 
number of new species over the last 22 years is shown 
in Fig. 1. The number of new species for year 2022 
is an estimate, created as a double of the number of 
new species by 1 July 2022, when literature excerp-
tion was stopped.

Somewhat surprising is still the proportion of new 
species described or renamed in the old-fashioned 
way, only on the basis of morphological data—it is 
about 43%. Of the species described using molecu-
lar data, about half are cryptic and the other half also 
show morphological features that allow them to be 
distinguished by light microscopy (Fig. 2).

The proportions of new species between conti-
nents or biomes are shown in Figs. 3, 4, 5. 322 new 
species are known from Europe, 275 from North 
America, 146 from South America, 224 from Asia, 
56 from Australia-Pacific, 54 from Africa, and 27 
from Antarctica. 83 are found worldwide (Fig.  3). 
The discrepancy between the consideration given by 
cyanobacteriologists to different continents is particu-
larly noticeable when the numbers of new species are 
related to the size of these continents (Fig. 4).

The largest proportion of new species is from the 
boreal/temperate zone (413 species), followed by 
species from the humid sub- and tropical zone (390 
taxa). The Mediterranean/dry subtropical has 323 

species and polar or subpolar region is a habitat for 
71 new cyanobacteria taxa (Fig. 5).

Regarding the main habitats of cyanobacteria, 36 
of the new species are saline plankton, 157 saline 
nonplankton, 200 freshwater plankton, 290 freshwa-
ter nonplankton, 331 terrestrial and 132 from special 
biotopes (Fig. 6).

The distribution of new species among cyano-
bacterial lineages (orders) is also irregular: 3 new 

Fig. 1  Number of renamed 
(blue line) and newly 
described (orange line) 
cyanobacterial species since 
2000. The dashed red line 
shows the average number 
of described cyanobacterial 
species to 1999
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Fig. 2  The 466 new species are described solely on the basis 
of morphological data, 607 also on the basis of molecular 
data. Of these 607, 296 are cryptic, indistinguishable except by 
DNA sequences. The figure shows the relative proportions of 
these categories
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species are from the order Gloeobacterales, 323 from 
Synechococcales, 63 Pseudoanabaenales, 10 Ther-
mostichales, 92 Chroococcales, 13 Chroococcidi-
opsidales, 239 Oscillatoriales, 12 Pleurocapsales, 4 
Spirulinales, and 314 Nostocales (Fig. 7).

Discussion

General comments

“Taxonomic decisions are to be considered opin-
ions, not facts” (Malavasi & Škaloud, 2022). Thus, 
the total numbers of species reported in this review 

differ somewhat in detail from the total numbers 
reported by other authors (e.g., Nabout et al., 2013; 
Guiry & Guiry, 2022). How strict the criteria cho-
sen by which author plays a major role. Many real-
world taxa do not have completely valid names for 
some reason, usually the absence of a physiologi-
cally inactive herbarium. There are numerous exam-
ples of less-than-ideal taxonomic status, e.g., sev-
eral coccal species, otherwise very well documented 
by Joosten (2006) or Chroogloeocystis siderophila 
Brown, Mummey & Cooksey (Brown et al., 2005). 
According to the published data Ch. siderophila is 
clearly a good taxon, having available morphology, 
ecology, 16S rRNA nucleotide sequences, TEM, 
SEM, interesting physiological data etc. However, it 
is not described validly (Guiry & Guiry, 2022) and 
it is a matter of opinion if it should be included in 
the reviews or not. I have included such species in 
this review.

If we consider the oldest reliably described 
cyanobacteria to be Phormidium subsalsum 
Gomont, 1829 (Nabout et  al., 2013), the average 
number of described cyanobacteria up to 1999 is 
almost than 22 species per year. This number has 
been exceeded 11 times since 2000. Since 2017, this 
has happened every year and numbers are more than 
double the average. Even though the variability in 
values precludes any plausible predictions of future 
trends (Fig. 1), the rate of new species descriptions 
is increasing significantly and is likely to accelerate 
further.

Europe North America South America Asia

Australia-Pacific Africa Antarctica worldwide

Fig. 3  Geographical distribution of new cyanobacterial spe-
cies on continents

Fig. 4  Comparison of the 
geographical size of the 
continents and the number 
of new cyanobacterial spe-
cies on them (percentage). 
The figure does not reflect 
the 83 new species known 
from more than two con-
tinents (category “world-
wide” from Fig. 3)
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Cryptic diversity

One of the least “treasured” phenomena that the 
application of molecular methods to taxonomy 
entails is the discovery of strong cryptic diversity. 
This phenomenon has been widely commented in 
various papers (Casamatta et al., 2003; Osorio-Santos 
et al., 2014; Shalygin et al., 2017; Stanojkovic et al., 
2022). In the case of the new cyanobacterial species, 
almost a quarter are cryptic. However, approximately 
the same number of modern described species (i.e., 

using molecular data) are well recognizable morpho-
logically. The situation is therefore not so critical that 
optical microscope observations lose their usefulness 
for the determination of new cyanobacterial species 
(Fig. 2). In this context, it is important to note a prob-
lem already discussed by Hentschke & Sant’Anna 
(2014). In a polyphasic approach to the description of 
new taxa, we apply almost only morphological obser-
vations of cyanobacteria in cultures, not in natural 
populations. These features, however, can be signifi-
cantly different (e.g., Berrendero et  al., 2016). This 
problem could be solved by careful study of living 
material in nature, but due to time and technical com-
plications this is usually completely ignored. If the 
material has been studied only in culture, this should 
at least be explicitly mentioned in the taxon descrip-
tions. I consider this one of the great weaknesses of 
modern taxonomy.

Biogeographical point of view

Most of the diversity of almost all organisms is found 
in the tropics (Brown, 2014). However, it appears in 
the case of cyanobacteria, as if this does not apply. 
Despite the fact that more and more research is being 
done in tropical areas (colleagues from Brazil, Mex-
ico, India, and Australia and many others are particu-
larly active), the boreal temperate zone in general and 
Europe in particular are still the most common source 
of new taxa (Figs.  3, 4, 5). However, this is highly 
unlikely. A clear underestimation of the existing bio-
diversity in the tropics has already been pointed out 
by some other authors (Sant’Anna et al., 2010; Dvořák 
et  al., 2021). In particular, we know little about the 
diversity of African cyanobacteria due to firstly, the 
absence of a major center for cyanobacterial studies 
and, secondly, the security instability. This discrep-
ancy becomes even more evident if we compare the 
percentage size of each continent and the percent-
age of new cyanobacterial species on it (Fig. 4). The 
situation is special in the Antarctic. This continent is 
overall unsuitable for life, and indeed there are likely 
to be relatively few species of cyanobacteria in gen-
eral. Metagenomic studies (e.g., Pearce et  al., 2012) 
indicate a relatively common level of genetic varia-
tion in communities that is quite similar to temperate 
data. However, this is maritime Antarctica, which is 
not such an extreme habitat and which occupies only 

polar/subpolar boreal/temperate

Mediterranean/dry subtropic humid sub- and tropic

Fig. 5  Comparison of the number of new cyanobacterial spe-
cies with respect to the main biomes

saline plankton saline nonplankton freshwater plankton

freshwater nonplankton terrestrial special biotopes

Fig.6  Distribution of new species among the major cyanobac-
terial habitat types
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a small portion of the land area; the rest of the conti-
nent is likely to be truly species-poor.

Various hotspots in cyanobacterial diversity are 
showing up around the world—for example, the 
widely studied Atlantic Forest in Brazil (Fiore et al., 
2007; Sant’Anna et  al., 2010, 2011; Ferreira et  al., 
2013; Komárek et  al., 2013; Sant’Anna et  al., 2013; 
Gama et. al., 2014; Silva et al., 2014; Hentschke et al., 
2016; Rigonato et  al., 2016; Alvarenga et  al., 2017; 
Gama et. al., 2019; Alvarenga et al., 2021). Many of 
these hotspots are somewhat surprising, such as the 
newly discovered genera of branching cyanobacteria 
in Greek and Spanish caves—Iphinoe Lamprinou & 
Pantazidou and Loriellopsis Hernandéz-Mariné & 
Canals (Lamprinou et al 2011), Toxopsis Lamprinou, 
Skaraki, Kotoulas, Economou-Amilli & Pantazidou 
(Lamprinou et  al., 2012), Spelaeonaias Lamprinou, 
Christodoulou, Hernández-Mariné & Economou-
Amilli (Lamprinou et  al., 2016). However, much of 
this is likely to be an undersampling effect—there 
would probably be many more similar rich localities 
if surveyed in detail. For example, very recent studies 
have found this to be the case in the Azores archipel-
ago (Luz et  al., 2023a, b). Further changes and new 

species from tropical and subtropical countries are 
therefore to be expected.

Ecological point of view

Poor plankton

Oceans cover most of the Earth’s surface. Despite 
this fact, the number of new cyanobacterial species 
in the marine plankton is very small—less than one 
fifth compared to new freshwater planktonic spe-
cies (Fig.  6). Given the number of studies devoted 
to oceanic waters, e.g., environmental sequencing 
of seawater during the Tara Oceaens project (Piere-
lla Karlusich et al, 2020), this will not be mainly due 
to the unexplored character of the area, but rather to 
the considerable uniformity of the open ocean as a 
habitat and the lack of microhabitats that are distinct 
from each other. However, some studies point to a 
certain spatial heterogeneity of marine picocyanobac-
teria populations (Kashtan et al., 2014). It is possible 
that here, unlike in the terrestrial environment, there 
may be a smaller number of genera, but with a larger 
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number of species. However, taxonomic conclusions 
have not yet been established.

Freshwater plankton is not a group that has been 
significantly “affected” by modern methods either, 
with only 18% of new species coming from this 
environment. The main reason is probably that it is 
the most important group from our point of view 
and therefore already extensively studied in the past. 
However, the relatively small taxonomic shifts are 
certainly good news for practicing hydrobiologists.

Rich terrestrial

The highest number of new taxa is described from 
terrestrial localities (Fig.  6). This is probably due 
to two effects: firstly, terrestrial habitats were not 
so intensively studied before and now this is being 
repaired. An equally important reason is that these 
types are well cultivated and thus easier to explore 
than, for example, planktonic species. This hypoth-
esis is supported by the increase of new species in 
groups with aggressive growth on agar plates, such as 
Leptolyngbya-like species. The former genus Nostoc 
is also a good example. Now we recognize 15 other 
genera: Aliinostoc Bagchi, Dubey & Singh (Bagchi 
et  al., 2017); Amazonocrinis Alvarenga, Andreote, 
Branco, Delbaje, Cruz, De Mello Varani & Fiore 
(Alvarenga et  al., 2021); Atlanticotrix Alvarenga, 
Andreote, Branco, Delbaje, Cruz, De Mello Varani 
& Fiore (Alvarenga et  al., 2021); Compactonostoc 
Cai & Li (Cai et  al., 2019a); Dendronalium Alva-
renga, Andreote, Branco, Delbaje, Cruz, De Mello 
Varani & Fiore (Alvarenga et al., 2021); Desikacha-
rya Saraf & Singh (Saraf et  al., 2019); Desmon-
ostoc Hrouzek & Ventura (Hrouzek et  al., 2013); 
Komarekiella Hentschke, Johansen & Sant’Anna 
(Hentschke et  al., 2017); Halotia Genuário, Viera 
Vaz, Hentschke, Sant’Anna & (Genuário et al., 2015); 
Mojavia Řeháková & Johansen (Řeháková et  al., 
2007); Minunostoc Cai & Li, (Cai et  al., 2019b); 
Parakomarekiella Soares, Ramos & Portugal (Soares 
et al., 2021); Pseudoaliinostoc Lee, Bang, Kim, Ki & 
Lee (Lee et al., 2021), Purpureonostoc Cai & Li (Cai 
et al., 2020a) and Violetonostoc Cai & Li (Cai et al., 
2020b). In addition, there are other taxa that never 
belonged to Nostoc, but their morphological similar-
ity is considerable (e.g., Cyanocohniella Kaštovský, 
Berrendero Gómez, Hladil & Johansen (Kaštovský 
et al., 2014).

Phylogenetical point of view

It is quite understandable that taxonomic changes do 
not occur in many enigmatic genera or higher taxa. 
These are sometimes species that have not been found 
in nature since their description (Dzensia Woron-
ichin, Lithococcus Ercegovic, Lithoderma Are-
schoug, Paracapsa Naumann, Rhodostichus Geitler 
& Pascher, Sokolovia Elenkin, Thalpophilla Borzi, 
Tubiella Hollerbach, etc.) or entire families of rare 
and especially difficult to cultivate cyanobacteria 
(Xenococcaceae, Enthophysalidaceae). However, 
even in some quite common taxa modern taxonomy 
is not yet sorted. For example, members of the family 
Coleosphaeriaceae are very abundant in nature, and 
there are only 4 new Woronichinia Elenkin among the 
“new” taxa, 3 described and one renamed by Joos-
ten (2006) based on morphological characters only, 
but no modern studies have led to taxonomic con-
clusions. Similarly, we have no such data from large 
common genera such as Planktolyngyba Anagnostidis 
& Komárek (where there are no taxonomic changes 
at all) or Schizothrix Kützing ex Gomont—here are 
113 old species and 7 new combinations plus 5 new 
species, but again all these changes were made only 
based on morphological studies without molecular 
data (Anagnostidis, 2001; Xiao et al., 2005; Turicchia 
et  al., 2009; Komárek & Kováčik, 2013; Kaštovský 
et al., 2016). Thick sheaths make DNA isolation dif-
ficult, and these species are also not very easy to cul-
tivate. Similarly, many coccoid groups and especially 
pleuropcapsalean types are “unpopular” (6% of new 
species of Pleurocapsales). For reasons that are not 
entirely clear, very few new species are also described 
in the Spirulinales (7%, Fig. 7).

Apart from the non-numerous orders Ther-
mostichales, Gloeobacterales and Chroococcidiop-
sidales, there is a remarkably high percentage of 
new taxa in Pseudanabaenales and Synechococcales 
(49 respect. 35%, Fig. 7). Especially the filamentous 
types are extremely frequent targets of taxonomic 
change. For example, in the family Leptolyngbyaceae 
there are 122 new taxa (62 renamed and 60 new for 
science), 28 new genera—and only 3 old ones (Lep-
tolyngbya Anagnostidis & Komárek, Planktolyng-
bya, and Leibleinia (Gomont) Hoffmann). Similarly, 
the Prochlothrichaceae have increased intensively, 
5 new genera of 20 species have been added to the 
old Prochlorothrix Burger-Wiesma, Stal & Mur. Then 
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the large families Oculatellaceae and Coleofascicu-
laceae are completely new. The first Coleofasciculus 
(C. chtonoplastes Siegesmund, Johansen & Friedel) 
was described in 2008 (Siegesmund et al., 2008) and 
today there are 17 genera with 39 species in the fam-
ily. Similarly, the first Oculatella was described in 
2012 (O. subterranean Zammit, Billi & Albertano, 
Zammit et  al., 2012); today the family contains 13 
genera and 40 species.

Similar irregular taxonomic movements occur in 
the Nostocales, with the Aphanizomenonaceae, Nos-
tocaceae, Rivulariaceae, or Scytonemataceae showing 
considerable taxonomic change, while the less easily 
cultivated and considerably rarer Stigonemataceae, or 
Capsosiraceae show almost none.

Problems with names

The lack of clarity in the current state of cyanobac-
terial taxonomy and systematics stems, among other 
things, arises from frequent changes in nomencla-
ture, with taxa appearing, disappearing and changing 
names. This does not only apply to individual spe-
cies, but also to larger taxonomic units. For exam-
ple, the Prochlorophyta as a putative evolutionarily 
significant group containing chlorophyll b originated 
in 1976 (Lewin, 1976), were renamed Chloroxybac-
teria in 1982 (Margulis & Schwartz, 1982), and dis-
appeared as a class in 1992 due to the discovery of 
their polyphyletic character (Palenik & Haselkorn, 
1992). Some species are also in a similar situation. 
For example, Sphaerocavum Azevedo & Sant’Anna 
originated in 2003 (Azevedo & Sant’Anna, 2003) and 
disappeared after 14 years as a separate genus (Rigo-
nato et al., 2017).

This situation is compounded by the difficulty of 
using inappropriate names that do not conform to 
the rules of the International Code of Nomenclature 
for Algae, Fungi, and Plants (Turland et  al., 2018) 
and which then need to be changed. For example, 
the name Purpurea Cai & Li (2020) was changed to 
Purpureonostoc (Cai et  al., 2020a) 6  months after 
description (because the name of a genus may not 
coincide with a Latin technical term in use in mor-
phology). Similarly, Moorea (Engene et  al., 2012) 
was renamed Moorena (because the name Moorea 
has been used in botanical code before, Tronholm & 
Engene, 2019).

Actually, the most commonly used name of all 
“blue-green algae” today—Cyanobacteria—is not 
the only legally used one, according to the Interna-
tional Code of Nomenclature of Prokaryotes the name 
Cyanobacteriota is also valid(Oren et al., 2022). Of all 
the names listed in the introduction, Schizophyceae 
is no longer actually used. However, Myxophyceae 
has been used 27 times according to Web of Science 
and the latest record is from this year (Dutta, 2022), 
Cyanoprokaryota 180 times, Cyanophyta 999 times 
and Cyanobacteria 41,447 times (the very recent term 
Cyanobacteriota four times so far).

Constant disintegration

It is true that the majority of modern taxonomic 
studies split a cluster of morphologically identical 
forms into multiple genera—see earlier for exam-
ples. But many of the taxonomic changes made are 
only expressions of long-suspected changes and pre-
sent almost no difficulties, e.g., the division of the 
genus Anabaena Bory ex Bornet & Flahault into the 
“true” Anabaena (benthic and without aerotopes), 
and Dolichospermum (Ralfs ex Bornet & Flahault) 
Wacklin, Hoffmann & Komárek (planktonic with aer-
otopes, Wacklin et al., 2009), or Anathece (Komárek 
& Anagnostidis) Komárek, Kaštovský & Jezberová 
(with small cells) and Aphanothece Nägeli (with 
large cells) which have long been regarded as sepa-
rate subgenera (Komárek et al., 2011), etc. However, 
a somewhat dangerous phenomenon must be pointed 
out with such clear changes: many of these examples 
are made on the basis of molecular data, and the rest 
are completed on the basis of morphology alone. For 
example, most representatives of the genus Dolichos-
permum are still waiting for their molecular data, and 
almost all representatives of the genus Tapinothrix 
Sauvageau are similarly affected (Bohunická et  al., 
2011). Therefore, it is possible that recent changes in 
these were not the last.

Taxa are not only split into smaller ones, but some 
are also merged, simplifying the situation—e.g., the 
merging of the genera Cylindrospermopsis Seenayya 
et Subba Raju and Raphidiopsis Fritsch & Rich 
(Aquillera et al., 2018). However, “splitting” prevails 
over “merging.”

The problem is that tiny and essentially very sim-
ple organisms, such as cyanobacteria, do not have 
many features visible under an optical microscope. 
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However, such features are often revealed by elec-
tron microscopy methods. For example, the radial 
position of thylakoids in the case of the genus Anna-
mia Nguyen reliably distinguishes it from the genus 
Pseudanabaena Lauterborn (Nguyen et al., 2013), or 
the existence of pores on true Oscillatoria Vaucher 
ex Gomont compared to “false” Oscillatoria (Müh-
lsteinová et  al., 2018). It is true, however, that such 
characters are as useless for routine determination as 
molecular characters. Interestingly, we indeed have 
no problem admitting convergent evolution in the 
case of ichthyosaurus, dolphin or fish, but if the same 
process generates a cryptic diversity of microorgan-
isms, it causes a controversy.

Moral appeals and cheap publications

Describing a new of cyanobacteria based on a sin-
gle sequence and very rough (or non-existent) mor-
phological and ecological data is not a complicated 
matter. In particular, if the new species is listed as 
cryptic (i.e., no further consideration of the mor-
phological or ecological features of the organism is 
needed) and if only a mechanistic view of the arbi-
trary boundary between taxa is used. The threshold 
criterion used here is 95% or 94,5% similarity of 16S 
rRNA for genus (Wayne et al., 1987 or Yarza et al., 
2014, respectively) and 97.5–99% for species (Stack-
ebrand & Gobel, 1994; Stackebrand & Ebers, 2006; 
Kim et al., 2014; Yarza et al., 2014). Many previous 
authors suggested that it cannot be used as an abso-
lute criterium (Casamatta et al., 2006; Johansen et al., 
2014; Oren & Garitty, 2014, Hentschke et al., 2017), 
yet it’s still being applied en masse. In fact, such stud-
ies are essentially very “cheap” publications—both 
financially and mentally; they are a completely rou-
tine application of procedures that have been tested 
hundreds of times. Moreover, the statement of cryptic 
diversity will limit the need to engage in a truly thor-
ough analysis of older taxonomic papers. I consider 
far more valuable, intellectually more provocative, 
and also more useful, those publications that bring 
new data to existing species—by studying older lit-
erature, type localities, ideally type items, and so on. 
They require more work but bring more utility (e.g., 
Mühlsteinová et  al., 2018; Fukuoka et  al., 2022; Lv 
et al., 2022). It would be great if the number of such 
studies would increase.

Related to this is the necessity to respect taxo-
nomic rules. Not only physics (according to Isaac 
Newton) but also biology stands “on the shoul-
ders of giants” and to discard the work of previous 
authors is irrational. Inventing new paths without 
continuity with existing work will not bring clar-
ity. The use of modern methods does not necessar-
ily improve the situation, e.g., the papers by Wal-
ter et  al. (2017) or Salazar et  al. (2020) use a new 
view to taxonomical work, and it is certainly ben-
eficial to know their results, but ignoring previous 
results and rules complicates rather than enriches 
taxonomic research (see, e.g., Komárek, 2020 for a 
more detailed discussion).

Many new species are cool

Lots of new species don’t elicit too much emotion. 
Another new cryptic genus of a Leptolyngbya-like 
or Nostoc-like organism isn’t very exciting. But 
some of the new taxa are amazingly interesting. 
I’ve already mentioned the discovery of whole evo-
lutionary lineages unknown until recently, such as 
the numerous families Oculatellaceae or Coleo-
fasciculaceae. Also, the first Geminocystis Kore-
lusová, Kaštovský & Komárek is known since 
2009 (Korelusová et al., 2009), and today this new 
family is very nicely characterized by the very 
unique parallel position of the thylakoids (Mareš 
et  al., 2019; Pokorný et  al., 2023). Other new spe-
cies are extraordinarily important in terms of their 
chemical content and biotechnological applica-
tions (Moorena, Engene et al., 2012). The study of 
the toxic, American eagle-killing species Aetokto-
honos hydrilicola Wilde & Johansen has provided 
an amazing story about the consequences of inva-
sive species on native biota. Indeed, its toxin is only 
poisonous after binding to bromine, which is exten-
sively taken up from the water by the invasive plant 
Hydrilla verticillata Linneaeus on which it often 
grows (Breinlinger et al., 2021). Another important 
discovery is the closest relative of plant chloro-
plasts, which is the inconspicuous cyanobacterium 
Gloeomargarita lithophora Moreira, Tavera, Ben-
zerara, Skouri-Panet, Couradeau, Gérard, Loussert 
Fonta, Novelo, Zivanovic & López-García (Moreira 
et  al., 2017). These are the discoveries that justify 
all the effort.
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Concluding remarks

Understanding the real biodiversity of Cyanobac-
teriota (as well as other organisms) is the first step 
toward understanding their role in nature. The dis-
covery of new taxa describes the real situation in 
the living world and, especially in lesser-known 
areas (either geographically or habitat-wise), will 
continue to bring new findings and changes in expe-
rienced paradigms.

This situation may be confusing and not user-
friendly at first glance, but it is necessary not to 
panic. It should be pointed out that, especially for 
temperate aquatic taxa (plankton and periphyton), 
the classic species still exist in monographs such as 
the books by Komárek and Anagnostidis (or even 
Geitler, 1932), only they have been sorted into dif-
ferent genera. Other changes are very rare. Thus, 
anyone involved in the analysis of cyanobacterial 
community composition in normal aquatic systems 
can use these classic works as determination litera-
ture. Only then, to finalize their work, can they seek 
the help of experienced “jungle guides.” These are 
primarily databases such as Algaebase.org (Guiry 
& Guiry, 2022) or CyanoDB (Hauer & Komárek, 
2022), and here it is easy to find new classifica-
tions of these species into modern genera. I think 
the editorial teams of these databases deserve our 
great thanks. Modern taxonomy has brought us not 
only complications, but also a whole range of amaz-
ing stories and new knowledge. I have therefore 
attempted to show that this is not a hostile discipline 
and that it has plenty to offer scientist. Being in the 
jungle has its problems, but it is a beautiful biotope 
and has not yet given up all its secrets. Therefore, 
in the end, perhaps taxonomists and limnologist can 
say with Kipling, “We be of one blood, you and I.” 
(Kipling, 1894).
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