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and macroinvertebrate fauna. Independently from 
the season, the two bivalves showed a limited trophic 
overlap, as mixing models indicated for D. polymor-
pha a diet based primarily on phytoplankton, while 
A. anatina relied mainly on SOM. Dietary differences 
were less marked in summer, when comparable iso-
topic values characterized phytoplankton and SOM. 
In winter, conversely, the trophic differentiation 
between the two species was more evident, and cor-
responded with a significant enrichment in SOM δ13C 
values, likely due to a substantial contribution of car-
bon deriving from decaying macrophytes. Whether 
differences in ecological and behavioral traits alone 
can explain the observed trophic segregation between 
the two species, or if they have actively shifted their 
diet to reduce competition for food is discussed. We 
conclude emphasizing the need of an advanced reso-
lution of the influence of non-indigenous species on 

Abstract  Non-indigenous freshwater bivalves 
negatively affect invaded ecosystems through differ-
ent mechanisms, including inter-specific competition 
for trophic resources. Here, we investigated in Lake 
Trasimeno (Central Italy) the diet of the invasive Dre-
issena polymorpha and the native Anodonta anatina. 
δ15N and δ13C stable isotopes were measured in win-
ter and summer in bivalves, phytoplankton, and sedi-
mentary organic matter (SOM); the relative dietary 
contributions of the two resources were determined 
using Bayesian mixing models. To elucidate the dif-
ferent carbon and nitrogen pools characterizing the 
study site, isotopic analyses were extended to zoo-
plankton and to representatives of the benthic flora 
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the flux of energy and matter in invaded lentic sys-
tems, including Lake Trasimeno.

Keywords  Biological invasions · Trophic 
competition · δ13C and δ15N · Mixing models · 
Carbon dynamics · Lentic systems

Introduction

With the exception of Antarctica, freshwater bivalves 
(including the orders Unionida, Venerida, Mytilida, 
and Myida) are distributed throughout all continents 
where they are acknowledged to exert a critical influ-
ence on the structure and function of lotic and lentic 
ecosystems (Lopes-Lima et al., 2018). Indeed, besides 
providing a dominant contribution to the benthic bio-
mass, bivalves can affect the abundance of bacteria, 
particulates, and primary producers in the water col-
umn through top-down effects, ultimately influencing 
nutrient cycling (Taylo et  al., 2015; Vaughn, 2018; 
McDowell & Sousa, 2019 and literature cited). In 
addition, they can act as ecosystem engineers, alter-
ing the physical structure of the benthic environment 
via bioturbation or creating colonizable biogenic sub-
strates (Vaughn & Hakenkamp, 2001; Boeker et  al., 
2016; Ilarri et al., 2019).

Among freshwater bivalves, Unionida have 
declined dramatically in recent decades and are cur-
rently considered one of the most threatened taxo-
nomic groups worldwide (Dudgeon et  al., 2006; 
Lopes-Lima et  al., 2014b; Ferreira-Rodríguez et  al., 
2019). The remarkable declines in spatial distribution, 
abundance, and species diversity have been related to 
a suite of anthropogenic disturbances, including habi-
tat loss and fragmentation, water quality degradation, 
overexploitation, and climate change; the introduction 
of invasive species has been emphasized as a further, 
important threat to the conservation of native Unio-
nida (Lopes-Lima et  al., 2017, 2018; Böhm et  al., 
2021). Invasion impacts on native bivalves have been 
generally related with a number of factors, including 
differential ability to respond to abiotic (e.g., envi-
ronmental stress) and biotic pressures (e.g., predators 
including parasites), modification of the physical or 
biogeochemical conditions of the substrate and water 
column, as well as competition for space (Sousa et al., 
2014; Bielen et  al., 2016; Ożgo et  al., 2020; Taski-
nen et  al., 2021). In addition, a number of reviews 

and long term studies have suggested that invasive 
bivalves—dreissenid mussels in particular—may be 
superior competitors in food acquisition due to, e.g., 
more flexible diets, or higher ability and efficiency to 
exploit trophic resources (Higgins & Vander Zanden, 
2010; Sousa et al., 2014; Strayer and Malcom, 2018). 
Evidence supporting this scenario is still relatively 
limited (Makhutova et al., 2013; Novais et al., 2016; 
Douda & Čadková, 2018; Modesto et al., 2021), and 
further experimental investigations are needed to ver-
ify under field conditions the potential occurrence of 
exploitative food competition for invasive and native 
bivalves.

Here, we compared the diets of the invasive zebra 
mussel Dreissena polymorpha (Pallas, 1771) (Myida) 
and of the native duck mussel Anodonta anatina 
(Linnaeus, 1758) (Unionida) occurring in sympa-
try in Lake Trasimeno (Central Italy). Complete 
information on the biology, ecology, and invasion 
history of D. polymorpha is provided in Karatayev 
et al. (2007) and in Nalepa and Schloesser (2019). In 
brief, the species is characterized by a high fecundity 
(2.7–10 × 105 eggs produced per female per reproduc-
tive season), with planktonic free-swimming larvae 
and benthic sessile adult stages, reaching a typical 
shell length of 20–30 mm in 3–4 years. In the last two 
centuries, D. polymorpha has spread from the native 
Ponto-Caspian Basin toward North American and 
European freshwaters at alarming rates (Karatayev 
et  al., 2015). The invasion has caused considerable 
concern worldwide due to the impacts observed in 
both lotic and lentic environments, related to, e.g., 
negative effects on the structure of native communi-
ties as well as on energy and element fluxes across 
trophic levels (Ricciardi et  al., 1996; Burlakova 
et al., 2000; Caraco et al., 2006; Sousa et al., 2011). 
In Italy, the dreissenid was first reported from Lake 
Garda in the early ‘70s (Giusti & Oppi, 1972); it was 
subsequently observed in Lake Trasimeno in 1999 
(Spilinga et al., 2000), probably introduced by trans-
fer of recreational boats, fish restocking, and aqua-
culture practices (Charavgis and Cingolani, 2004). 
The species is currently found almost ubiquitously in 
the basin on rocks and artificial substrates as well as 
on soft bottoms at high densities (up to 200.000 ind. 
m-2: Lancioni and Gaino, 2006; Goretti et al., 2020b). 
Anodonta anatina, as other unionids, has a complex 
life cycle involving internal fertilization, larval stages 
(glochidia) brooded by females (or hermaphrodites) 
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in gill chambers, and subsequent release (3–4 × 105 
glochidia per individual) as fish ectoparasites com-
pleting their metamorphosis to young mussels in the 
host (Kat, 1984; Niemeyer, 1993). Adults are charac-
terized by an indeterminate growth and can live up to 
13 years reaching a shell length of more than 100 mm 
(Zieritz and Aldridge, 2011; Müller et al., 2021). The 
species has a pan-European distribution (Graf, 2007) 
and occurs in lakes and slow-flowing lotic environ-
ments throughout northern and central Italy, includ-
ing Lake Trasimeno (Froufe et al., 2017).

Dreissena polymorpha and Anodonta spp. are sus-
pension feeders with diets primarily based on phyto-
plankton (Bastviken et al., 1998; Bontés et al., 2007; 
Naddafi et  al., 2007; Lopes-Lima et  al., 2014a) that 
can be supplemented with a diverse spectrum of alter-
native resources, including organic particulate re-
suspended from bottom sediments (Raikow & Ham-
ilton, 2001; Strayer et al., 2004; Vaughn et al., 2008; 
Cole and Solomon, 2012). Exploitative competition 
for food has been repeatedly suggested to explain 
the negative impacts exerted by the zebra mussel on 
native unionid bivalves including species of the genus 
Anodonta (Strayer and Smith, 1996; Baker and Lev-
inton, 2003; Strayer & Malcom, 2018). In the past 
decade, the analysis of bulk carbon and nitrogen sta-
ble isotopes (SIA hereafter) has provided valuable 
insights into the origin and nature of bivalve trophic 
ecology (among others, Atkinson et al., 2010; Brauns 
et  al., 2021). Accordingly, in the present study, we 
measured δ15N and δ13C stable isotope values of soft 
tissues of D. polymorpha and A. anatina from a lit-
toral site in Lake Trasimeno and of their potential 
pelagic and benthic trophic resources, i.e., phyto-
plankton and organic matter of sedimentary origin 
(SOM hereafter). Bayesian mixing models were fur-
ther used to quantify the relative contribution of the 
resources to the diets the two bivalve species and, 
ultimately, verify their degree of dietary overlap and 
potential trophic competition.

Given the shallowness of Lake Trasimeno and its 
susceptibility to sediment resuspension events (see 
further in the next section), we posited that SOM may 
contribute to the diet of the bivalves in particular in 
winter months, when phytoplankton abundance is low 
and wind-induced resuspension of bottom sediments 
increases remarkably (Ludovisi & Gaino, 2010; 
Bresciani et  al., 2020). To this end, isotopic analy-
ses were repeated in August and February to verify 

the effect of seasonal variations in the availability of 
pelagic and benthic organic matter sources on the die-
tary habits of the two species. In addition, to contex-
tualize the results and provide a more comprehensive 
understanding of the contribution of different sources 
to carbon and nitrogen dynamics in the lake littoral 
zones, stable isotope analysis was extended to zoo-
plankton together with other representative plant and 
invertebrate taxa occurring at the study location.

Material and methods

Site description

The study was performed in Lake Trasimeno 
(43.133283°N, 12.100064°E, Central Italy; Fig.  1). 
Details on the lake’s morphometric and hydrologi-
cal characteristics can be found in Ludovisi & Gaino 
(2010) and in Bresciani et  al. (2020). In brief, the 
basin is located 257  m above sea level and is the 
largest laminar lake in Italy (124 Km2). It is shallow 
(average depth: 4.7 m, maximum depth: 6.3 m), has a 
single artificial outlet, and is fed by several ephemeral 
creeks. Given the relatively small extent of the water-
shed (396 Km2), its hydrological regime is driven by 

Fig. 1   Lake Trasimeno. The figure includes a digital elevation 
map of the area surrounding the basin; the location where the 
study was performed is also indicated
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precipitation, and strong seasonal and inter-annual 
oscillations in water level and quality are observed 
(Ludovisi & Poletti, 2003; Ludovisi & Gaino, 2010). 
The lake is mesoeutrophic and phosphorous-limited, 
and late-summer phytoplankton blooms are typi-
cally observed. In addition, it is polymictic with no 
significant thermal stratification during the year and 
frequent wind-driven sediment resuspension events in 
winter months (Ludovisi & Gaino, 2010; Gaino et al., 
2012; Bresciani et al., 2020).

The littoral zones are generally muddy, with dense 
beds of aquatic macrophytes belonging to the genera 
Stuckenia, Myriophyllum, and Vallisneria extending 
seasonally in particular along the southern coasts of 
the lake (Marchegiano et al., 2017). The macroinver-
tebrate community is composed of a diverse assem-
blage of annelid, mollusc, insect, and crustacean taxa 
including the invasive decapod Procambarus clarkii 
(Girard, 1852) and amphipod Dikerogammarus villo-
sus (Sowinsky, 1894) (Goretti et  al., 2014; VV.AA., 
2015; Catasti et al., 2017; Goretti et al., 2020b; Man-
cini et al., 2021). Native bivalves comprise the spha-
eriid Sphaerium corneum (Linnaeus, 1758) and the 
unionids Unio elongatulus C.Pfeiffer, 1825, Anodonta 
anatina, A. cygnea (Linnaeus, 1758), and A. exulcer-
ata Porro, 1838 (VV.AA., 2015; Froufe et al., 2017).

Sample collection

Sampling operations were carried out on August 20th, 
2015, and on February 4th, 2016, in the southern 
sector of the basin in the locality of Sant’Arcangelo 
(43.089788° N, 12.156246° E; Fig.  1). To collect 
phytoplankton and zooplankton under conditions of 
high-water clarity and minimum sediment resuspen-
sion, sampling dates corresponded with days always 
preceded by at least 72 h of good weather and low/
negligible wind speed. The sampled area, representa-
tive of the general benthic conditions characterizing 
the littoral environments of the lake (Marchegiano 
et  al., 2017; Goretti et  al., 2020a), was located in a 
shallow embayment (approximate mean depth = 1 m) 
with muddy bottoms and artificial rocky shores. The 
riparian vegetation was mainly represented by stands 
of the common reed Phragmites australis (Cav.) Trin. 
ex Steud. 1841 while Myriophillum spicatum L., 
Stuckenia pectinata (L.) Böerner, and Vallisneria spi-
ralis L. dominate among submerged macrophytes. In 
winter, large natural accumulations of leaf litter and 

organic detritus originating from the aforementioned 
floral species are generally found along the shores 
and bottoms (Mancinelli et al., 2018).

At each sampling occasion, plankton samples were 
taken at approximately 50  m from the coast from a 
pier extending in the embayment. Five 6-L samples 
of surface water (0–50 cm) were collected by a hand-
held Ruttner bottle and transported to laboratory 
for phytoplankton analyses in refrigerated contain-
ers. In addition, five 200-L samples of surface water 
were collected using a diaphragm suction pump and 
filtered in situ on a 50 μm mesh size screen for zoo-
plankton analyses.

Thirty individuals of D. polymorpha were ran-
domly scraped from submerged rocks and artificial 
structures, while A. anatina specimens were hand-
collected by wading. Since sampling operations 
imposed a significant disturbance of the embayment 
soft bottoms, ultimately making increasingly difficult 
the detection of specimens, five Anodonta individu-
als were collected per sampling occasion. A pond net 
(mesh size = 1  mm) was swept five times through 
submerged macrophytes and leaf litter accumulations 
to collect samples of the dominant plant and mac-
roinvertebrate species. After collection, all floral and 
faunal samples were placed, depending on individual 
size, in Falcon tubes or in other plastic buckets in fil-
tered lake water and sealed. In addition, samples of 
the superficial sediment layer (6 replicates per season) 
were collected using a methacrylate core (400  mm 
length, 114 mm ϕ) driven into the sediment to a depth 
of approximately 10 cm. The core was extracted after 
sealing its upper end and the overlying water was 
removed by aspiration to avoid resuspension. Subse-
quently, the superficial layer (0-1  cm) of each core 
was gently scooped with a plastic spoon and collected 
in Falcon tubes, while the remaining sediment was 
transferred in plastic bags. All collected samples were 
stored in refrigerated containers (4 °C) until transfer 
to the laboratory.

Laboratory procedures

Water samples collected for phytoplankton analysis 
were filtered through GF/C fiber glass filters (1.2 μm 
mesh size). The samples collected for zooplankton 
analysis were centrifuged in order to remove floating 
particles and filamentous algae, prior to be filtered 
through GF/C fiber glass filters (1.2 μm mesh size). 
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For both phytoplankton and zooplankton, the material 
collected on the GF/C filters was examined using an 
inverted microscope (×200 magnification for phyto-
plankton and ×40 for zooplankton) to qualitatively 
confirm the dominance of phyto- or zooplanktonic 
organisms over other sestonic material. Once exam-
ined, the material retained by the filters was gently 
scraped with a scalpel and dried in Eppendorf tubes 
at 60 °C for at least one week. Identical drying con-
ditions were applied to all the remaining plant and 
animal samples. Plants were identified to species 
level and rinsed in distilled water to remove extrane-
ous materials. All sediment samples were sieved on a 
1-mm screen to collect invertebrates for later identifi-
cation and analysis. Superficial sediment layer sam-
ples were sieved and homogenized, while leaf litter 
and other macroscopic detrital particles (coarse par-
ticulate organic matter, CPOM hereafter) retained in 
the sieve were collected. All plant and sediment sam-
ples were eventually dried (60 °C, > 1 week).

In general, invertebrates were identified to spe-
cies level using conventional taxonomic keys and 
enumerated; they were subsequently kept in dis-
tilled water for 12 h to clear gut contents and eutha-
nized by thermal shock (−  80  °C for 10  min). Sub-
sequently amphipods, decapods, chironomids, and 
oligochaetes (see Results) were individually dried 
(60 °C, > 1 week). A calliper was used to measure to 
the nearest mm the shell length of euthanized D. pol-
ymorpha specimens as the distance between posterior 
to anterior tips along the median axis; bivalves were 
then dissected and had their foot excised and dried 
(60 °C, > 1 week). Noticeably, for A. anatina, classi-
cal taxonomic keys were inadequate in providing an 
unquestionable identification of the sampled individ-
uals, given the high intraspecific variability in mor-
phometric traits generally observed in species belong-
ing to the genera Anodonta (Guarneri et  al., 2014; 
Riccardi et al., 2019). Accordingly, after shell length 
measurement, the excised foot of each individual was 
divided into two subsamples. The first subsample was 
dried as previously described; the second was pre-
served in ethanol 70% at − 20  °C and subsequently 
subjected to molecular species attribution performed 
through PCR–RFLP (PCR-restriction fragment length 
polymorphism) on the nuclear locus ITS1(internal 
transcribed spacer) specifically chosen to avoid DUI 
(doubly uniparental inheritance) problems. Total 
DNA was isolated individually in duplicate from the  

foot subsample using the Wizard® Genomic DNA 
Purification Kit (Promega) by means of a modified 
protocol (Lucentini et al., 2010) and the quantity and 
quality of DNA were assessed on 1% agarose gel and 
by spectrophotometric analysis, as already used for 
other bivalve species (Lucentini et al., 2010). Ampli-
fication and digestion of ITS1 region were carried 
out following Zieritz et  al. (2012) to unequivocally 
assign each individual to a species by means of a 
validated PCR–RFLP protocol. Restriction products 
were checked by electrophoresis in 2.2% TBE buffer-
agarose gel containing SafeView Nucleic Acid Stain 
(NBS Biologicals) and visualized under UV light. 
The totality of the examined Anodonta specimens 
was identified as A. anatina.

Stable isotope analysis

All oven-dried samples were ground to a fine pow-
der with a mortar and pestle. Each sediment sample 
was preventively split into two aliquots, one of which 
was acidified (HCl, 2 N) using the drop-by-drop pro-
cedure to remove carbonates (Jacob et  al., 2005). 
Consequently, subsamples of different sizes were 
taken from each taxon/matrix [i.e., macrophytes: 
3.1 ± 0.1 mg; sediment: 29.1 ± 0.1 mg (non-acidified) 
and 9.9 ± 0.1 mg (acidified); phytoplankton and zoo-
plankton: 2.8 ± 0.4  mg; bivalves, amphipods, deca-
pods, oligochaetes, and chironomids: 2.1 ± 0.1  mg] 
and pressed into ultra-pure tin capsules (Costech 
Analytical Technologies). Multiple specimens were 
pooled when single individuals did not provide a 
sufficient mass for the subsample (see Table  1 in 
Results). Carbon and nitrogen stable isotope val-
ues were determined using an Elemental Analyser 
(Thermo Scientific Flash EA 1112) connected with 
an Isotope Ratio Mass Spectrometer (Thermo Scien-
tific Delta Plus XP). Concentrations of total carbon 
(C) and nitrogen (N) were expressed as g Kg−1 tissue 
dry weight; isotopic values were expressed in conven-
tional per mil δ notation in relation to international 
standards (PeeDee Belemnite for carbon and atmos-
pheric N2 for nitrogen). Analytical precision based on 
the standard deviation of replicates of internal stand-
ards (International Atomic Energy Agency IAEA-
NO-3 for δ15N and IAEA-CH-6 for δ13C) was 0.2‰ 
for both δ13C and δ15N. Acidified samples were used 
to measure sediment δ13C values, while untreated 
samples were used for δ15 N values.
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Some animal taxa showed a C:N ratio higher than 
3.5–4 (Table S1, online information), thus indicating 
a considerable contribution of lipids to tissues carbon 
pool (Post et  al., 2007). Lipids are depleted in 13C 
compared to proteins and carbohydrates and may sig-
nificantly bias δ13C estimations (Logan et al., 2008). 
Accordingly, in samples with C:N > 3.5, δ13C values 
were corrected for lipid content using the correction 
algorithms based on tissue C:N ratios proposed by 
Syväranta & Rautio (2010) for zooplankton and by 
Post et al. (2007) for the remaining samples.

Data analysis

In general, values in the text are expressed as 
means ± 1SD if not otherwise specified. All statisti-
cal procedures were implemented in the R statisti-
cal environment development (ver. 4.1.1; R Devel-
opment Core Team, 2021). Two-tailed Student’s 
t-tests (α = 0.05) were used to check for seasonal or 
inter-specific differences in δ13C and δ15 N values in 
phytoplankton, SOM, and in the two bivalves; data 
were tested for conformity to assumptions of vari-
ance homogeneity (Cochran’s C test) and normality 
(Shapiro–Wilks test) and transformed when required. 
Given the relatively low sample sizes (Table  1), the 
R software pwr (Champely et al., 2020) was used to 
perform a power analysis for each test showing a sig-
nificant outcome (see Results). Without exceptions, 

the analyses indicated that the power to detect the 
observed effects at the 0.05 level was always > 93%.

A two-member Bayesian mixing model was imple-
mented to determine the proportional contribution of 
phytoplankton and SOM to the diet of each bivalve 
species using the R package SIMMR (Parnell, 2020). 
SIMMR includes an updated Bayesian mixing algo-
rithm based on the SIAR package (Parnell et  al., 
2010) to produce a probability distribution that rep-
resents the likelihood a given food source contrib-
utes to the consumer’s biomass. In addition, similar 
to SIAR, it produces a range of feasible solutions to 
the mixing problem to which are assigned credibility 
intervals (CIs) (in this study, 95% CI; Parnell et  al., 
2010). Within the SIMMR framework, δ13C and δ15N 
values were adjusted for one trophic level. The iden-
tification of appropriate trophic enrichment factors 
(hereafter TEF) is a key issue in isotopic ecology, as 
they significantly affect the output of mixing model 
procedures (Phillips et al., 2014). Taxonomy and the 
nature of the diet are among the sources of variabil-
ity that may influence TEFs (Vanderklift and Ponsard, 
2003; Caut et al., 2009; Brauns et al., 2018), impos-
ing, when possible, the use of specifically determined 
values (see, e.g., Annabi et al., 2018; Twining et al., 
2020). The carbon and nitrogen TEF values for one 
trophic level used here (i.e., Δδ13C = 0.8 ± 1‰, 
Δδ15N = 3.6 ± 0.9‰, n = 8) were calculated as the 
average of the values collated by Brauns et al. (2018) 

Table 1   Trophic sources 
(including primary 
producers) and consumers 
collected in Lake Trasimeno 
in summer and winter

The acronyms used in Fig. 2 
to indicate the different taxa 
are included. Sample sizes 
for stable isotope analysis 
are reported; for consumers, 
the number of specimens 
originally collected is 
indicated in brackets

Trophic sources Phylum Acronym Summer Winter

Chara globularis Thuill Charophyta cha 5 –-
Cladophora glomerata (L.) Kütz Chlorophyta cl 5 –-
Myriophyllum spicatum L Tracheophyta my 5 –-
Stuckenia pectinata (L.) Börner Tracheophyta st 3 –-
Vallisneria spiralis L Tracheophyta va 4 –-
Leaf litter / plant detritus CPOM –- 3
Phytoplankton ph 5 5
Sedimentary organic matter SOM 6 6
Consumers
 Anodonta anatina (Linnaeus 1758) Mollusca an 5 5
 Branchiura sowerbyi Beddard, 1892 Annelida br 3 (8) 3 (7)
 Chironomus plumosus Linnaeus, 1758 Arthropoda chi 3 (22) 3 (17)
 Dreissena polymorpha (Pallas, 1771) Mollusca dr 5 (30) 8 (30)
 Echinogammarus veneris (Heller, 1865) Arthropoda ec 7 (16) 4 (9)
 Procambarus clarkii (Girard, 1852) Arthropoda pr 6 –-
 Zooplankton zo 5 5
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from laboratory studies on marine bivalves feeding 
on phytoplankton, implemented with data from Kasai 
et  al. (2016) on the freshwater venerid Corbicula 
sandai Morelet, 1886 (Table  S2, online informa-
tion). 10,000 simulations per model were run; Gel-
man diagnostics were carried out on models output 
to determine whether confidence intervals were com-
prised between 1 and 1.1, and a higher number of 
simulations were performed if necessary.

To express the results of the simulations only 
in terms of mean contributions of each source with 
standard deviations may hide multimodality or the 
extent of variations in dietary preference within con-
sumer populations (Semmens et  al., 2013). Accord-
ingly, for each potential resource, the results were 
presented as mean contributions as well as probability 
densities of proportional dietary contributions using 
the density plot function in SIMMR. Posterior prob-
abilities of similarity (POS), defined as the Bayesian 
probability that two proportional dietary contributions 
are identical (Blasco & Blasco, 2017), were estimated 
to verify for the two bivalve species whether in each 
sampling occasion phytoplankton and SOM provided 
significantly different contributions to the respective 
diets. In addition, since the sample size of bivalve 
consumers employed here for isotopic analysis (5–8; 
Table1) represents the lower boundary considered 
appropriate for the implementation of a two-member 
Bayesian mixing model procedure (Ward et al., 2011; 
Phillips et al., 2014; see also Kadoya et al., 2012), the 
R package samplesim (Casajus et al., 2021) was used 
to investigate the effect of sample size on estimates 
and precision of stable isotope mixing solutions. In 
brief, the package allows to modify samples sizes 
assuming a normal distribution of a given mean and 
standard deviation. Samples of different sizes are cre-
ated from the distribution, and mixing proportions are 
estimated using the SIAR algorithm for multiple rep-
licates of each sample size. Here, we used 999 repli-
cates with sample sizes = 5, 10, 20, 40, and 80.

Concentration dependencies were not incorporated 
in the models because elemental concentration values 
in SOM were expected to be extremely diluted given 
the low percentage of organic matter (max 7% in dry 
weight; estimated as weight loss on ignition at 450 °C 
for 6  h; Mancinelli unpublished data); therefore, 
using concentration dependencies would have unreal-
istically and abnormally increased the contribution of 
this source (Raoult et al., 2018).

Results

Dreissena polymorpha, Anodonta anatina, phyto-
plankton, zooplankton, and SOM samples were col-
lected on both August and February, together with the 
dipteran Chironomus plumosus (Linnaeus, 1758), the 
amphipod Echinogammarus veneris (Heller, 1865), 
and the non-indigenous oligochaete Branchiura sow-
erbyi (Beddard, 1892) (Table  1). Five species of 
aquatic macrophytes and six juvenile specimens of 
the non-indigenous Louisiana crayfish Procamba-
rus clarkii (ranging between 24 and 32  mm in total 
length measured from the tip of the rostrum to the 
rear edge of telson; Mancinelli, personal observa-
tion) were collected only in August, while CPOM 
was collected in significant amounts only in Febru-
ary (Table 1). On average, D. polymorpha individuals 
collected in February were significantly larger than 
in August (17.6 ± 5.9 vs. 13.2 ± 3.6 mm shell length; 
t-test, t = 4.3, P < 0.0001, 58 d.f.), while for A. ana-
tina specimens, differences in size between the two 
sampling occasions were negligible (94.7 ± 13.9 vs. 
88.4 ± 11.8 mm in February and August, respectively; 
t = 1.1, P = 0.34, 8 d.f.).

In August, phytoplankton and SOM showed com-
parable δ15  N values (5.5 ± 0.4‰ vs. 5.4 ± 0.3‰; 
t-test, t = 0.5, P = 0.62, 9 d.f.), but differed in δ13C 
(t = 4.5, P = 0.003, 9 d.f.), with more depleted val-
ues observed for SOM than for phytoplankton 
(−  27.2 ± 0.5‰ vs. −  25.7 ± 0.4‰; Fig.  2A). Mac-
rophytes, in contrast, showed highly enriched δ13C 
values (Fig.  2A), ranging between −  20.7 ± 0.6‰ 
[Cladophora glomerata (L.) Kütz.] and -11.9 ± 1.7‰ 
(Chara globularis Thuill.), and variable δ15  N val-
ues ranging between 1.9‰ (Myriophyllum spica-
tum) and 5.8‰ (Cladophora glomerata). Depleted 
δ13C values consistent with those of SOM and phy-
toplankton were observed for zooplankton, as well 
as for the deposit-feeders Chironomus plumosus and 
Branchiura sowerbyi; in contrast, crustaceans (i.e., 
Echinogammarus veneris and Procambarus clarkii) 
showed enriched δ13C and δ15  N values consistent 
with those generally determined for macrophytes 
(Fig. 2A).

In February, phytoplankton showed negligible 
variations in δ15  N compared to August (t = 1.27, 
P = 0.12, 8 d.f.), while a limited (1.2‰ on aver-
age), yet significant depletion was observed for δ13C 
(t = 2.39, P = 0.02, 8 d.f, Fig. 2B). Conversely, SOM 



2098	 Hydrobiologia (2022) 849:2091–2108

1 3
Vol:. (1234567890)

isotopic values varied significantly between sea-
sons, showing more depleted δ15 N values (t = -9.53, 
P < 0.0001, 10 d.f.) and enriched δ13C values (t = 21.4, 
P < 0001, 10 d.f.) in February than in August. Car-
bon isotopic values, in particular, were enriched by 
approximately 5.8‰, and were consistent with those 
observed for living macrophytes in August (Fig. 2A) 
and for CPOM collected in February (Fig. 2B).

δ13C and δ15 N in Dreissena polymorpha showed a 
temporal pattern of variation generally mirroring that 
of phytoplankton (Fig. 2A and 2B), even though the 
species showed more depleted δ13C and δ15 N values 
in February than in August (t-tests, P always < 0.05). 
Similarly, δ13C and δ15  N values in Anodonta ana-
tina varied remarkably between the two sampling 
occasions (Fig. 2A and 2B; t-tests, P always < 0.05). 
In particular, a significant enrichment in 13C was 
observed in February, consistent with that observed 
for SOM (Fig.  2B); noticeably, similar patterns of 
variation characterized the zooplankton as well as C. 
plumosus and B. sowerbyi (Fig.  2B). The results of 
SIMMR indicated that in August phytoplankton was 
included in the diet of both D. polymorpha and A. 
anatina (Table 2; Fig. 3A); however, its contribution 
varied considerably, being dominant for D. polymor-
pha (70% and 77%, mean and median proportional 
contribution), while being approximately 30% (23% 
median contribution) for A. anatina, for which SOM 
appeared to prevail in the diet (Table 2). Noticeably, 
for D. polymorpha the probability densities of the 
proportional dietary contributions of phytoplank-
ton and SOM overlapped considerably (Fig.  3A); 

Fig. 2   δ13C and δ15N isotopic bi-plot illustrating the carbon 
and nitrogen values (means ± 1SD) of Dreissena polymor-
pha and Anodonta anatina as compared with those of phyto-
plankton, zooplankton, and SOM in summer (A) and in win-
ter (B). For the sake of comparison, δ13C and δ15N values of 
macrophytes (summer), CPOM (winter), the amphipod Echi-
nogammarus veneris (both seasons), juveniles of the decapod 
Procambarus clarkii (summer), the chironomid Chironomus 
plumosus (both seasons), and the oligochaete Branchiura sow-
erbyi (both seasons) are included. Taxa are indicated using the 
acronyms listed in Table 1; for those taxa characterized by C/N 
values > 3.5, δ13C values have been lipid-corrected (see text for 
details and Table S1 in online information)

Table 2   Summary of the results of Bayesian stable isotope 
mixing models: posterior mean and median (50%) estimates 
together with 2.5, 25, 75, and 97.5% credibility intervals (CI) 
of proportions of phytoplankton in the diet of Dreissena poly-
morpha and Anodonta anatina in summer and in winter

Summary data for SOM can be expressed as one minus phyto-
plankton data and are not reported

Dreissena polymorpha Anodonta anatina

Summer Winter Summer Winter

Mean 0.7 0.83 0.3 0.22
2.50% 0.14 0.72 0.03 0.07
25% 0.56 0.8 0.12 0.17
50% 0.77 0.83 0.23 0.22
75% 0.89 0.87 0.42 0.28
97.50% 0.97 0.94 0.86 0.38
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furthermore, the posterior probabilities of similarity 
test indicated a non-significant difference (P = 0.21). 
In contrast, A. anatina showed more segregated, 
even though marginally non-significant (P = 0.09) 
proportional dietary contributions (Fig. 3A). Notice-
ably, a substantial effect of sample size was observed 
on mixing solutions, as simulations indicated that 
depending on the number of analyzed individuals 
phytoplankton might have reached a median propor-
tional contribution of up to 88% and less than 13% 
in the diet of D. polymorpha and A. anatina, respec-
tively (Fig. S1, online information).

Compared with August, in February the trophic 
segregation between the two species was more evi-
dent, with D. polymorpha relying mainly on phyto-
plankton, and A. anatina primarily exploiting SOM 
(Table  2). Additionally, the probability densities of 
phytoplankton and SOM proportional dietary con-
tributions showed no overlap for both bivalves, the 
similarity probability was negligible (D. polymorpha: 
P = 0.002; A. anatina: P < 0.0001), and no consider-
able sample size-related effects were observed, as the 
estimated proportional contributions of the resources 
remained virtually unchanged with an increase in the 
sample size of the consumers (Fig. S1).

Discussion

Our isotopic investigation indicated that in Lake 
Trasimeno, independently from the season, the inva-
sive Dreissena polymorpha and the native Anodonta 
anatina showed different trophic habits, with phy-
toplankton and SOM prevailing in the diet of the 
dreissenid and the anodontid, respectively. Dietary 
differences were particularly apparent in Febru-
ary (Table 2; Fig.  3B; see also Fig.  2B). In August, 
the respective proportional contributions of the two 
resources were remarkably dissimilar in terms of 
mean and median values (Table 2), yet both the mix-
ing models procedure and the similarity tests on pos-
terior probabilities highlighted a notable uncertainty 
in the results, in particular for Dreissena (Fig. 3A).

A comprehensive understanding of these findings 
requires to cast them within the background pro-
vided by the isotopic data on additional animal and 
plant taxa collected during the study. In summer, it 
is apparent that two main carbon pools characterized 
the benthic system of the study location. The first 

was represented by 13C-enriched living macrophytes 
(Fig.  2A; see also Fig.  4 for a graphical synthesis), 
likely to support second-level crustacean consum-
ers, such as the herbivorous/detritivorus amphipod 
Echinogammarus veneris and juveniles of the omni-
vore Procambarus clarkii (Mancinelli et  al., 2002; 
2007; Alcorlo & Baltanás, 2013). The second pool 
included 13C-depleted phytoplankton and SOM, with 
overlapping δ15  N values and differing significantly 
in δ13C by approximately 1.4‰ (Fig.  2A). Indeed, 
the similar isotopic values of the two sources can 
explain the uncertain results of the mixing model 
output (Fig. 3A). The use of mixing models to quan-
tify animal diets requires the sources to have isotopi-
cally distinct values; small differences (e.g., 1‰ or 
lower), even when statistically significant, may have 
no practical ecological implications, ultimately ham-
pering the robustness of the results (Phillips et  al., 
2014). In these respects, the dual isotopic approach 
adopted here should include in future investigations 
additional biochemical methodologies based on, 
e.g., fatty acids (Makhutova et al., 2013; Fujibayashi 
et al., 2016) or a wider spectrum of isotopic markers 
(Weber et al., 2017) to allow for a more robust reso-
lution of the summer diet of D. polymorpha as well 
as of A. anatina. In addition, future studies should 
also analyze a larger number of individuals. Together 
with resources showing limited isotopic differences, 
relatively low sample sizes in consumers can deter-
mine outputs showing highly diffuse source contribu-
tions (Brett, 2014; Phillips et al., 2014), as observed 
here in August. The simulation test on the effect of 
the sample size of the two bivalves actually indicated 
that a larger number of analyzed individuals might 
have increased the robustness of the mixing model 
results obtained in August for both D. polymorpha 
and A. anatina (Fig. S1). In contrast, in February, the 
simulation test confirmed the robustness of the results 
independently from the sample size (Fig. S1). It is 
apparent, however, that future analyses carried out on 
larger sample sizes will allow researchers to investi-
gate, e.g., size-related dietary changes or seasonal 
variations in the isotopic niche of the two bivalves, 
not addressed here and generally overlooked in fresh-
water bivalves [but see Suh & Shin, 2013 for the 
estuarine Ruditapes philippinarum (Adams & Reeve, 
1850)].

Noticeably, the observed isotopic similarity 
between phytoplankton and SOM may suggest a 
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summer pelagic–benthic coupling (sensu Soetaert 
et  al., 2000), which D. polymorpha and other sus-
pension feeders possibly contribute to through bio-
deposition of feces and pseudo-feces (Gergs et  al., 
2009; Ozersky et  al. 2012; but see further in the 
text). The accumulation of fresh organic matter in 
superficial sediments after phytoplanktonic blooms 
(common in August in Lake Trasimeno: Ludovisi 
and Gaino, 2010; Bresciani et al., 2020; see also Xu 
et  al., 2019 and literature cited for examples from 
other shallow lentic systems) can be considered as 
the main causative mechanism of the coupling. This 
hypothesis is partially supported by the non-sig-
nificant differences in C:N ratios (SOM = 13 ± 4.6; 
phytoplankton = 8.8 ± 1.2; t-test with separate vari-
ance estimates: t = − 2.1, P = 0.09, 5.6 d.f.) and by 
the limited depletion in δ13C values between SOM 
and phytoplankton, consistent with what is gener-
ally observed during early diagenetic processes of 
pelagic organic matter in freshwater systems (e.g., 
Lehmann et al., 2002).

The general picture that emerges in summer is 
that phytoplankton supports directly D. polymorpha 
and indirectly, through pelagic–benthic coupling, 
A. anatina, together with other depositivores such 
as Branchiura sowerbyi and Chironomus plumosus 
(Fig.  4). It is worth mentioning that the δ13C and 
δ15 N values of C. plumosus were significantly more 
depleted than those of SOM (Fig. 2A; t-tests, P < 0.05 
for both elements), suggesting that the trophic link 
may be mediated by 13C and 15 N-depleted methano-
trophic bacteria (Jones et  al., 2008; Tsuchiya et  al., 
2020).

In February, conversely, while phytoplank-
ton showed depleted δ13C values comparable with 
those observed in August, δ13C in SOM was signifi-
cantly higher, an enrichment likely to be determined 
by macrophyte-derived decaying CPOM (Fig.  2B; 
Fig.  4). Under these conditions, the trophic segre-
gation between the two bivalves was more apparent 
(Table  3; Fig.  3B) and further corroborated by post 
hoc similarity tests.

The habitat preferences of the two species may 
explain their dietary differences. Dreissena polymor-
pha can form clumps (“druses”) and colonize uncon-
solidated sediments, but, as observed here and in pre-
vious studies performed in Lake Trasimeno (Lancioni 
& Gaino, 2006), they are generally attached to natural 
and artificial hard substrata, thus filter-feeding in the 
water column (Mellina & Rasmussen, 1994). In con-
trast, A. anatina lives buried in sediment superficial 
layers or at the water–sediment interface, where it can 
show a relatively high mobility (Schwalb & Pusch, 
2007). Additionally, anodontids can forage by pedal 
feeding, i.e., by using the foot to sweep detrital and 
colloidal particles, microphytobenthos, and bacte-
ria from the sediment surface directly into the shell 
(Nichols et al., 2005; Brendelberger & Klauke, 2009).

Nevertheless, SOM provided an average contri-
bution between 20 and 30% to the diet of D. poly-
morpha depending on the season (Fig.  3; Table  3). 
A relatively high trophic plasticity has already been 
indicated in D. polymorpha, and a dual reliance on 
both phytoplankton and SOM has been shown in both 
lacustrine and riverine populations (Garton et  al., 
2005; Cole & Solomon, 2012). Wind-induced resus-
pension events in Lake Trasimeno occur year-round 
yet are more frequent and intense in winter (Havens 
et al., 2009; Ludovisi and Gaino, 2010; Gaino et al., 
2012); hence, D. polymorpha may adopt in this sea-
son a strategy of selective feeding, as already high-
lighted for the species on phytoplankton (e.g., Baker 
et al., 1998; Vanderploeg et al., 2001; Naddafi et al., 
2007). A relatively high trophic plasticity has been 
also indicated for A. anatina, and laboratory investi-
gations have shown that phytoplankton, if available, 
can be efficiently consumed by the duck mussel (Bon-
tés et al., 2007; Dionisio Pires et al., 2007). In spite of 
this, the species showed in this study independently 
from the season a net prevalence of SOM in its diet. 
Even though the already mentioned behavioral and 
ecological dissimilarities can explain the dietary dif-
ferences observed between the two species, these may 
also be interpreted as the result of a trophic segrega-
tion adopted to minimize competition for food. In 
particular, it can be hypothesized that the high effi-
ciency of D. polymorpha in feeding on phytoplankton 
(Roditi et al., 1996; Dionisio Pires et al., 2004) gives 
rise to a competitive advantage to D. polymorpha 
with respect to A. anatina for this food source, impos-
ing to the latter a SOM-based diet. Further controlled 

Fig. 3   Posterior probability distributions of the contributions 
of phytoplankton and sedimentary organic matter (SOM) to the 
diet of Dreissena polymorpha and Anodonta anatina in sum-
mer (A) and in winter (B). Bar plots represent posterior model 
estimates of contributions in terms of median, interquartile 
range, and max/min values; for further details on the results of 
Bayesian stable isotope mixing models, see Table 2

◂
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feeding experiments may help in clarifying the actual 
nature of the interaction between the two bivalves, as 
well as between D. polymorpha and zooplankton: the 
bivalve’s clearance on phytoplankton may negatively 
affect pelagic consumers (Jack & Thorp, 2000; Kiss-
man et  al., 2010), a potential interaction suggested 
by the consistency in their δ13C and δ15  N values 
observed here in summer (Fig. 2A).

A further aspect to be considered is that the 
13C-enrichment in SOM reflected in those of B. sow-
erbyi and C. plumosus, as well as in zooplankton 
(Fig. 3B), a result that can be explained considering 
the feeding habits of dominant zooplanktonic spe-
cies in Lake Trasimeno. Spring–summer zooplank-
ton is typically characterized by strictly herbivorous 
species [mainly Bosmina longirostris (O.F.Müller, 

1776), Daphnia galeata (Sars, 1864) and Diapha-
nosoma brachyurum (Liévin, 1848)] and to a minor 
extent by copepods of the genus Cyclops, having a 
herbivorous–detritivorous generalist diet; conversely, 
Cyclops spp. generally prevail in winter zooplank-
ton (Hamza et al., 1995; Ludovisi et al., 2005). Such 
a seasonal taxonomic differentiation in zooplankton 
was confirmed by the qualitative observations made 
to verify the nature of the seston (see Material and 
Methods), with summer samples showing a greater 
abundance of cladocerans than winter samples, domi-
nated by Cyclops.

It is worth noting that the general scenario dis-
cussed here is based on the assumption that the iso-
topic composition of an organism is linked only to 
that of its diet. In principle, non-trophic factors may 

Fig. 4   Graphical summary of seasonal variations in trophic 
relationships (black arrows) and trasfers of material (gray 
arrow) linking basal resources (i.e., phytoplankton, sedimen-

tary organic matter, and macrophytes) with Dreissena poly-
morpha, Anodonta anatina, and other invertebrates in the ben-
thic environment of Lake Trasimeno littoral zones
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have contributed to the δ13C and δ15 N values of D. 
polymorpha and A. anatina in summer and winter. 
For example, δ13C in both freshwater and marine 
bivalves has been indicated to be influenced by sea-
sonal shifts in energy allocation strategies (Geist 
et  al., 2005; Paulet et  al., 2006), and reproduction-
related δ13C enrichments have been often observed 
in summer (Malet et  al., 2007). In addition, both D. 
polymorpha and A. anatina reduce remarkably their 
metabolic activity and filtration rates under low 
temperature conditions (Schneider, 1992; Lurman 
et al., 2014). This implies that in winter both species 
may experience periods of starvation, and fasting in 
bivalves may cause a considerable δ15 N enrichment 
in soft tissues (Yokoyama et al., 2005). In our study, 
the occurrence of both the aforementioned phenom-
ena cannot be excluded; however, it is likely that they 
did exert a secondary influence on the isotopic val-
ues of D. polymorpha and A. anatina, as they both 
showed depleted δ13C and enriched δ15  N values in 
summer as compared to winter (Fig. 2).

In conclusion, the present study provided novel 
information on the trophic habits of the invasive D. 
polymorpha and of the native A. anatina in Lake 
Trasimeno, and a number of issues were advanced 
on carbon dynamics between the benthic and pelagic 
compartments in the lacustrine littoral zone (Fig. 4). 
The results of our investigation may provide a use-
ful framework to investigate in future the impact 
of D. polymorpha as well as of other invasive spe-
cies on the flux of energy and elements in the basin. 
However, our results considered as preliminary, and 
additional, year-round investigations are required to 
verify their generality. Specifically, the dietary pat-
terns observed in the present study in winter and sum-
mer need to be verified on a seasonal or even shorter 
temporal scale, given the irregularity of wind-induced 
resuspension events and the high monthly variability 
in abundance and composition of the phytoplanktonic 
assemblage characterizing Lake Trasimeno (Taticchi, 
1992; Havens et al., 2009; Bresciani et al., 2020).

Noticeably, the limited sampling effort applied in 
the present context allowed the collection, together 
with D. polymorpha, of two other non-indige-
nous invertebrates, i.e., B. sowerbyi and P. clarkii. 
Branchiura sowerbyi impact on invaded systems has 
received to date scant attention, while considerable 
information is available on the ecological impacts of 
P. clarkii on native benthic invertebrates, including 

anodontid bivalves (Meira et  al., 2019 and literature 
cited). However, the actual effects of P. clarkii on A. 
anatina in Lake Trasimeno are to date unexplored. 
In addition, the Chinese pond mussel Sinanodonta 
woodiana (I.Lea, 1834), invasive in Italy (Cilenti 
et  al., 2019), has been repeatedly recorded in Lake 
Trasimeno after 2017 (Froufe et  al., 2017; Goretti 
et  al., 2020b). Also for this introduced anodontid, 
no information is available on its impacts on native 
bivalve species occurring in the lake. Thus, beside 
providing reference information on trophically medi-
ated interactions between D. polymorpha and A. ana-
tina, this study may also provide an incentive toward 
a more advanced resolution of the role played by 
native bivalve species in the flux of energy and mat-
ter in Lake Trasimeno, and how it is directly or indi-
rectly influenced by introduced invertebrate and fish 
species.
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