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associated with mating behaviour resulting in repro-
ductive isolation.
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Introduction

Reproductive isolation has strong implications for 
both genetic differentiation and evolutionary dynam-
ics, affecting population structure, local adaptation, 
speciation and sister species coexistence (Coyne & 
Orr, 2004; Weber & Strauss, 2016). There is a wide 
range of intrinsic and extrinsic factors that could con-
tribute to isolation. The causal loops that might occur 
among them make the dissection and testing of such a 
panoply complicated (Palumbi, 1994; Coyne & Orr, 
2004).

One of the factors leading to reproductive isolation 
between populations may result from the difficulty 
of immigrants arriving, surviving and/or becoming 
sexually involved in the recipient population (Sex-
ton et  al., 2014; Turbek et  al., 2018). If arrival rate 
is the prevalent factor, then a pattern of isolation by 
distance (IBD) is expected to emerge due to the com-
bined, opposite effect of migration and genetic drift 
(Wright, 1943; Church & Taylor, 2002). On the other 
hand, if unmatched timings of dispersal/reproduction 
and survival are the prevalent factors, then a pattern 
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of isolation by environment (IBE) is expected (Nosil 
et al., 2005; Wang & Bradburd, 2014). Local adapta-
tion is likely to be involved in this second case (Nosil 
et al., 2002). IBD and IBE have been found in a broad 
range of organisms (IBD, e.g., Zeller et  al., 2006; 
Mills et  al., 2007; Campillo et  al., 2011; Ventura 
et  al., 2014; IBE, e.g., Shafer & Wolf, 2013; Mar-
tin et  al., 2021) and may act together (Sexton et  al., 
2014; Weber et  al., 2017). In both scenarios—IBD 
and IBE—low gene flow would promote behavioural 
reproductive isolation—i.e., based on mate prefer-
ences—due to genetic drift acting on genes that 
affect behaviour. Moreover, the genetic hitchhiking 
of behavioural genes linked to genes for local adapta-
tion might play a role in the case of IBE (Hawthorne 
& Via, 2001; Wu, 2001, but see Parchman et  al., 
2013). In addition, if genetic divergence, either adap-
tive or nonadaptive, is associated with at least some 
degree of post-mating isolation, then selection for 
behavioural isolation would occur because it results 
in an optimized allocation of parental resources, i.e., 
avoiding the production of hybrid offspring. Thus, 
the degree of behavioural isolation is expected to 
increase with the geographic and environmental dis-
tance between populations and concomitantly with 
the genetic distance in neutral markers. Notably, 
regardless of how behavioural isolation arises, it is 
expected to reinforce genetic divergence in neutral 
markers, which illustrates the two-way causal links 
that might be at work.

A relatively high number of studies have focused 
on testing premating isolation between phyloge-
netically close species. This includes species stud-
ies in both vertebrates and invertebrates (Schröder & 
Walsh, 2010; Arthur & Dyer, 2015; Carranza et  al., 
2017; Luo et  al., 2017; Cowles & Uy, 2019; Lang-
ton-Myers et al., 2019; Maltseva et al., 2021; Turbek 
et al., 2021) and has sometimes been associated with 
identifying cryptic speciation (Gomez & Serra, 1995; 
Schröder & Walsh, 2007; Juárez et al., 2015; Meguro 
et  al., 2016; Castro Vargas et  al., 2017; Ismail & 
Brooks, 2018). However, the evolution of premating 
isolation between populations within the same species 
has received much less attention (Jiggins et al., 2004; 
Sobel & Streisfeld, 2015; Cruz-Yepez et al., 2020). In 
this sense, microscopic aquatic invertebrates inhabit-
ing spatially fragmented habitats such as lakes, ponds 
and lagoons offer an ideal model to study the effect of 
population isolation on reproductive isolation within 

species. Despite having the potential for high dis-
persal capability due to the small body size (< 1 mm 
length) (Bohonak & Jenkins, 2003; Louette & De 
Meester, 2005; Ventura et al., 2014), they show deep 
genetic divergence, which is a phenomenon known 
as the “dispersal-gene flow paradox” (De Meester 
et al., 2002). At the same time, living in a wide range 
of environmental conditions, local adaptation has 
been described in a variety of zooplankton species 
(Declerck et al., 2001; Declerck & Papakostas, 2016; 
Franch-Gras et al., 2017a).

Brachionus plicatilis Müller 1786 is a cyclical par-
thenogenetic rotifer that inhabits saline and brackish 
ponds. Its predominant type of reproduction is amei-
otic parthenogenesis (Gilbert, 1963; Wallace et  al., 
2015; Serra et  al., 2018). Its natural populations, 
which dwell in the water column temporarily within 
a year, are composed mainly of asexual (also called 
amictic) females. Sexual reproduction is initiated at 
high population densities (Stelzer & Snell, 2003) and 
starts with the production of sexual (mictic) daugh-
ters (Snell & Boyer, 1988). Sexual females, which 
produce meiotic eggs, have two mutually exclusive 
reproductive fates: to become male producers if not 
inseminated by a male while they are young or to 
become diapausing egg producers otherwise (Serra 
et al., 2018). Sexual and asexual females are morpho-
logically identical, but they can be identified accord-
ing to the eggs they carry.

Mating behaviour in rotifers is a three-step 
sequence: male–female encounter, circling and cop-
ulation. As rotifers do not secrete any sexual pher-
omones into the environment (Snell et  al., 1995), 
male–female encounters occur randomly (Snell & 
Garman, 1986). After the encounter, the ciliated 
corona of the male contacts a female’s body (Snell 
& Morris, 1993; Snell et  al., 1995), and the male 
displays a circling behaviour, i.e., swimming around 
the female while maintaining contact by his corona. 
After several circlings, the male locates either the 
female’s corona or the foot opening, and hypoder-
mic insemination takes place (Gomez & Serra, 
1995). The whole mating behaviour can take from 
tens of seconds to several minutes, and the three-
step sequence can be interrupted at any time (Snell 
& Hawkinson, 1983; Snell & Hoff, 1987). A sur-
face glycoprotein (mate recognition protein, MRP) 
present on the female’s body is involved in recogni-
tion of a mate (Snell & Morris, 1993; Snell et  al., 
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1995; Gribble et  al., 2011). Although mate choice 
is mostly driven by males, females may exhibit a 
reaction by varying their resistance to male circling 
(Snell et  al., 2007). Female susceptibility to ferti-
lization and male capacity for fertilization decline 
with age (Snell & Childress, 1987). Male rotifers 
tend to copulate more often with young females but 
show no preference for sexual over asexual females 
(Gomez & Serra, 1996).

In the Iberian Peninsula, populations of the cycli-
cally parthenogenetic rotifer B. plicatilis create an 
ideal system for studying intrinsic factors resulting 
in some level of reproductive isolation. The spe-
cies consists of highly divergent lineages (Gomez 
et  al., 2000), reflecting strong founder effects with 
subsequent resource monopolization by the founder 
genotypes. Additionally, Iberian populations of B. 
plicatilis inhabit highly diversified habitats, from 
ephemeral—and highly environmentally unpre-
dictable—to permanent ponds. They show local 
adaptation affecting their sexual reproduction pat-
terns, adjusting them to variation in environmen-
tal predictability (i.e., high propensity to sex in 
populations with low environmental predictability 
Franch-Gras et  al., 2017a, b). A recent study on 
the diversity of the gene mmr-b, which is involved 
in mate recognition, has shown that despite being 
under stabilizing selection, a correlation is found 
between gene diversification and differences in 
environmental factors when comparing B. plica-
tilis populations (Jezkova et  al., 2022). Brachionus 
plicatilis belongs to a species complex, and the 

divergence of mmr-b among the species of the com-
plex has also been documented (Gribble & Welch, 
2012).

In this research, we tested the hypothesis that 
evolution of premating behavioural isolation occurs 
between populations of the species B. plicatilis. We 
hypothesized that the ecological divergence is cor-
related with that isolation. We used bidirectional no-
choice mating tests to investigate within-species mat-
ing preferences in populations belonging to different 
phylogeographic groups or showing ecological diver-
gence. The results were used to assess the consistency 
of different evolutionary hypotheses, and phylogeo-
graphical and ecological divergences were found to 
play a role in the establishment of behavioural repro-
ductive isolation.

Material and methods

Study populations

We selected two groups of populations of B. plicatilis 
inhabiting shallow ponds in eastern Spain. One group 
was based on known phylogeographic structure, with 
each population belonging to a different clade, and 
the other was based on known differentiation in adap-
tation to local conditions (Table 1). For the group of 
phylogeographically structured populations (PS), we 
chose three populations, each with a dominant hap-
lotype belonging to divergent mtDNA clades and 
showing a high degree of pairwise population differ-
entiation (Gomez et al., 2002) (Table 2). The selected 

Table 1  Studied populations of B. plicatilis and their ponds

Populations are grouped into phylogeographically structured populations (PS) and locally adapted populations (LA)
a Datum EPSG 3857
b Ortells et al. (2000)
c Franch-Gras et al. (2018)

Pond name Acronym Group Pond  locationa Pond 
surface area 
 (km2)

Hoya Rasa RAS LA 38° 47′ N, 1° 25′ W 0.047b

Hoya Yerba HYB LA 38° 46′ N, 1° 26′ W 0.001b

Salada de Chiprana CHI PS 41° 14′ N, 0° 11′ W 0.230c

Salobralejo SAL PS, LA 38° 54′ N, 1° 28′ W 0.360c

Torreblanca Norte TON PS 40° 10′ N, 0° 10′ E 0.012c
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populations were Salada de Chiprana (CHI) from the 
northern clade, Torreblanca Norte (TON) from the 
coastal clade and Salobralejo (SAL) from the south-
ern clade. For the group of locally adapted popula-
tions (LA), we chose three populations belonging to 
the same phylogeographic clade but differing in their 
propensity for sexual reproduction, which correlates 
with environmental unpredictability (Franch-Gras 
et  al., 2017a, 2018). The selected populations were 
Hoya Yerba (HYB), Hoya Rasa (RAS) and Salo-
bralejo (SAL), corresponding to low, medium and 
high predictability, respectively. The pairwise FST 
values of the populations and geographic distances 
between their localities are shown in Table 2.

Clone isolation and culture conditions

The sediment of the ponds was sampled in 2013. Dia-
pausing eggs were extracted from the sediment in 
2017 using a sugar flotation technique (i.e., Gomez 
& Carvalho, 2000), and rotifer clones were estab-
lished from isolated, individually hatched eggs. As 
B. plicatilis belongs to a cryptic species complex, 
hatchlings were taxonomically identified based on 
restriction fragment length polymorphism (RFLP) 
analysis of a fragment of the mitochondrial gene COI 
(Campillo et  al., 2005). Individual clones (30–40 
per population) were maintained in the laboratory 
in 15 ml stock cultures and grown in a culture of the 
microalgae Tetraselmis suecica in artificial seawa-
ter (Instant Ocean® Sea Salt, Aquarium Systems) at 

12  g   l−1 salinity, f/2 enriched medium (Guillard & 
Ryther, 1962), and at 25°C under constant illumina-
tion (PAR: approx. 35 µEm−2  s−1). These conditions, 
hereafter referred to as the standard, were also used 
with minor modifications in the experiments. Every 
week, a small volume of each culture was transferred 
to fresh medium, and the rest was discarded.

Mating experiments

Pre-experimental cultures were established by plac-
ing five asexual, ovigerous females of each clone into 
a flask with 40  ml artificial seawater and T. suecica 
algae at a concentration of 2 ×  105 cells  ml−1. The aim 
was to achieve exponential growth, to induce sexual 
reproduction and to obtain a high abundance of both 
males and females. Thus, the flasks were checked 
daily until sexual reproduction was observed (i.e., 
when the first males were detected, after 4–7 days).

In the mating assays, young individuals (not older 
than 3  h) of both sexes were used to maximize the 
potential for mating responses. To collect virgin new-
borns, eggs were detached from the female’s body by 
vigorous shaking of the flasks. This method has been 
proven efficient and harmless for eggs and hatch-
lings (Gomez & Serra, 1996). The eggs were sorted 
according to their type (smaller—male—and larger—
female—eggs), collected using a micropipette, placed 
separately in the standard conditions with no algae 
addition and allowed to hatch. For each mating assay, 
one clone provided females (25 individuals), and a 

Table 2  Pairwise genetic differentiation and geographic distance between populations

The two upper 3 × 3 hemi-matrices show the FST values from six microsatellite loci obtained in Montero-Pau et al. (2017; for LA) 
and Gomez et al. (2002; for PS). All pairwise FST values were significant at P < 0.001. The lower 3 × 3 hemi-matrices show the geo-
graphic distance in km (see Table 1 for population acronyms)

Group Population Population

SAL RAS HYB

LA SAL – 0.431 0.414
RAS 15 – 0.054
HYB 15 1 –

Group Population Population

SAL TON CHI

PS SAL – 0.52 0.58
TON 198 – 0.59
CHI 280 123 –
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different clone provided males (six individuals). The 
observation protocol followed the experimental setup 
used in Gomez & Serra (1995), but the observation 
time was increased to 10  min. All the females were 
placed together in 50 µl fresh medium at 25°C with 
no algae, and males were added sequentially. After 
the addition of each male, the mating behaviour was 
observed for 10 min and then replaced with another 
male. This was repeated until all six males were used. 
The experimental volume was kept constant, as indi-
vidual males were added and removed in a small vol-
ume of medium of approximately 2 µl. Observations 
were conducted under a stereomicroscope (Olym-
pus SZX10, Japan), and the number of encounters, 
circlings and copulations was recorded according 
to Gomez & Serra (1995) and Snell & Hawkinson 
(1983). We defined an encounter as any physical con-
tact between the male’s corona and the female’s body, 
a circling (implying previous encounter) was recorded 
when the male swam around the female body at least 
once, and copulation occurred when the male pen-
etrated the female’s soft body parts (corona or foot 
opening). Circling always preceded copulations.

Nine population crosses were carried out for each 
population group (PS and LA) using males and 
females in all possible pairwise combinations (i.e., 
three intrademic and six interdemic combinations). 
Each population cross was replicated five times (9 
crosses × 2 population groups × 5 replicates = 90 mat-
ing assays; note that six sequential measures—one per 
male—were obtained for each mating assay). Repli-
cation consisted of changing the clones in the mating 
assays. No clone was used in more than one assay 
within a group (5 populations × 30 clones per popu-
lation = 150 clones). The experiment lasted 4 months, 
and one to two, rarely three, mating assays were 
performed per day. A single observer (I.J.) recorded 
the data between March and July 2018, and a previ-
ous anonymization of the experimental cultures was 
adopted to prevent observation bias.

Data analysis

Variation in individual male activity within an 
assay, albeit included in the experimental proce-
dure, was not considered a factor in our data anal-
ysis (i.e., the counts from six males were summed 
up). For each population combination, we calcu-
lated the average percentage of circlings resulting 

from encounters (hereafter, “circling after encoun-
ter”), the average percentage of copulations result-
ing from circlings (“copulation after circling”) and 
the average percentage of copulations resulting 
from encounters (“copulation after encounter”), the 
last one being a compound of the other two.

We used a GLMM (as implemented in the lme4 
package in R software, version 3.6.2) (Bates et al., 
2015; R Core Team, 2019) to analyse the signifi-
cance of the effects in the experimental design on 
copulations after encounters. Our restriction to 
this response was oriented to avoid dependence in 
our statistical analysis while favouring the biologi-
cal relevance in focus. GLMM was applied sepa-
rately to the PS and LA study groups. Based on the 
Bayesian information criterion, we assumed a bino-
mial error distribution (assessed against a Poisson 
distribution with fate—copulation or not—as an 
additional factor). For the selected distribution, its 
canonical link function (logit) was used. The fac-
tors in the GLMM were (1) male-providing popu-
lation (MP), (2) female-providing population (FP), 
(3) their interaction (MP:FP) and (4) clone pair as 
a random factor. Notice that the MP:FP interac-
tion accounts for a deviation from independence 
(i.e., when a specific population combination devi-
ates from the average copulations after encounters 
of the two populations involved). Therefore, to find 
a behavioural propensity against interdemic mates, 
a significant MP:FP interaction is necessary; how-
ever, the MP:FP effect of intrademic crosses must 
also be higher (i.e., relatively more copulations vs. 
encounters) than in interdemic crosses. Hence, to 
quantify this propensity between population crosses, 
we estimated coefficients associated with the inter-
action effect. These coefficients were obtained by 
additively decomposing the proportion of copula-
tions (vs. encounters) observed in a mating assay. 
The components were (1) a (grand) mean value, (2) 
a component due to the male-providing population 
(mean deviation of that population when providing 
males), (3) a component due to the female-provid-
ing population (mean deviation of that population 
when providing females) and (4) the residual, which 
retains the interaction (MP:FP) and the random 
variation among mating assays. The decomposition 
follows the approach in Tortajada et al. (2009). The 
45 coefficients accounting for the MP:FP interac-
tion for each mating assay in each study group (PS 
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or LA) were inspected to check whether the MP:FP 
of intrademic crosses was higher than that of inter-
demic crosses.

Additionally, to compare with other studies, we 
also computed the relative deficit–excess of inter-
demic copulations using a reproductive isolation 
index (RI, Sobel & Chen, 2014), although it presents 
caveats, such as that this index is affected by the 
indiscriminating mating activity, and mating activity 
might be largely sensitive to the experimental envi-
ronment. RI, computed as follows:

1 − 2
interdemic copulations

total copulations
 (range from − 1 to + 1) indi-

cates the strength of the effective prezygotic barrier 
(opposing gene flow) in the experimental conditions.

One-sided t test on Spearman’s rank correlation 
coefficient using the cor.test function implemented in 
R software, version 4.1.2. (R Core Team, 2021) was 
applied to assess the correlation between our mating 
behaviour metrics (vectors of interaction coefficients 
and RI) and different variables linked to the popula-
tion characteristics (genetic differentiation in neutral 
traits, geographic distance and differentiation in envi-
ronmental predictability, the latter for LA only).

Results

From the observation of the 540 males (90 mat-
ing assays; intrademic and interdemic crosses), we 
recorded 4,318 encounters (LA 2,055; PS 2,263), 
3,191 circlings (LA 1,610; PS 1,581) and 1,850 copu-
lations (LA 853; PS 997). Raw data from the mating 

experiment can be found in Supplementary Table 1. 
The percentages of copulations after encounters are 
shown in Table 3. They averaged 48% for intrademic 
crosses and 42% for interdemic crosses. When com-
paring pairwise intrademic and interdemic crosses 
that share a population, a higher percentage of cop-
ulations was found in intrademic crosses in 15 out 
of 24 comparisons. However, only SAL (in the two 
groups) and HYB (from the LA group) had a higher 
percentage of copulations for intrademic crosses in all 
comparisons (LA group: SAL intrademic 69.5% vs. 
interdemic 19.4–45.0%; HYB intrademic 56.2% vs. 
interdemic 19.4–50.8%, PS group: SAL intrademic 
64.4% vs. interdemic 34.7–59.0%; for disaggre-
gated values, see Table  3). In general, circling after 
encounters and copulation after circling had similar 
qualitative patterns as copulation after encounters 
(Supplementary Fig.  1). An exception was the CHI 
population (PS group), where the percentages of 
copulations after encounters were low and associated 
with high rates of encounter in intrademic crosses, 
while subsequent circlings and copulations did not 
show values remarkably different from those in other 
populations.

The results of the GLMM for copulation after 
encounter showed significant effects for all fixed 
factors [i.e., male-providing population (MP), 
female-providing population (FP), as well as its 
interaction (MP:FP) for each study group (Table 4)]. 
Figure  1 ranks the coefficients for an interaction 
effect obtained from additively decomposing the 
percentage of copulations after encounters. For 
both study groups, the average coefficient is higher 

Table 3  Percentage of copulations after encounters for all population combinations (9 crosses × 5 replicates × 6 males per replicate) 
in the two study groups (SE between parentheses)

Group Male population Female population

SAL RAS HYB

LA SAL 69.50 (0.05) 38.03 (0.06) 41.15 (0.06)
RAS 45.02 (0.09) 40.00 (0.08) 50.82 (0.08)
HYB 19.44 (0.07) 42.45 (0.10) 56.18 (0.08)

Group Male population Female population

TON SAL CHI

PS TON 50.70 (0.10) 58.99 (0.06) 50.00 (0.10)
SAL 34.66 (0.07) 64.44 (0.07) 48.97 (0.06)
CHI 52.36 (0.05) 39.29 (0.06) 24.39 (0.13)
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for intrademic crosses than for interdemic crosses, 
indicating a higher propensity towards intrademic 
over interdemic crosses. This trend was stronger in 
the LA study group than in the PS group. The posi-
tive interaction associated with intrademic crosses 
is largely due to SAL and HYB populations. At the 

same time, in the PS study group, crosses between 
males from CHI and females from TON showed 
rather high positive values (Table  5). The prezy-
gotic isolation index, RI, was in general slightly 
positive for all population combinations, pointing to 
weak behavioural reproductive isolation (Table 6).

Spearman’s correlation between the interaction 
coefficients of the two study groups and population 
characteristics (predictors: difference in environ-
mental predictability, geographic distance and FST 
values in neutral traits) were, except for geographic 
distance in the PS group, significantly negative, as 
expected after a preference for intrademic crosses 
(Table  7). The correlation coefficients between RI 
and the predictors were positive (as expected for a 
preference for intrademic crosses), except for FST of 
microsatellites in the PS group. However, these cor-
relations were not statistically significant.

Table 4  GLMM analysis for copulation after encounters (χ.2, 
df 2)

Study group Factor χ2 P value

LA Female population 40.170  < 0.001
Male population 41.874  < 0.001
Interaction 37.197  < 0.001

PS Female population 21.842 0.001
Male population 21.652 0.001
Interaction 15.364 0.004

Fig. 1  Ranked coeffi-
cients associated with the 
interaction effect for the 45 
population combinations in 
each study group: locally 
adapted (LA) and phylo-
geographically structured 
(PS) groups. The higher the 
value is, the higher the pro-
pensity for mating. Black 
bars: intrademic crosses; 
grey bars: interdemic 
crosses. The average values 
of intrademic and inter-
demic crosses are shown

Table 5  Average values of the coefficients associated with the interaction effect for each population combination

Group Male population Female population

SAL RAS HYB

LA SAL 19.55  − 7.79  − 11.75
RAS 1.36  − 1.15  − 0.21
HYB  − 20.9 8.94 11.96

Group Male population Female population

TON SAL CHI

PS TON 2.42  − 2.8 0.37
SAL  − 15.51 13.79 1.72
CHI 13.08  − 10.99  − 2.09
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Discussion

Our results show that populations of B. plicatilis in 
the Iberian Peninsula evolved a low but not negligible 
level of behavioural mating isolation. These popula-
tions have a deep genetic divergence associated with 
post-glacial recolonization (Gomez & Lunt, 2007; 
Campillo et  al., 2011) and/or ecological divergence 
(Franch-Gras et al., 2017b). We documented the ten-
dency for mating preferences using two metrics: inter-
action coefficients for copulations after encounters 

and the reproductive isolation index, RI. Both metrics 
are qualitatively consistent in suggesting a preference 
for intrademic mating. Positive interaction coeffi-
cients were mostly found for intrademic crosses, and 
RI had mostly positive values (five out of six compar-
isons), indicating a tendency for reproductive isola-
tion. RI values are not expected to be high for popula-
tions of the same species inhabiting the same region. 
The RI between closely related Brachionus species 
ranges from 0.4 to 1.0 (Gribble & Welch, 2012), indi-
cating incomplete behavioural isolation even between 
species. Overall, our results are compatible with the 
presence of partial behavioural isolation among our 
studied populations.

Despite showing the same trend, we regard our 
results on the interaction coefficients for success-
ful encounters as more reliable than comparisons 
based on RI. Estimates of RI might be affected by 
differences in mating activity of the genotypes. As 
male–female encounters are random (Gilbert, 1963; 
Snell & Hawkinson, 1983), this activity depends on 
swimming speed, among other factors. Thus, an effect 
of the laboratory environment on RI is possible if, for 
instance, the environment favours the performance of 
individuals of some populations over others. Thus, 
following the approach in Tortajada et al. (2009), we 
used the interaction coefficients for encounters result-
ing in copulation because they are additive departures 
from the expectancy based on the general mating 
activity of the concerned genotypes. Additionally, 
we focused on copulations resulting from encounters 
because copulations have stronger implications for 
isolation than the other events.

Several mechanisms for behavioural mating isola-
tion between genetically divergent populations have 
been recognized in the literature, namely, genetic drift 
acting on mating behaviour-coding genes (Kaneshiro, 
1980; Carson & Templeton, 1984), indirect selection 
if those genes are physically linked to loci under dis-
ruptive selection and associated with local adapta-
tion (Dobzhansky, 1937 in Gavrilets, 1999; Coyne & 
Orr, 2004) and direct selection if outbreeding fitness 
depression exists (Coyne & Orr, 2004). Conversely, 
when a preference for intrademic mating occurs, it 
should work as an intrinsic gene flow barrier enhanc-
ing genetic divergence. These mechanisms predict a 
negative correlation between genetic differentiation 
and behavioural mating. Our results show signatures 
of such a pattern in the two groups of populations 

Table 6  Prezygotic isolation index (RI) for all the studied 
population crosses in the two study groups

The index ranges from − 1 (complete avoidance of intrademic 
mates) to + 1 (complete propensity towards intrademic crosses)

Study group Population cross RI

LA RAS × HYB 0.017
SAL × RAS 0.047
SAL × HYB 0.076

PS TON × CHI  − 0.054
TON × SAL 0.002
SAL × CHI 0.076

Table 7  Spearman’s rank correlation (ρ) between (1) repro-
ductive isolation metrics (the interaction coefficient after an 
additive decomposition of the proportion of copulation after 
encounters and the reproductive isolation index RI) and (2) the 
predictor variable

A negative correlation is expected when intrademic preference 
exists  (H0: ρ = 0,  H1: ρ < 0)
A positive correlation is expected when intrademic preference 
exists  (H0: ρ = 0,  H1: ρ > 0)
P value after unidirectional.a,b asymptotic t approximation

Group Variable Interaction 
 coefficienta

RIb

ρ P value ρ P value

LA FST microsat-
ellites

 − 0.339 0.011 0.500 0.500

Geographic 
distance

 − 0.410 0.003 0.866 0.167

Difference in 
environmen-
tal predict-
ability

 − 0.450  < 0.001 1.000 0.167

PS FST microsat-
ellites

 − 0.254 0.046  − 0.500 0.833

Geographic 
distance

0.139 0.818 1.000 0.167



3307Hydrobiologia (2022) 849:3299–3311 

1 3
Vol.: (0123456789)

studied here. The pattern is supported by our Spear-
man correlation analysis on the interaction coeffi-
cients, suggesting that, whichever the mechanisms at 
work are, their effects are stronger than the stabilizing 
selection expected to act on the mate recognition sys-
tems (Brooks et al., 2005; Smadja & Butlin, 2009), a 
selection whose benefit is to not become unrecogniz-
able for a potential partner. Our results contrast with 
those of Berrieman et al. (2005), who, using a single 
clone for each of four populations, did not find evi-
dence for reproductive isolation between the northern 
and southern Iberian clades of B. plicatilis.

By comparing the two experimental groups of 
populations, our results provide insights into the 
association of behavioural mating isolation with IBE 
and IBD. First, signatures for intrademic mating pref-
erences are stronger in the LA group than in the PS 
group, despite the former populations belonging to 
the same phylogeographic clade (Gomez et al., 2002) 
and lying in geographical proximity. This suggests a 
stronger association of mating behaviour with IBE 
than with IBD and contrasts with the strong evidence 
for IBD in Iberian B. plicatilis populations when neu-
tral markers were studied (Gomez et al., 2002). Sec-
ond, we did not find a significant correlation between 
geographic distance (IBD) and mating isolation in 
the PS group, while in the LA group, mating isola-
tion was slightly more correlated with environmen-
tal divergence than with geographic distance. With 
both predictors being collinear, the correlation with 
geographic distance in LA is likely spurious to some 
extent. As another piece of evidence, genetic differen-
tiation in the mmr-b gene, which codes for the recep-
tor responsible for mating recognition, increases with 
ecological distance (Jezkova et al., 2022).

There are several findings worthy of note. (1) The 
populations with the lowest differentiation in neutral 
traits (RAS–HYB; Montero-Pau et al., 2017) showed 
no mating discrimination when considering the RI 
index or even preference for interdemic crosses in 
the case of interaction coefficients. The localities of 
these two populations are situated very close to each 
other (< 1  km) and are likely to frequently merge. 
This suggests the role of migration in blurring dif-
ferentiation. (2) Due to the historical colonization 
pattern, the coastal lineage and the northern lineage 
are the closest lineages (Gomez et  al., 2000; Serra 
et al., 2019). This could explain why mating between 
TON and CHI (from the coastal and northern clades, 

respectively) shows lower avoidance of interdemic 
crosses than shown by mating between either popu-
lation with SAL (the southern clade). (3) In both 
population groups, the SAL population drives the 
most distinguishable pattern of behavioural isolation, 
so the caveat is whether our argument is based only 
on one single population. We notice, however that 
behavioural isolation in the SAL–HYB pair is higher 
than that in the SAL–RAS pair, which is the expected 
ranking in an IBE scheme.

The association between IBE and mating isolation 
found herein makes the question of selection of iso-
lation (Butlin, 1987) worthy of investigation in these 
rotifers. An important condition for selection for pre-
mating isolation is that the intensity of the potential 
gene flow must be intermediate, meeting a balance 
between the homogenizing effect of extensive gene 
flow and lack of gene flow (no need for selection 
for isolation; (Nosil, 2013; Yukilevich, 2012). Even 
if direct measures of migration rates for rotifers are 
scarce (Lopes et  al., 2016; Moreno et  al., 2019), a 
gradient of rates is most likely in populations such as 
those in the LA group.

In our research, we focused on behavioural mat-
ing isolation as a premating (i.e., low-cost) intrinsic 
barrier. As anticipated above, other intrinsic barri-
ers not captured here might be involved in premat-
ing isolation in the wild. In Brachionus rotifers, the 
beginning of sexual reproduction is triggered by the 
accumulation of a crowding chemical signal in the 
environment (Snell et  al., 2006; Snell, 2017). While 
it was shown that the signal is rather conservative and 
sex can be cross-induced between species (Stelzer & 
Snell, 2006; García-Roger et al., 2009), the threshold 
concentration varies even among genotypes of a sin-
gle species (Franch-Gras et al., 2017a). These differ-
ences could affect the timing of sex, thereby promot-
ing reproductive isolation between immigrants and 
residents via their allochronic sexual periods.

How populations differentiate, become locally 
adapted and eventually diverge into distinct species 
are persistent questions in evolutionary biology, and 
their answer depends upon a panoply of processes 
acting in opposing directions, with complex inter-
actions due to causal feedbacks and having differ-
ent strengths in relation to organisms and habitat 
features. The taxon of cyclically parthenogenetic 
rotifers harbours high species richness, and the few 
well-studied species in the taxon are clusters of 
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genetically differentiated and locally adapted popu-
lations. Our results suggest that isolation may arise 
associated with genetic divergence and might play a 
role in the diversification of rotifers. We neverthe-
less remark that behavioural isolation is just a piece 
of the premating isolation puzzle.
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