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brood-tending parents that were collected across five 
field trips from the same study population. The sam-
pled broods were either spawned during the dry sea-
son (three field trips) or during the rainy season (two 
trips). In all seasons, we detected substantial rates of 
extra-pair paternity, which were ascribed to cuckoldry 
by bachelor males. Paternity shares of brood-tending 
males were consistently higher, and the numbers of 
sires per brood were consistently lower, in broods that 
were spawned in the dry seasons compared to broods 
from the rainy seasons. In contrast, the strength of 
size-assortative pairing in our V. moorii popula-
tion did not vary temporally. Seasonal fluctuations 
in environmental conditions, such as water turbidity, 
are proposed as a mechanism behind variable cuck-
older pressure. Our data demonstrate the utility of 

Abstract  Mating patterns in animal populations 
can respond to environmental conditions and conse-
quently vary across time. To examine this variation 
in nature, studies must include temporal replicates 
from the same population. Here, we report tem-
poral variation in genetic parentage in the socially 
monogamous cichlid Variabilichromis moorii from 
Lake Tanganyika, using samples of broods and their 
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long-term monitoring to improve our understanding 
of animal mating patterns.

Keywords  Extra-pair paternity · Cuckoldry · Lake 
Tanganyika · Parentage analysis · Mating system · 
Seasonal variation

Introduction

Animal-mating patterns have profound effects on evo-
lutionary processes. Mating patterns determine how 
an important resource—mating opportunities—is dis-
tributed among individuals in a population, often with 
unequal distributions between the sexes. For instance, 
if females are unavailable for mating for prolonged 
periods of time due to gestation or brood care, then 
it is generally expected that males will compete more 
intensely among one another for the few available 
females. The resulting competition for mates can give 
rise to sexual selection on traits that are positively 
associated with mating success, sometimes leading 
to the evolution of exaggerated ornaments or arma-
ments (Andersson, 2019). How mating opportunities 
are distributed among individuals can also influence 
their decisions regarding how to allocate their time 
and energy, for instance, when choosing between the 
pursuit of new reproduction or investing into care for 
current offspring (Fromhage & Jennions, 2016).

The expectation that mating success is positively 
related to reproductive success (i.e. the number of 
progeny produced) led to the assumption that vari-
ance in reproductive success can be roughly predicted 
from the social mating system. For example, social 
monogamy is considered to be associated with mild 
variance in the mating success of both sexes, since 
each reproductive adult will claim only one member 
of the opposite sex from the mating pool (Avise et al., 
2002). In contrast, mating success can become more 
variable and skewed as more individuals engage in 
polygamous matings, which can leave fewer mating 
opportunities for less successful consexuals. Extreme 
examples are found, for example, in pinniped leks, 
where a minority of males monopolizes the vast 
majority of copulations (Fabiani et al., 2004). Conse-
quently, social mating system classifications are often 
used as convenient proxies for the intensity of sexual 
selection in evolutionary studies (e.g. Gonzalez-Voyer 
et al., 2008).

However, the levels of reproductive success 
variance that occur across individuals may some-
times be difficult to accurately estimate based on 
inspections of the social mating system alone. For 
instance, brood parentage may differ substantially 
from expectations based on the social mating sys-
tem. This has been famously demonstrated in birds, 
where the majority of socially monogamous spe-
cies exhibit at least some extra-pair reproduction 
due to females promiscuously seeking copulations 
with males that are not their social mates (Griffith 
et al., 2002). This mating pattern implies that there 
exists more variation in male reproductive success 
than would be expected if males and females simply 
mated within their pair bonds. Also in fishes, males 
can clandestinely participate in the spawning events 
of other males that are already paired with a female 
(or females). If such cuckoldry is performed by 
bachelor males that do not, and will not, pair with 
females, then cuckoldry can reduce the variance in 
reproductive success among all males in the popula-
tion (Jones et al., 2001; Candolin & Vlieger, 2013; 
Bose et  al., 2018). If, however, cuckoldry is per-
formed by paired males, or if males switch between 
pairing and cuckolding during their lifetime, then 
the effects of cuckoldry on variance in reproductive 
success are more difficult to predict (Collet et  al., 
2012; Isvaran & Sankaran, 2017; Raj Pant et  al., 
2022).

The mating patterns of cichlid fishes have attracted 
strong research interest in the context of behavioural 
and evolutionary studies, and in a number of species, 
both their social and genetic mating systems have 
been described. Some socially monogamous cichlids 
have been found to be genetically monogamous (Tay-
lor et  al., 2003; Egger et  al., 2006; Takahashi et  al., 
2012; Schaedelin et al., 2015), whereas others express 
differing rates of extra-pair paternity (Lee-Jenkins 
et al., 2015; Bose et al., 2018). Polyandrous spawning 
occurs to variable degrees in those maternal mouth-
brooders where females do not form pair bonds with 
their mates (Kellogg et  al., 1995, 1998; Parker & 
Kornfield, 1996; Sefc et  al., 2009, 2012; Anderson 
et al., 2016), and in group-living cichlids, the degree 
to which reproduction is monopolized by dominant 
individuals or is obtained by subordinates or neigh-
bouring group members varies among species (Awata 
et al., 2005; Dierkes et al., 2008; Stiver et al., 2009; 
Bose et al., 2022).
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Cichlids display a high diversity of mating behav-
iours, which can also vary spatially and temporally 
both within and across species. In shell-breeding lam-
prologine cichlids, degrees of polygyny range from 
social monogamy to large harems, and this variation 
occurs both within and among populations of the 
same species (reviewed in Sefc, 2011). Studies on 
both pair bonding and non-pair bonding cichlids have 
revealed that males of some species experience high 
levels of paternity losses within their broods and this 
can be accompanied by considerable variance in mul-
tiple paternity rates across broods (Sefc et al., 2009; 
Anderson et al., 2016; Zimmermann et al., 2019). In 
two species where brood parentage has been assessed 
on several occasions from the same population, mul-
tiple paternity has varied across time points; in par-
ticular, broods sampled after the rainy season have 
shown higher rates of multiple paternity than broods 
collected towards the end of the dry season (Sefc 
et al., 2008, 2009; Bose et al., 2018). Both species—
Ctenochromis (now: Shuja) horei (Günther, 1894), a 
maternal mouthbrooder and Variabilichromis moorii 
(Boulenger, 1898), a substrate breeder—inhabit the 
shallow rocky littoral of Lake Tanganyika and sea-
sonal variation in environmental factors may be a 
driver of this temporal variation in brood paternity 
(Sefc et  al., 2009). In fish, potential drivers of sea-
sonal plastic variation in reproductive strategies 
include food availability, population density, sex 
ratios, predation pressure and  habitat characteristics 
(Nakano & Nagoshi, 1990; Rossiter, 1995; Rossiter & 
Yamagishi, 1997; Matsumoto & Kohda, 1998; Magee 
& Neff, 2006; Monroe et al., 2016).

In this field study, we compiled a time series 
dataset of brood parentage that we collected from 
the same population of Variabilichromis moorii, a 
socially monogamous cichlid, across a 3-year period 
comprising five field excursions. We examined 
whether variation in the genetic parentage of broods 
follows a seasonal pattern, testing for recurrent dif-
ferences between broods spawned during the rainy 
season and the dry season. Cuckoldry in V. moorii 
is performed by smaller, unpaired, non-territorial 
males and can lead to substantial paternity losses for 
paired males (Bose et al., 2018), which in turn affects 
the payoffs that the cuckolded males receive from 
brood care (Zimmermann et al., 2019). For females, 
cuckoldry may also interfere with their preferences 
regarding who should sire their offspring. Since mate 

preferences can vary temporally in response to chang-
ing environmental conditions (Milner et  al., 2010; 
Moura & Gonzaga, 2017; Frommen et al., 2022), we 
also investigated whether mate choice in V. moorii 
varied across seasons or years. As in other socially 
monogamous cichlids (Eretmodus cyanostictus 
(Boulenger 1898): Morley & Balshine, 2003; Ama-
titlania nigrofasciatum (Günther, 1867): Wisenden, 
1995; Neolamprologus caudopunctatus (Poll, 1978): 
Schaedelin et  al., 2015; Pelvicachromis taeniatus 
(Boulenger, 1901): Baldauf et  al., 2009), V. moorii 
show positive size-assortative pairing (Karino, 1997; 
Zimmermann et  al., 2019). Temporal covariation 
between rates of multiple paternity and the strength 
of size-assortative pairing would suggest that both 
processes are influenced by the same environmental 
factors, or that they influence each other, e.g., when 
females respond to expectations of cuckoldry by less 
stringent mate choice.

Material and methods

Sample collection and microsatellite genotyping

V. moorii is a lamprologine cichlid found in shallow 
littoral waters along the rocky shores of Lake Tang-
anyika, where territories of solitary adults and social 
pairs can be densely clustered (Sturmbauer et  al., 
2008). Females attach their eggs to the surfaces of 
rocks and once hatched, the fry hover in the centre of 
their parents’ territory where they remain until inde-
pendence (Zimmermann et  al., 2021). Brood sizes 
can reach > 100 fry per territory (Rossiter, 1991; Zim-
mermann et al., 2019). Breeding occurs continuously 
across the year and brood care occurs over a period of 
approximately 100 days (Rossiter, 1991). A breeding 
pair guards only one cohort of offspring at a time, and 
neighbouring pairs may be found caring for broods 
of different ages from one another (Rossiter, 1991). 
V. moorii are conventionally classified as socially 
monogamous and biparental, but molecular data has 
revealed frequent cuckoldry (Bose et  al., 2018) and 
behavioural observations suggest that male defence 
behaviour is more strongly driven by territory reten-
tion than by brood protection (Zimmermann et  al., 
2021).

Over the course of five field seasons, we col-
lected tissue samples from brood-tending parents 
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and their fry, which were used in genetic parentage 
studies on cuckoldry and brood care (Bose et  al., 
2018, 2019; Zimmermann et  al., 2019, 2021). 
Here, we used the genetic parentage data from 95 
broods out of the above-mentioned studies and 
extended the data set by adding parentage data of 
42 broods sampled specifically for the present study 
(see Table 1 for sample sizes per field trip). During 
sampling, we measured the body sizes of the brood 
tenders (total length, TL, to the nearest 0.1 cm) and 
determined the water depth at which their territo-
ries were located (to the nearest 0.1  m). For each 
field trip, we returned to the same study quadrat 
by the eastern shore of Mutondwe Island (~ 100 m 
× ~ 50 m, depth range: 1.7–12.1 m) in the south of 

Lake Tanganyika, Zambia (8° 42′ 29.4″ S, 31° 07′ 
18.0″ E). The field trips took place in late Septem-
ber to late October 2015 (referred to as field trip 
‘2015-dry’), April 2016 (‘2016-rainy’), October 
to early November 2017 (‘2017-dry’), April 2018 
(‘2018-rainy’) and September to early October 2018 
(‘2018-dry’). The climate at our study site is char-
acterized by three seasons: cool and dry from May 
to August, hot and dry from September to Novem-
ber, and warm and wet from December to April. 
Hence, the broods collected between September 
and November were spawned in the dry season, and 
broods collected in April were spawned in the rainy 
season. See (Bose et al., 2018) for more details on 
our sample collection methods in the field.

Table 1   Summary statistics related to parentage and assortative mating per field trip and season

Parentage exclusion probabilities ranged from 0.9999990683 (April 2018) to 0.9999999998 (September 2015)
He expected heterozygosity

Trait October 2015 
(dry season)

April 2016 
(rainy season)

October 2017 
(dry season)

April 2018 
(rainy season)

September 
2018 (dry 
season)

Dry seasons 
pooled

Rainy seasons 
pooled

Number of 
broods

33 42 19 21 22 74 63

Brood size 
(mean ± SD, 
range)

28.55 ± 20.44, 
6–94

34.67 ± 21.27, 
9–102

60.63 ± 26.31, 
12–119

43.48 ± 23.99, 
9–97

41.55 ± 25.65, 
11–102

31.59 ± 21.19, 
5–95

32.24 ± 17.81, 
6–96

Marker poly-
morphism: 
sample size 
N and num-
ber of loci, 
mean He

N = 130, 14 
loci, mean 
He = 0.879

N = 98, 14 
loci, mean 
He = 0.876

N = 77, 9 
loci, mean 
He = 0.882

N = 89, 9 
loci, mean 
He = 0.875

N = 157, 9 
loci, mean 
He = 0.876

na na

Paternity share 
of brood-
tending male 
(mean ± SD, 
median, 
range)

0.73 ± 0.31, 
0.82, 0–1

0.46 ± 0.32, 
0.46, 0–1

0.58 ± 0.26, 
0.57, 0.03–1

0.41 ± 0.23, 
0.42, 0–1

0.70 ± 0.35, 
0.86, 0.06–1

0.68 ± 0.32, 
0.70, 0–1

0.44 ± 0.29, 
0.43, 0–1

Sires per 
brood (mean, 
median, 
range)

2.36 ± 1.92, 2, 
1–9

3.52 ± 2.02, 3, 
1–10

2.95 ± 1.08, 3, 
1–5

3.81 ± 1.57, 4, 
1–7

2.36 ± 1.53, 3, 
1–6

2.51 ± 1.62, 2, 
1–9

3.62 ± 1.87, 3, 
1–10

Female body 
size (cm) 
(mean ± SD)

8.38 ± 0.34 8.16 ± 0.42 8.85 ± 0.50 8.36 ± 0.65 8.81 ± 0.48 8.63 ± 0.48 8.23 ± 0.52

Male body 
size (cm) 
(mean ± SD)

8.26 ± 0.41 8.00 ± 0.40 8.54 ± 0.49 7.90 ± 0.66 8.56 ± 0.78 8.43 ± 0.58 7.96 ± 0.50

Body size 
correlation 
(Pearson r)

r = 0.56, 
P = 0.001

r = 0.24, 
P = 0.145

r = 0.81, 
P < 0.0001

r = 0.45, 
P = 0.042

r = 0.32, 
P = 0.146

r = 0.54, 
P < 0.0001

r = 0.34, 
P = 0.009
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DNA extraction and microsatellite genotyping 
were carried out as described in Bose et  al. (2018). 
Brood tending parents and fry collected in 2015 and 
2016 were genotyped at 14 microsatellite loci (Bose 
et  al., 2018), whereas samples collected during the 
later trips were genotyped at a subset of 9 loci (Zim-
mermann et al., 2021). Population allele frequencies 
were estimated from population samples collected 
during the same field season as the broods. Gene 
diversity and parentage exclusion probabilities of the 
microsatellite marker sets are reported in Table  1. 
Parentage analyses were performed using COLONY 
(v. 2.0.6.1, Jones & Wang, 2010) as described in 
Bose et  al. (2018). COLONY partitions broods into 
full sib groups and assigns fry to candidate genotyped 
parents (here, brood-tending pairs) and to unsampled 
parents (here, cuckolders). The output of COLONY 
was manually corrected for over-estimated sire num-
bers (Sefc and Koblmüller, 2009) as described in 
Bose et al. (2018). The paternity share of each brood-
tending male, and each of their cuckolders, was cal-
culated as the proportion of fry that they had sired 
out of the total number of fry that were assigned as 
offspring of the brood-tending male’s female partner. 
Additional fry that were not related to either brood-
tending parent were found in 20–40% of territories 
across the field trips and amounted to 7–15% of fry 
in a territory (averages across territories for each field 
trip). We assumed that the unrelated fry had migrated 
into the territory (Satoh et  al., 2021), and that only 
those fry assigned to the paired, brood-tending female 
were spawned on the territory.

Statistical analysis

Statistical analyses were conducted in R v. 4.1.3 (R 
Core Team, 2022). We fit generalized linear mixed 
models (GLMMs; R package glmmTMB, Brooks 
et al., 2017) to test for temporal differences in pater-
nity shares and sire numbers per brood, and we tested 
for pairwise differences among the five field trips. We 
also fit analogous GLMMs with the data grouped by 
season and tested for overall differences between the 
rainy and dry season. In each GLMM, we initially 
included water depth (continuous variable), aver-
age body size of the two parents (continuous vari-
able), and either field trip or season (categorical vari-
ables) as predictors. We also included an interaction 
between the body size of the parents and field trip or 

season. The significance of the interaction terms was 
tested with likelihood ratio tests (LRT). The effect 
of depth as well as the LRT testing the interaction 
between body size of the parents and field trip/season 
were not significant and these terms were, therefore, 
omitted from the final models. Thus, the final mod-
els included the average body size of the two parents 
and either the field trip (5-level categorical variable) 
or the season (2-level categorical variable) as predic-
tor variables along with an observation-level random 
intercept to account for overdispersion (Harrison, 
2014). Checks for collinearity of predictor variables 
were run for all models with more than one predic-
tor using the function check.collinearity from pack-
age ‘performance’ (Lüdecke et al., 2021) and all VIF 
values were found to be < 1.5. Pairwise contrasts 
between field trips were performed with the ‘mult-
comp’ R package (Hothorn et  al., 2008) using the 
Tukey method.

GLMMs examining temporal variation in paternity 
shares of brood-tending males and cuckolders were 
fit with binomial error distributions. Here, paternity 
share of the brood-tending male was the response 
variable and was specified by a matrix of two col-
umns, one representing the number of fry sired by 
the brood-tending male and the other representing 
the number of fry sired by his cuckolders. GLMMs 
examining temporal variation in the paternity shares 
of individual cuckolders were also fit with binomial 
error distributions. Here, the paternity share of each 
cuckolder was the response variable and was speci-
fied by a matrix of two columns, one representing the 
number of fry sired by the cuckolder and the other the 
number of remaining offspring that had been spawned 
by the brood-tending female. Since broods could have 
had offspring from more than one cuckolder, ‘terri-
tory ID’ was included as additional random intercept 
in these models.

To test for a correlation between a brood’s sire 
number and the paternity share of the brood-tending 
male, we fit a GLMM with a binomial error distribu-
tion. Paternity share of the brood-tending male was 
fit as the response variable, with number of sires 
as a predictor variable, and ‘field trip’ as a random 
intercept.

GLMMs examining temporal variation in the num-
ber of sires per brood were fit with Poisson-distrib-
uted errors. We included average body size of the 
parents and either field trip or season as predictor 
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variables. As above, an observation-level random 
intercept was included to account for overdispersion.

Finally, we used linear models to test for temporal 
variation in the strength of size-assortative pairing. 
Male size was included as a continuous response vari-
able, and we included female size (continuous vari-
able), field trip or season, and their interaction term 
as predictor variables. We also calculated Pearson 
correlation coefficients between the male and female 
partner body sizes for each field trip and each season. 
We used a paired t-test to examine size differences 
between the sexes within social pairs, and a Welch’s 
two-sample t-test to examine body size dimorphism 
in the population.

Results

Paternity shares of brood‑tending males are higher in 
the dry season

Paternity shares of brood-tending males varied among 
field trips (LRT: �2 = 23.2, df = 4, P = 0.0001) and 
were higher in the dry seasons than in the rainy sea-
sons (Fig. 1a, b). The pairwise contrasts between the 
dry seasons and the rainy seasons were statistically 
significant except for contrasts involving the 2017-
dry season (October) sample (where the contrasts 
were not significant, but in a consistent direction). 
None of the same-season contrasts were significant 
(Table  2). There was a significantly negative effect 
of the pair’s average body size on paternity share 
of the brood-tending male (GLMM, est. = −1.02, 
z = −2.04, P = 0.041). Pooling data from multiple 
field trips by season yielded consistent results with 
a significant negative effect of body size (GLMM, 
est. = −1.01, z = −2.11, P = 0.035) and significantly 
higher paternity shares of the brood-tending males in 
the dry season compared to the rainy season (GLMM, 
est. = 2.16, z = 4.47, P < 0.0001).

Sire number per brood is higher in the rainy season

The paternity shares of brood-tending males were 
negatively correlated with the number of addi-
tional sires that fertilized eggs in their female part-
ners’ broods (GLMM, est. = −0.56, z = −24.77, 
P < 0.0001). Sire numbers per brood varied among 
field trips (LRT, �2 = 22.9, df = 4, P = 0.0001; Fig. 2) 

Fig. 1   Paternity shares of brood-tending males per field trip 
(a) and per season (b). Coloured dots represent the paternity 
shares of individual males with different colours representing 
different seasons (yellow = dry season, blue = rainy season) 
and individual dots were allowed to jitter by a share of 0.01 
to avoid overlap. The violin plots depict the distributions of 
paternity share values per brood, including sample means (hor-
izontal lines), sample medians (grey circles) and interquartile 
ranges (grey vertical lines)

Table 2   Output of linear mixed effects model examining 
paternity share of brood-tending males

Pairwise comparisons were made using the Tukey method in 
the “multcomp” R package. Significant values are in bold

Estimate SE z value P value

Between seasons contrasts
 2015-dry – 2016-rainy 2.17 0.61 3.54 0.004
 2015-dry – 2018-rainy 2.18 0.69 3.15 0.014
 2017-dry – 2016-rainy 1.44 0.72 2.01 0.26
 2017-dry – 2018-rainy 1.46 0.78 1.86 0.34
 2018-dry – 2016-rainy 2.84 0.74 3.82 0.001
 2018-dry – 2018-rainy 2.86 0.81 3.55 0.003

Dry season contrasts
 2017-dry – 2015-dry −0.72 0.72 −1.01 0.85
 2018-dry – 2015-dry 0.68 0.73 0.93 0.89
 2018-dry – 2017-dry 1.40 0.76 1.84 0.35

Rainy season contrast
 2018-rainy – 2016-

rainy
−0.015 0.64 −0.024 1.00



2377Hydrobiologia (2023) 850:2371–2383	

1 3
Vol.: (0123456789)

and were positively correlated with the pairs’ mean 
body sizes (GLMM, est. = 0.38, z = 3.39, P = 0.0007). 
Pairwise comparisons between field trips indi-
cated fewer sires per brood in dry compared to 
rainy seasons (P values < 0.01), whereas none of the 

same-season comparisons revealed significant differ-
ences in sire numbers (Table  3). Pooled by season, 
the average number of sires per brood was positively 
correlated with the brood-tending pair’s body size 
(GLMM, est. = 0.36, z = 3.38, P = 0.0007) and was 
higher in the rainy season compared to the dry season 
(GLMM, est. = 0.51, z = 4.63, P < 0.0001).

Higher average paternity shares for brood‑tending 
than for cuckolder males in all seasons

Average paternity shares of brood-tending males were 
2.0 to 3.8 times higher than average paternity shares 
of cuckolders, and this bias was always stronger in the 
three dry seasons compared to the two rainy seasons 
(Fig.  3a). The paternity shares of individual cuck-
olders did not vary with the mean body size of the 
brood-tending pair (GLMM, est. = −2.51, z = −1.57, 
P = 0.12) nor did they differ among field trips (LRT, 
�
2 = 2.90, df = 4, P = 0.58; Fig. 3b; n = 93 nests with 

cuckolder paternity).

Positive size‑assortative pairing does not differ 
significantly between seasons

When pooling across all five field trips, there was a 
significant correlation between the body sizes of male 
and female brood-tending partners (Pearson r = 0.53; 
t = 7.1, df = 128, P < 0.0001; Fig.  4; see Table  1 for 
results per field trip and per season), and the strength 
of this correlation did not differ significantly among 
field trips or between the dry and rainy seasons 
(LRT; for interaction with field trip: F = 0.91, df = 4, 
P = 0.46; for interaction with season: F = 3.15, df = 1, 
P = 0.08). Across samples, females were on average 
0.2  cm larger than their male partners (paired t-test, 
t = 4.92, df = 129, P < 0.0001), and this difference 
corresponds to the population-level size difference of 
0.2 cm between males and females (Welch’s two-sam-
ple t-test, t = 3.47, df = 263.04, P = 0.0006).

Discussion

In this study, we tested whether two factors that can 
influence the reproductive success of brood-tending 
males exhibited seasonal temporal variation. One fac-
tor was cuckoldry pressure by unpaired floater males, 

Fig. 2   Sire numbers per brood, broken down by field trip. The 
sizes of the circles represent the number of broods with a given 
number of sires

Table 3   Output of linear mixed effects model examining sire 
number per brood

Pairwise comparisons were made using the Tukey method in 
the “multcomp” R package. Significant values are in bold

Estimate SE z value P value

Between seasons contrasts
 2015-dry – 2016-rainy − 0.46 0.15 − 3.12 0.015
 2015-dry – 2018-rainy − 0.48 0.16 − 2.96 0.025
 2017-dry – 2016-rainy − 0.44 0.18 − 2.52 0.085
 2017-dry – 2018-rainy − 0.46 0.18 − 2.51 0.087
 2018-dry – 2016-rainy − 0.66 0.18 − 3.70 0.002
 2018-dry – 2018-rainy − 0.68 0.19 − 3.64 0.003

Dry season contrasts
 2017-dry – 2015-dry 0.017 0.18 0.092 1.00
 2018-dry – 2015-dry − 0.20 0.19 − 1.09 0.81
 2018-dry – 2017-dry − 0.22 0.19 − 1.15 0.78

Rainy season contrast
 2018-rainy – 2016-

rainy
0.019 0.14 0.14 1.00
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and the other factor was mate choice in relation to the 
body sizes of potential mating partners. We discuss 
each of these in turn.

The paternity shares of brood-tending males var-
ied among field trips in a seasonal pattern: paternity 
loss suffered by brood-tending males was higher in 
the rainy compared to the dry season, and the number 
of successful cuckolders per brood was also higher 
in the rainy season. Surprisingly, despite fish mating 
systems being especially rife with alternative repro-
ductive tactics (Taborsky, 2008), temporal variation 
in cuckoldry rates has been monitored in only a few 
fish species to date, and rarely across extended peri-
ods of time that span multiple years. For example, a 
study examining the rate of reproductive success by 
sneaker males in a Norwegian population of two-
spotted gobies, Gobiusculus flavescens, (Fabricius, 
1779) revealed no significant differences in paternity 

Fig. 3   Ratio of average paternity shares of brood-tending 
males relative to cuckolder males, broken down by field trip 
(a). Paternity shares of individual cuckolders, broken down 
by field trip (b). Coloured dots represent the paternity shares 
of individual cuckolders with different colours representing 
different seasons (yellow = dry season, blue = rainy season) 

and individual dots were allowed to jitter by a share of 0.01 
to avoid overlap. c The violin plots depict the distributions 
of paternity share values per brood, sample means (horizon-
tal lines) and sample medians (grey circles) with interquartile 
ranges (grey vertical lines)

Fig. 4   Scatterplot of female versus male body size (total 
length). The solid crossline corresponds to a 1:1 fit
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rates of nest-owning males between early and late 
spawning season (Monroe et al., 2016). In two species 
of sunfish, paternity shares of brood-tending males 
varied between early, mid and late broods of a breed-
ing season, possibly driven by temporal variation in 
the defence capabilities of nest owners or cuckolder 
abundance (Neff & Clare, 2008). In the plainfin mid-
shipman fish, Porichthys notatus (Girard, 1854), 
average paternity shares of guarding males increased 
over the course of a breeding season, ranging from 
less than 10% to near 100%, a pattern that is likely 
driven by declining occurrences of nest take-overs as 
the season progresses (Cogliati et al., 2013). Rates of 
multiple paternity also differed across time between 
two samples taken from a sailfin molly population in 
Florida (Trexler et  al., 1997) and from a population 
of the Lake Tanganyika cichlid Ctenochromis (Shuja) 
horei (Sefc et al., 2009).

Many cichlids in Lake Tanganyika breed 
throughout the year, and they can experience 
environmental variation in response to seasonal 
(rainy versus dry seasons) weather conditions. For 
instance, rainfall increases the influx of sediment 
into the lake, and we have repeatedly encountered 
poor underwater visibility during field trips early in 
the year (March, April) and more stable conditions 
of good visibility between September and Novem-
ber (e.g., personal observations of S. Koblmüller 
and authors of this study). Interestingly, the dry 
season ended prematurely in 2017 (Zimmermann 
pers. obs.), and the difference in paternity shares 
and sire numbers in pairwise comparisons between 
V. moorii broods sampled in October 2017 and the 
rainy season samples was less pronounced than was 
the case for October 2015 and September 2018. 
Water turbidity could foreseeably affect cuckold-
ers in two opposing ways. In turbid water, poten-
tial cuckolders may be able to approach a target 
nest more closely before being detected and driven 
away by the nest residents, with the implication that 
cuckoldry may be more successful when visibility 
is poor (e.g., Candolin & Vlieger, 2013). On the 
other hand, reduced visibility may make it more 
difficult for potential cuckolders to identify spawn-
ing opportunities, which would lead to reduced 
rates of cuckoldry (e.g., Vlieger & Candolin, 2009). 
Females that are aware of the presence of cuckold-
ers may respond either by interrupting or delaying 
spawning to avoid having their eggs fertilized by 

non-preferred males, or they may display a pref-
erence for spawning in the presence of sneaking 
males (Reichard et  al., 2007). In either case, the 
socially bonded male and female’s responses to the 
presence of cuckolders may depend on their ability 
to detect these individuals in their environment, and 
thus, might be influenced by water turbidity, which 
is worse in the coastal shallow waters of Lake Tan-
ganyika during the rainy seasons. In addition to 
fluctuations in water turbidity, weather cycles might 
also induce variation in other factors such as pri-
mary productivity, altering food availability that 
could support higher or lower population densities, 
and hence, cuckolder pressure.

In agreement with the seasonal signature of multi-
ple paternity presented here, a previous study by Sefc 
et  al. (2008), examining brood paternity in a neigh-
bouring population of V. moorii, found very high rates 
of multiple paternity within their sample that was also 
taken during a rainy season. Similarly, a population 
of another maternal mouthbrooder from Lake Tan-
ganyika, C. (S.) horei, experienced higher rates of 
multiple paternity in the rainy season than in the pre-
ceding dry season (Sefc et al., 2009). In C. (S.) horei, 
females do not form pair bonds with their mates, but 
may successively spawn with different males and be 
targeted by sneaking males (Ochi, 1993). Spanning 
a longer time scale, our current data further corrobo-
rate the existence of a seasonal pattern, but dedicated 
future studies are necessary to address the underlying 
mechanisms more directly.

In V. moorii, although cuckoldry is very prevalent, 
nearly all cuckoldry is perpetrated by unpaired males 
from a large pool of non-territorial, floater individu-
als (Bose et  al., 2018). We, therefore, assumed that, 
in the current study, every full sib group of offspring 
reconstructed in the genotyped broods represented 
offspring from a different sire. Hence, we could use 
the paternity shares of the brood-tending males and 
of their cuckolders to compare their relative repro-
ductive success. In each of our field trips, the aver-
age paternity shares of brood-tending males were at 
least twofold higher than those of cuckolders. Hence, 
in each of the five periods covered by our sampling, 
breeding as a paired territorial male conferred higher 
reproductive success than cuckoldry, although the 
difference varied between field trip samples (from 
twofold to almost fourfold). The average success of 
individual cuckolders did not vary across seasons, 
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indicating that the higher paternity losses suffered by 
brood-tending males in the rainy season were due to 
higher numbers of successful cuckolders and not to 
greater success of individual cuckolders.

We also examined whether mate choice, as cap-
tured by the size-assortative pairing of breeding 
V. moorii, displayed seasonal variation. Mate pref-
erences and choosiness are influenced by numer-
ous abiotic and biotic factors and may co-vary with 
environmental fluctuations (Jennions & Petrie, 1997; 
Candolin, 2019). For example, in turbid water, mating 
success of male sand gobies was less skewed towards 
large males than under clear conditions (Järvenpää 
& Lindström, 2004), and in sticklebacks, female 
preferences for male courtship activity were influ-
enced by the presence of predators (Frommen et al., 
2022). V. moorii are sexually monomorphic and it 
is unclear which traits are used in mate assessments 
and mate choice. Like many other animal species 
(Jiang et  al., 2013), including socially monogamous 
fish (Wisenden, 1995; Morley & Balshine, 2003; Bal-
dauf et al., 2009; Schaedelin et al., 2015), V. moorii 
engage in positive size-assortative mating. Both male 
and female fish might benefit from large mates (Lind-
ström & Pampoulie, 2005; Barneche et al., 2018), and 
pair formation may be influenced by both female and 
male mate preferences. The strength of the positive 
correlation between male and female body sizes did 
not differ among our field trips, suggesting that the 
mechanisms that led to size-assortative pairings were 
stable across time.

In this study, we show that even when reproduction 
occurs continuously throughout the year without a 
defined breeding season, distributions of reproductive 
success can vary over time and can show pronounced 
seasonal signatures. This can be the case when animal 
mating patterns themselves, or  conditions that affect 
mating patterns, vary with environmental fluctuations 
(Jennions et  al., 2012; e.g., Robinson et  al, 2008; 
Cornwallis & Uller, 2010). Our results, therefore, 
imply that assessments of mating patterns taken from 
single snapshots in time can only partially capture 
the distributions of parentage in a system, which can 
complicate our ability to make generalizations about 
species-level mating patterns based on single time-
point observations. This highlights the utility of lon-
gitudinal datasets in capturing the plasticity of mating 
patterns and describing the extent to which they vary 
across time within a species or population.
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