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& Schmied, 2012; IPCC, 2023), thereby decreasing 
the salt dilution capacity of rivers and streams. Sea 
level rise and coastal seawater intrusions will promote 
freshwater salinisation (Lassiter, 2021), which will be 
further accelerated by a higher frequency and dura-
tion of extreme storms (Paldor & Michael, 2021). 
Besides, an increase in water abstraction is expected 
due to a global increase in demand for food to sus-
tain growing human populations (Vörösmarty et  al., 
2010), thereby altering the salt and water balance of 
aquatic ecosystems (van Vliet et  al., 2017). Finally, 
human activities that cause salinisation (e.g. resource 
extraction, transportation, urbanisation, winter deic-
ing, industrial runoff etc.) are expected to intensify 

Freshwater salinization is a global phenomenon that 
will intensify in the future due to a combination of 
factors (e.g. Cañedo-Argüelles et  al., 2016; Wurts-
baugh et  al., 2017; Jeppesen et  al., 2020, 2023; 
Zadereev et  al., 2020; Parra et  al., 2021; Cunillera-
Montcusí et  al., 2022). For example, due to climate 
change the semiarid and arid climate zones will expe-
rience much less net precipitation and runoff (Döll 
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and expand in the future (Cañedo-Argüelles et  al., 
2013). All these future predictions, together with the 
strong negative effects that freshwater salinisation can 
have on biodiversity, ecosystems and human societies 
(Cañedo-Argüelles, 2020; Melles et  al., 2023) call 
for action. However, as our knowledge of freshwater 
salinisation is fragmented, the possibility of taking 
wise anticipation, mitigation and remediation strate-
gies is uncertain.

Continental waters and estuaries have always been 
subjected to salinity changes due to natural climate 
variations. However, the ongoing climate change 
along with the already experienced extremes and a 
number of anthropogenic activities have increased 
their salinity at places and/or increased the amplitude 
of the salinity changes (Lengyel et al., 2019; B-Béres 
et  al., 2022; Cortez et  al., 2022). The collection of 
papers included in this volume and their location, 
habitat type, target biota and concept/approach are 
summarised in Table 1. This special issue of Hydro-
biologia provides examples of the effects of changes 
in salinity and includes 16 contributions, covering a 
wide range of ecosystems and organisms, based on 
reviews, experimental, observational and prediction-
oriented modelling studies. Papers in this special 
issue will not cut the Gordian knot, but the guest 
editors hope that these bits and pieces will bring us 
closer to overall understanding the role of salinity in 
aquatic ecosystems and the consequences of modify-
ing natural salinity dynamics.

Estuaries and land–sea interactions

Coastal environments are at the frontline of sea-level 
rise effects, seawater intrusion and changes in the 
transportation of energy, matter and organisms along 
river catchments (Ewel et al. 2001; Levin et al., 2001; 
IPCC, 2023). Salinisation in these areas results in 
homogenisation that, in many cases, will exceed the 
adaptation capacities of biota leading to drastic eco-
system changes. The results from individual papers 
collected in this volume have shown salinity to be 
the main driver behind a series of cascading effects 
that involve biogeochemical cycles and different 

levels of biological organisation (from individuals to 
communities).

Seawater intrusion (1),1 flow-regulated (2) dis-
charges or extreme floods (3) have resulted in the 
appearance of toxic or potentially toxic dinoflagel-
lates (1, 2) and cyanobacteria (3) in estuaries and 
their adjacent areas assisted by variations in sus-
pended solids, silica and dissolved inorganic nitro-
gen. In some cases, such events had socio-economic 
consequences such as impacts on shrimp and oyster 
farming (3, 6). Seawater intrusion during a prolonged 
drought resulting in variations in river discharge had 
profound effects on the estuarine fish communities 
by favouring marine stragglers and marine migrants 
and reducing native freshwater species (4). Damming 
may lead to the absence of seasonality in fish com-
position and distribution in downstream waters (5). 
A long-term (20 years) biological monitoring of nek-
ton occurrence and distribution in a river-fed estuary 
indicated that spatial variation in species populations 
was driven by differences in salinity, while seasonal 
changes were driven by temperature. Freshwater 
inflow is the primary driver of salinity in estuaries, 
and as demonstrated, river flow reductions, influ-
enced by climate change, have the potential to mark-
edly alter nekton communities (6).

Changes in hydrology and salinity affect critical 
habitats such as mangroves, which control sediments, 
nutrients and organic matter retention. The compo-
sition and abundance of the vegetation and the pro-
duction of litter and roots at 22 mangrove and five 
wetland sites in two periods were mainly driven by 
a spatiotemporal gradient of salinity related to river 
flow and saline intrusions (7). Accordingly, increas-
ing the interstitial and river water values by an aver-
age of 10‰ and 16‰ (respectively) led to a decrease 
in litter and root production and major changes in the 
composition of various marsh plants and tree species 
(7). Performance of mangrove-associated key mac-
roalgae can be negatively affected by increased salin-
ity (8) as evidenced by ecophysiological responses 
of two closely related red algae. Incubation under a 
range of salinities (5–57 ppt) indicated lower photo-
synthetic performance at increased salinity for both 
species, which increased their organic osmolyte 

J. Padisák 
ELKH-PE Limnoecology Research Group, Egyetem u. 10, 
Veszprém 8200, Hungary

1 Numbers in brackets within the text refer to serial number of 
papers in Table 1.
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contents with rising salinity stress. This could have 
implications for competition, which may depend on 
their ability to synthetizing osmolytes.

Coastal streams, lakes, wetlands and inland waters

In continental waters, both climate change and human 
activities are not only increasing the salinity of riv-
ers but also altering its natural temporal dynamic. 
The exploration of a database of continuous meas-
urements of electric conductivity (EC) in 91 Span-
ish rivers during a 5  years period shows that trends 
of EC change are not uniform across rivers (9). The 
study identified groups of rivers with differences in 
EC trends that covered a gradient of anthropogenic 
pressure mainly related to agriculture, although road 
deicing, mining and wastewater discharges were also 
important to some extent. Given that the temporal 
dynamics of EC might have strong effects on aquatic 
biodiversity (e.g. influencing population dynamics), it 
should be incorporated into monitoring and manage-
ment plans.

Salinity changes, especially in streams and riv-
ers, can be chronic or appear as pulsed contamina-
tion depending on the driver of salinisation. These 
scenarios might have different implications for eco-
systems according to theoretical differences between 
stress and disturbance (Sveen et al., 2023). Compar-
ing effects of chronic/pulsed salt addition at simi-
lar ionic concentrations on microbial-mediated lit-
ter decomposition, mass loss of oak leaf litter was 
consistently depressed by salinisation with stronger 
effects at the highest concentrations, independently 
from the pattern of salt addition, however with differ-
ences in response variables (10). For example, at high 
salt concentrations, chronic salt exposure was more 
deleterious than pulsed inputs to microbial activity, 
reproductive output and fungal richness, but with no 
effects on fungal biomass. Overall, the effective salt 
concentration to alter fungal activity is greater in the 
case of acute salinisation, as the intervals between 
salt pulses seem to facilitate a total or partial recovery 
of microbial functions (10).

Saline lakes are among the most threatened eco-
systems in the world, and they have experienced 
severe reductions in their surface area due to climate 
change and human-induced perturbations like water 
diversion and extraction (Stenger-Kovács et al., 2014; 

Pálmai et  al., 2020). One of the studies included in 
this volume (11) focused on a hypersaline lake and 
its adjacently located reservoir and salt pans by using 
stable isotopes. The study shows that desiccation 
alters N and C biogeochemistry along with nitrifi-
cation and mineralization rates in lake sediments, 
favouring the appearance of potentially toxic  N2 fix-
ing cyanobacteria.

Experiments in the 0.2–20 ppt salinity range with 
aquatic vegetation samples from Brazilian wetlands 
concluded that salinisation provides an empty niche 
for invasion of non-native species, thus increasing the 
opportunity of invasion by salt-tolerant non-native 
species (12). Also, in lentic environments of a dry-
ing coastal plain of Southeast Brazil, a comparison 
between stenohaline (i.e. narrow salinity tolerance 
ranges) and euryhaline (i.e. wide salinity tolerance 
ranges) fish species showed non-random patterns 
of community composition. Species replacement 
was promoted by environmental heterogeneity, with 
parameters related to desiccation (salinity and depth) 
affecting euryhaline species co-occurrence. Together, 
these results revealed group-dependent responses to 
drought according to physiological tolerances (13).

Salinity has both direct and indirect effect on zoo-
plankton, the latter due to variations in the preda-
tion by fish and macroinvertebrates with top-down 
implications for the grazing on phytoplankton. Zoo-
plankton grazing at similar nutrient levels is gener-
ally regarded as lower in brackish than in freshwater 
lakes not only because of intensive predation by fish 
and mysids—but experimental evidence supporting 
this view is lacking. Short-term zooplankton graz-
ing experiments in bottles were conducted with water 
from 12 Danish brackish lakes covering a large gradi-
ent in salinity (0.3–17.4 ppt) as well as from meso-
cosms conducted in the same area with various salini-
ties (0.5–12 ppt), two nutrient levels and low fish 
density (14). Grazing was generally low in the lakes, 
even when they were dominated by edible phyto-
plankton, and nutrient addition led to a major increase 
in phytoplankton biomass. By contrast, grazing was 
significant in most of the mesocosms, particularly at 
high nutrient levels and salinities of 8 ppt or below 
where Daphnia dominated. Thus, grazing by zoo-
plankton can be high in brackish lakes with a salinity 
up to 8 ppt at low fish densities, but the realised graz-
ing in the lakes was overall low, which the authors 
attributed to high predation on zooplankton.
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Both conductivity and ion composition are highly 
important variables shaping diatom communities, 
a distinguished indicator group in environmental 
monitoring systems. Secondary (human induced) 
salinisation can mask regional differences in diatom 
assemblages. The increasing conductivity along a 
wide conductivity scale decreases the alpha-diversity 
(15). In harmony with (12), salinisation induces the 
spread and invasion of marine and brackish diatoms 
into inland freshwaters as well as that of freshwa-
ter species tolerating elevated conductivity and/or 
needing specific ions. Applicable diatom indices are 
available to assess the level of salinisation. However, 
future models predicting ecological consequences 
of salinisation are scarce and sometimes contradic-
tory. At ecophysiological level (16), salt stress can 
significantly affect the photosynthetic activities, pig-
ment contents, growth rate, metabolism and toxin 
synthesis of diatoms. The acclimation capability of 
diatoms is apparent: they can adjust turgor pressure 
and ion homeostasis and produce compatible solutes 
for osmoprotection by applying various biochemical 
pathways and complementary mechanisms. However, 
knowledge about their molecular background and 
long-term adaptation is completely missing. Vari-
ous morphological changes can also be attributed to 
changes in salinity. Abnormal forms may indicate 
extreme and complex effects of salinity and collateral 
stress factors.

Conclusion

In a recent overview, Cunillera-Montcusí et al. (2022) 
pointed out that the understanding of the impacts of 
salinisation is limited from both ecological and evo-
lutionary perspectives. Thus, there is limited focus on 
the functional, spatial and trophic consequences of 
freshwater salinisation, only a few long-term studies 
exist, and there is a severe geographical bias as most 
of the studies have been conducted in only a handful 
of regions and/or ecosystems. This special issue pro-
vides new information from less studied regions and 
ecosystems, mainly observational studies, cross-sys-
tem analyses and medium-sized experimental studies. 
Overall, the studies show that salinity is a key driver 
of biodiversity and ecosystem functioning in both 
inland freshwaters and estuaries, and the modification 
of natural salinity dynamics by humans might have 

undesired consequences such as biological invasions 
or harmful algal blooms. We encourage further obser-
vational studies and large-scale experiments (tempo-
ral and spatial) as well as comprehensive cross-sys-
tem analyses, paleolimnology and modelling to bring 
the understanding of salinisation on aquatic ecosys-
tem up to the level of the knowledge of the effects of 
other stressors, such as nutrients or metal pollution.
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