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extracting and classifying them from rock pools in the 
Italian Apennines. Rock pools were divided into three 
types, based on maximum duration of their inunda-
tion period. Following the patterns usually observed 
with rock pool invertebrates, we tested the hypothesis 
that desiccation has a negative effect on prevalence, 
abundance, and diversity of tardigrades, and thus 
could alter the trophic structure of their communities. 
In contrast to what is commonly found for other ani-
mal groups in the same type of habitat, we found that 
tardigrades were more diverse and prevalent in shal-
lower, more desiccation prone, rock pools. Moreover, 
the trophic structure of tardigrade communities was 
different among the different pool types. Lastly, we 
also provide DNA barcodes of the most commonly 
found taxa. Ultimately, our study demonstrates that 
tardigrade communities in rock pools provide a valu-
able model system for the study of abiotic factors 
influencing meiofauna communities.

Keywords Tardigrada · Rock pools · Desiccation · 
DNA barcoding · Community ecology · Meiofauna

Introduction

Rock pools are eroded depressions that occur in a 
matrix of bedrock that accumulate a layer of uncon-
solidated bottom sediment by trapping material trans-
ported by runoff and wind (Brendonck et al., 2016). 
These habitats occur all over the globe in all major 

Abstract Rock pools are ephemeral freshwater hab-
itats characterized by their small size, well-defined 
boundaries, and periodic desiccation, making them 
ideal model systems to answer numerous ecological 
questions. Although there are numerous studies on 
rock pool fauna around the world, tardigrades have 
only rarely been recorded. We conducted the first tar-
digrade-focused study on rock pools by quantitatively 
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biomes and depend mainly on precipitation for filling 
(Jocqué et al., 2010). Therefore, they are ephemeral, 
generally oligotrophic (Jocqué et al., 2010) and expe-
rience extreme fluctuations in their abiotic parameters 
(especially pH, temperature, and dissolved oxygen; 
De Vries, 1996; Brendonck et al., 2000). Rock pools 
have been proposed as a model system in ecology and 
evolutionary studies (Srivastava et  al., 2004; Bren-
donck et al., 2010) as they are small, pristine environ-
ments with clear boundaries; thus, they can be sub-
jected to experimental manipulations and generally 
host a simple community.

About 460 aquatic animal species have been 
recorded from freshwater rock pools around the world 
(Jocqué et al., 2010). These animals can be classified 
as passive or active dispersers. Passive dispersers (for 
example tardigrades; Ptatscheck et  al., 2018; Fon-
taneto, 2019) disperse mainly in a resting stage via 
wind and overflow of water between pools, and thus 
can be rock pool specialists. Active dispersers are 
those that can actively migrate (usually only during 
the adult stage) between different pools, have broad 
distributions and occur in a wide range of temporary 
habitats in addition to rock pools. The main factors 
driving animal community composition in rock pools 
are the size and hydroregime of the rock pool (Jocqué 
et al., 2007; Vanschoenwinkel et al., 2009), with pas-
sive disperser being more influenced by those envi-
ronmental parameters than active dispersers (Vansch-
oenwinkel et al., 2009). Different responses of animal 
groups have been found to respond differently to the 
hydroregime. For example, diversity and abundance 
of insects and crustaceans decreased in rock pools 
with shorter hydroperiods in a Jamaican coastal sys-
tem (Therriault & Kolasa, 2001). The opposite pat-
tern was reported for rotifers and tardigrades by 
Jocqué et  al. (2007), who found higher densities in 
pools with shorter hydroperiods. Developmental con-
straints, such as development time, can prevent larger 
organisms and predators from occurring in pools with 
shorter hydroperiods, which, in turn, allows the pro-
liferation of smaller and less competitive organisms 
like tardigrades adapted to ephemeral habitats (Tevis, 
1966; Jeffries, 1994; Jocqué et al., 2007).

Tardigrada (also known as water bears or moss 
piglets) is a phylum of micrometazoans of about 
50–1200 µm in size (Møbjerg et al., 2018), with more 
than 1300 species described worldwide (Guidetti & 
Bertolani, 2005; Degma & Guidetti, 2007; Degma 

et  al., 2021). When colonizing terrestrial environ-
ments, tardigrades require at least a film of water 
surrounding their bodies to perform activities neces-
sary for life. However, because of their ability to enter 
cryptobiosis (a temporary and reversible suspension 
of metabolism) in all the phases of their life cycle, 
some species of limnoterrestrial tardigrades can 
withstand desiccation (anhydrobiosis; Wright, 2001) 
and freezing (cryobiosis; Guidetti et al., 2011). As a 
result of their small size and metabolic adaptations, 
tardigrades can colonize a variety of environments, 
ranging from limnoterrestrial (leaf litter, soil, mosses, 
lichens) to aquatic habitats (periphyton, sediment) 
(Nelson et al., 2018) and with extreme climatic condi-
tions (for example glaciers (Zawierucha et al., 2016) 
and deserts (Neher et al., 2009)).

Tardigrade records in rock pools are extremely 
limited, having been recorded only seven times in the 
scientific literature. Interestingly, although only few 
studies have recorded their existence, their occurrence 
has been cited in rock pools throughout the world 
(Namibia, Koste (1996); Ivory Coast, Snoeks et  al. 
(2021); South Africa, De Vries (1996); Israel, Spen-
cer et  al. (1999); Utah, USA, Jocqué et  al. (2007); 
Spain, Velasco-González et  al. (2020); Australia, 
Boix et al. (2016)), emphasizing a potential associa-
tion between tardigrades and rock pools.

The main aim of this paper is to test if tardi-
grades in rock pools represent a good model system 
for the study of the effects of extreme environmental 
stresses (desiccation) on community composition. 
Specifically, following the observations of Jocqué 
et al. (2007) that tardigrades were more abundant in 
rock pools with shorter hydroperiods, we tested the 
hypothesis that tardigrade prevalence, abundance and 
diversity are higher in rock pools that desiccate faster 
and more often.

Materials and methods

Study area

The studied rock pools are located inside the “Parco 
Nazionale dell’Appennino Tosco-Emiliano” (Tus-
can-Emilian Apennine National Park), Italy. The 
area is characterized by a complex geological struc-
ture (Mariani et  al., 2018). All the main peaks and 
most of ridge’s summits of the Tuscan-Emilian 
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district are made of sandstones belonging to the 
Macigno formation. During the Last Glacial Period 
(115,000–11,700 years ago), glaciers covered almost 
all the peaks of the northern Apennines and the mov-
ing ice left different geomorphological formations 
such as sheepback rocks. All the rock pools studied 
are made of sandstone in sheepback rocks. In the 
study area, the vegetation of montane belt is char-
acterized by Fagus sylvatica L., 1753 forests (Foggi 
& Rossi, 1996) and Vaccinium-heaths for the sub-
alpine belt (Pignatti, 1994; Ferrari & Piccoli, 1997; 
Tomaselli et al., 2019). The yearly average tempera-
ture recorded from the closest climatic station (Lake 
Paduli, Massa-Carrara; Lat: 44.35 Lon: 10.14) is 
8.2 °C (min − 16.0, max 31.3) with 75 days of frost 
and 2268 mm of precipitations (SM.01).

Rock pools sampling and characterization

Fifty-six rock pools from 11 clusters were selected for 
this study. Clusters (Fig.  1a–b, SM.01) are isolated 
rocky outcrops where pools (from 1 to 19 per cluster) 
occurred. Cluster locations are shown in Fig. 2. Due 
to the irregular shape and absence of water during 
the sampling, the maximum water level (depth) was 

impossible to measure accurately but was estimated. 
Pools were divided into three categories based on the 
approximated maximum depth (Fig.  1c–d, SM.02): 
“Pans” (< 2  cm), “Intermediates” (> 2  cm, < 5  cm) 
and “Holes” (> 5  cm). We used maximum depth to 
divide the pools in three classes because this gives 
a reasonable indication of the maximum duration of 
the inundation period (Jocqué et  al., 2006; Vansch-
oenwinkel et al., 2009; Anusa et al., 2012). Thus, the 
three categories also represent three different classes 
of inundation period maximum duration (short for 
Pans, intermediate for Intermediates and long for 
Holes). Rainfall and temperature also influence rock 
pools inundation period (Marcus & Weeks, 1997), 
but those environmental factors can be considered 
almost identical between the analysed pools due to 
their geographic proximity and similar elevation. 
Sampling was conducted during April–May 2019 
and June 2020 on three occasions, however most of 
the samples were collected in the last sampling trip 
(SM.01). Each pool was sampled only once; however, 
during the multiple sampling visits all the analysed 
rock pools were completely dry at least once (i.e., 
none of them hold water permanently). The sediment 
of each pool was manually homogenized (to avoid 

Fig. 1  Photographs of rock 
pools taken during their dry 
phase. a Location of pool 
cluster C; b Location of 
pool cluster E; c Pool C7 
from cluster C; d Pool E11 
from cluster E. Photos cour-
tesy of Tommaso Sandri
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sampling error due to low-scale variability in mei-
ofauna distribution; Gansfort et al., 2018) and scraped 
with a clean metal spoon. The sediments were col-
lected in clean plastic bags (when wet) or paper bags 
(when dry). Wet samples were left to dry protected 
from light at room temperature (20 ºC ± 1), then kept 
frozen at −20 °C until use. One aliquot of rock pool 
E19, which contained water when sampled, was kept 
frozen instead of being dried, and was later examined 
for potential predators of tardigrades. 

Tardigrade extraction

Dry samples were sieved through a 1 mm screen to 
remove stones and large organic fragments that could 
bias the weighing. Aliquots of the sieved dry sam-
ples (from 0.05 to 5.39 g, according to the amount of 
available sample; SM.01) were placed in 50 mL plas-
tic tubes and left to rehydrate overnight with 10 mL of 
distilled water. Then 30 mL of boiling distilled water 
was added to each tube to kill and relax all the fauna 
and avoid live tardigrades griping onto sediment frag-
ments and avoiding extraction. Fauna extraction was 
performed by centrifugation with Ludox according 
to Bartels & Nelson (2006). From selected samples, 
an additional portion (not counted for the calculation 

of tardigrade densities) was processed to extract more 
specimens for DNA sequencing. Samples for DNA 
sequencing were chosen to maximise the diversity of 
sequenced taxa by selecting the ones with abundant 
populations and target groups that are taxonomically 
challenging and likely comprise cryptic/pseudocryp-
tic species.

Other fauna extraction

Rotifers, mites and nematodes were consistently 
extracted as collaterals of tardigrade extraction. These 
were only semi-quantitatively analysed and classified 
as Absent, Rare, Common or Abundant (see defini-
tions in SM.01). When occasionally chironomid car-
casses were retrieved, they were recorded (SM.01). 
The frozen aliquot of pool E19 was thawed and quali-
tatively examined for the presence of potential preda-
tors (SM.01).

Microscopy and tardigrade identification

Specimens for light microscopy were mounted on 
microscope slides in a small drop of Hoyer’s medium 
and secured with a cover slip, following the proto-
col by Morek et  al. (2016a, b). When more than 80 

Fig. 2  Locations of the 
sampled rock pool clusters
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tardigrades were extracted from a sample (only in 
pools C12 and E1), only a subsample of about 80 
individuals were mounted on slides (the number 
was determined based on the maximum number of 
animals per sample that could be analysed with the 
available time and resources; a similar approach was 
used in Bartels & Nelson, 2006). Slides were exam-
ined under a Zeiss Axio Scope A1 light microscope 
with phase and Nomarski differential interference 
contrast (PCM and NCM, respectively; named col-
lectively as light contrast microscopy, LCM). Tar-
digrades were identified to genus level as it was not 
possible to identify every individual to the level 
of nominal species. Genera identification was per-
formed following Ramazzotti & Maucci (1983) and 
descriptions/redescriptions or recent reviews of the 
identified genera: Claxton (1998), Pilato (1992), Bis-
erov (1997–98), Bertolani et al. (2014), Morek et al. 
(2016a, b), Vecchi et al. (2016), Hansen et al. (2017), 
Stec et al. (2018), Gąsiorek et al. (2019a, b), Gąsiorek 
& Michalczyk (2020), Tumanov 2020 and Stec et al. 
(2021). A quantitative faunistic table of the genera 
found in each sample is provided in SM.01. Tardi-
grade genera were divided in two main functional 
feeding groups according to their ability to feed on 
other animals and thus the ability to exploit them as 
resources: Carnivorous (Carnivorous + Omnivorous) 
and Non-Carnivorous (Herbivorous + Microbivo-
rous). Division into feeding groups was done accord-
ing to Zawierucha et al. (2019).

Data analysis

Bayesian Generalized Linear Mixed Models 
(BGLMM) were used to estimate the unbiased prev-
alence (defined as the probability of finding at least 
one tardigrade by analysing one gram of dry sub-
strate, the number of individuals per gram of dry 
substrate (abundance), the number of taxa (diver-
sity), and the proportion of non-carnivorous individu-
als. The posterior distributions of the unbiased esti-
mates were then used to test the differences between 
the three groups using the indices of effect existence 
(Bayesian P value) and significance—Std. Effect 
size (e.g.: Cohen’s h and Cohen’s d) according to 
Makowski et al. (2019a) and Cohen (1988). Follow-
ing Makowski et al. (2019a), in this paper we define 
the significance of an effect as a combination of P 
value (existence) and effect size; therefore, we jointly 

evaluated both those metrics when discussing the 
results. Note that since covariate terms are only inter-
preted as having an effect or not, they have marginal 
relevance to the research question.

This Bayesian approach was chosen over a Fre-
quentist approach due to its ability to better deal 
with very unequal sample sizes across random effect 
groups, large variation in the amount of weighted 
sample, and by offering more freedom in the mod-
elling of the response data distribution (McElreath, 
2018). This approach was also chosen over direct test-
ing of the effect of predictors on a response variable 
(which allows testing of only two differences between 
three groups) as it allows testing all three com-
parisons between pool types. Pool surface area was 
used as covariate in all the analyses. Due to the low 
amount of material in some samples, it was not pos-
sible to recover enough animals to build species accu-
mulation curves and thus obtain an unbiased estimate 
of genera numbers with respect to the sampling effort 
(Deng et al., 2015). Instead, we account for potential 
sampling bias in determining the number of genera 
by using the number of individuals mounted on slides 
and taxonomically identified as a second covariate 
in the diversity analysis. For model estimates, the 
proportion of non-carnivorous individuals, tardi-
grade density and rotifer abundance were included as 
covariates, as both tardigrades and rotifers are known 
food items of carnivorous tardigrades (Kosztyła et al., 
2016; Roszkowska et  al., 2016; Bryndová et  al., 
2020), and thus could influence their proportion. 
Although the sampling in this study was performed 
on three different occasions, the sampling period was 
not considered in the analyses as only a few sam-
ples were collected in the first and second sampling 
events (11/56 and 2/56 respectively; SM.01) and in 
those two sampling trips only clusters A, C, D, E and 
K were sampled. Moreover, annual fluctuations in 
tardigrade abundances are known to occur mostly in 
aquatic or hygrophilous species (Schuster et al., 1977; 
Kathman & Nelson, 1987; Kinchin, 1996; Schus-
ter & Greven, 2007). For more xeric species (like 
those of the genus Ramazzottius) annual population 
fluctuations have not been observed (Kinchin, 1989, 
1996) and despite the analysed pools being defined as 
freshwater aquatic habitats, their tardigrade fauna is 
mostly composed of xerophilous taxa (Ramazzotti & 
Maucci, 1983). Geographic distance between samples 
was not included in the model as a random factor due 
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to the inaccuracy of GPS measurements that is far 
higher than the distance between most of the samples 
(SM.01). Cluster identity was used as a random factor 
because clusters have different slopes, exposure, and/
or mineral composition that can likely influence the 
local tardigrade communities, and by having different 
geographic locations they can also partially account 
for the spatial distribution. Prevalence and abundance 
were estimated in the same model, whereas diversity 
was estimated in a separate one. Analysis workflow 
and R script are presented in SM.03. Analyses were 
performed with “R v. 4.0.2” software (R Core Team, 
2020) and associated packages “bayestestR v. 0.3.0” 
(Makowski et al., 2019b), “patchwork v. 1.1.0” (Ped-
ersen, 2020), “R2Jags v. 0.6.1” (Su & Yajima, 2015), 
“tidyverse v. 1.3.0” (Wickham et  al., 2019) and 
“vegan v. 2.5.6” (Oksanen et  al., 2020); BGLMMs 
were fitted with “JAGS v. 4.1.0” (Plummer, 2003).

DNA sequencing and species delimitation

To test if multiple species of the same genera were 
present and to provide reference sequences for future 
studies, we sequenced a fragment of the Cytochrome 
C Oxidase subunit I (COI) barcode gene. Detailed 
methods of DNA sequencing and species delimita-
tion, as well as the resulting GenBank accession num-
bers and species delimitation results are provided in 
SM.04.

Results

In total, 14 tardigrade genera were found in the ana-
lysed samples, with densities from 0 to 889 tardi-
grades per gram of dry substrate (SM.01). Tardi-
grades were found in 78.6% of the samples (44/56). 
In three genera, multiple species were present, as 
revealed by COI barcoding (2 Ramazzottius spp., 
2 Macrobiotus spp. and 2 Milnesium spp.; SM.04). 
The most common taxon, Ramazzottius, was found 
in 37.5% (21/56) of all examined rock pools with 
densities up to 860 individuals per gram of dry sub-
strate (see SM.01). Mites and nematodes were absent 
or rare in most of the pools, whereas rotifers were 
always present and generally common (SM.01).

Prevalence was significantly higher in Pans than 
in Intermediates and Holes (Fig.  3a, Table  1), but 
no difference between Intermediates and Holes was 

detected. In addition, no significant difference in tar-
digrade density was found across pool types (Fig. 3b, 
Table 1), and pool area had no effect on either preva-
lence or density (Fig. 3c, Table 1). Although diversity 
was much higher in Pans than in Intermediates and 
Holes (although P values are slightly above 0.05, the 
effect size was very large; Fig. 3d, Table 1), no dif-
ference in diversity was found between Intermediates 
and Holes (Fig. 3d, Table 1). Neither sampling effort 
(how many individuals were classified) nor pool area 
had a significant effect on diversity (Fig. 3e, Table 1). 
We found significant differences in the trophic struc-
ture across rock pool types: the proportion of non-
carnivorous tardigrades was significantly higher in 
Holes than in Pans and Intermediates, but no differ-
ence was found between the latter two types (Fig. 3f, 
Table  1). Finally, the proportion of non-carnivorous 
tardigrades was positively associated with density 
and pool area, but not significantly affected by rotifer 
abundance (Fig. 3g, Table 1). 

Discussion

Prevalence, abundance and diversity

We show that tardigrades are abundant members of 
rock pool communities. In particular, we found prev-
alence and generic diversity are highest in the shal-
lowest and thus driest pool category (Pans), when 
compared to the other two rock pool types (Interme-
diate and Holes). Interestingly, the tardigrade den-
sity was not significantly affected by pool type. This 
result contrasts with a previous study by Jocqué et al. 
(2007), which reported that high densities of tar-
digrades, rotifers and mites characterize shallower 
pools with short wet phases. Similar results (lower 
tardigrades density) were also obtained by Jöns-
son (2007) in mosses with experimentally increased 
hydration.

It is interesting to note that the tardigrade commu-
nity composition at the generic level matches the one 
previously recorded in the same region (Bertolani & 
Rebecchi, 1988–1996; Guidetti & Bertolani, 2001) 
for mosses and lichens (Echiniscus, Macrobiotus, 
Milnesium, Minibiotus, and Ramazzottius) and for 
freshwater habitats (Grevenius, Mixibius). Whereas 
genera more typical of leaf litter (Guidetti & Berto-
lani 2001; Hypsibius, Mesobiotus, Paramacrobiotus) 
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were absent or extremely rare. However, this compar-
ison is only based on a classification to genus level. 
Therefore, it is not possible to exclude or confirm 
that the species found in the rock pools are the same 
as those recorded in the other types of habitat, nor if 
mosses and lichens are the source of the taxa present 
in rock pools.

The negative relationship between tardigrade tax-
onomic richness and water permanence is opposite 
to that reported in many other animal groups. Many 
studies from across the world have found a positive 
correlation between taxonomic richness in rock pools 
and water permanence (measured either as reduced 

desiccation frequency or as longer inundation peri-
ods) (King et  al., 1996; Spencer et  al., 1999; Ther-
riault & Kolasa, 2001; Eitam et al., 2004a; Vanschoe-
nwinkel et al., 2009; Kulkarni et al., 2019). However, 
in one case, no relationship was found (Eitam et al., 
2004b). Longer hydroperiods can allow species with 
slower developmental rates to thrive and benefit from 
temporal resource partitioning, thus favouring an 
increase in taxonomic richness (King et  al., 1996). 
Those studies, however, mostly focused on larger 
microinvertebrates (crustaceans and flatworms), mac-
roinvertebrates (insects) and vertebrates (amphib-
ians); meiofaunal taxa such as tardigrades, rotifers, 
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and nematodes were rarely considered or classified 
below Phylum level.

A possible explanation for the higher tardi-
grade prevalence and diversity in Pans is perhaps 
the inability of predators to survive the frequent 
desiccation events. Larger predatory animals that 
could prey on tardigrades (for example, flatworms 
and insects that are known predators in rock pools; 
Brendonck et  al., 2002) can resist desiccation only 
as eggs (Cáceres, 1997; Watanabe, 2006) and might 
not be able to complete their life cycle and produce 
new resistant eggs during the short inundation peri-
ods. In contrast, tardigrades are not constrained to 
completing their life cycle between desiccation 
events, as they can undergo anhydrobiosis in all life 
stages (Kaczmarek et al., 2019). This positive effect 
of frequent desiccation through lower predation 
pressure could explain the observed pattern in tardi-
grade prevalence and diversity, as already observed 
in other habitats (Herrmann et  al., 2012). It is 
important to note that evidence of predation on tar-
digrades by other animals is very scarce. However, 

according to Schmid-Araya & Schmid (2000), chi-
ronomids (Diptera: Chironomidae) from six out of 
the 17 genera for which data is available are known 
to feed on tardigrades. Chironomids have been com-
monly reported from freshwater rock pools (Bren-
donck et al., 2016), despite being unable to undergo 
anhydrobiosis (except Polypedilum vanderplanki 
Hinton, 1951 found only in the African continent; 
Cornette & Kikawada, 2011). Thus, it is realistic to 
hypothesize that predation pressure on tardigrades 
from chironomids is reduced in rock pools that des-
iccate very fast. To test the latter, one would need to 
develop a sampling protocol tailored to consistently 
and quantitatively extract not only tardigrades but 
also chironomids (and flatworms). Nevertheless, we 
have qualitative data (see SM.01) that chironomids 
(pool E9) and flatworms (Gieysztoria sp. aequales 
group; frozen sample of pool E19) are present in 
the studied system. Also, one Gieysztoria individual 
was found with the traces of four tardigrades in its 
gut (SM.05), providing the first documented case of 
predation on tardigrades by a flatworm.

Table 1  Indices of 
existence and significance 
of the comparisons between 
the three different pool 
types and of the covariates

Calculation of standard 
effect size of effect of Area 
on Prevalence was not 
possible due to the model 
structure; “.” P value < 0.1, 
“*” P value < 0.05, “**” P 
value < 0.01

Bayesian P value Std. effect size (e.s.)

Prevalence
 Pan vs. Intermediate 0.0193* 0.7992
 Pan vs. Hole 0.0073** 1.0061
 Intermediate vs. Hole 0.5187 0.1959

Abundance
 Pan vs. Intermediate 0.1527 − 0.2424
 Pan vs. Hole 0.5107 0.3470
 Intermediate vs. Hole 0.1647 0.3097
 Area 0.6960 − 0.0006

Diversity
 Pan vs. Intermediate 0.0560 1.7560
 Pan vs. Hole 0.0627 2.1730
 Intermediate vs. Hole 0.6527 0.4981
 Area 0.3820 − 0.0983
 Sampling 0.2093 0.1075

Non-carnivorous proportion
 Pan vs. Intermediate 0.5187 − 0.0063
 Pan vs. Hole 0.0073** − 0.6317
 Intermediate vs. Hole 0.0193* − 0.4131
 Area 0.0487* 0.3086
 Density  < 0.0001** 0.3148
 Rotifers 0.4387 0.1173
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Trophic structure

The tardigrade trophic groups were extremely biased 
toward non-carnivorous species in Holes. This reduc-
tion in carnivorous tardigrades is probably due to 
competition with other co-occurring invertebrate 
predators (chironomids and flatworms). Moreover, 
since predatory tardigrades (e.g., Paramacrobiotus 
and Milnesium) are usually larger than the herbivo-
rous ones (e.g., Hypsibius and Grevenius) (Kosztyła 
et al., 2016; Roszkowska et al., 2016; Bryndová et al., 
2020), they could also be more appealing prey for 
even larger predators (i.e., size-dependent predation, 
see for example Sprules, 1972 and Hohberg & Traun-
spurger 2005). Both competition with, and preferen-
tial predation by, bigger predators could contribute to 
this extremely biased trophic structure in Holes com-
pared to Pans and Intermediates. However, more stud-
ies are required to confirm this hypothesis. Trophic 
structure was also influenced by tardigrade density 
and pool area. Increasing tardigrade density is asso-
ciated with a smaller proportion of carnivorous taxa, 
i.e., increases in tardigrade abundance are mostly due 
to the higher numbers of non-carnivorous taxa. Pool 
surface area, on the other hand, is associated with 
higher proportions of non-carnivorous tardigrades. 
It is possible that the larger surface area allows more 
solar radiation to be captured by algae and thus 
increases primary productivity, which would in turn 
support the growth and reproduction of algivorous 
taxa. Lastly, as rotifers are preyed on by carnivorous 
tardigrades (Roszkowska et al., 2016; Bryndová et al., 
2020), it would be logical to predict a link between 
the two trophic level groups. In contrast, we found 
that rotifer abundance did not have a significant effect 
on the proportion of non-carnivorous tardigrades, 
which suggests that this type of prey availability is 
not a main factor influencing tardigrade community 
trophic structures.

Other meiofauna

Rotifers were both very common and abundant, 
whereas mites and nematodes were rare (SM.01). 
The identified mites belong to two species (Camisia 
invenusta (Michael, 1888) and Provertex kuehnelti 
Mihelčič, 1959) that are associated with mosses and 
lichens (Colloff, 1993; Hein et al., 2013). Therefore, 
they could have been transported by rain or wind 

from their habitats to the rock pools, where their pres-
ence represents accidental occurrences. Although 
nematodes are a dominant component of the soil 
community, and by far are the most abundant animals 
on Earth (Bardgett & Van Der Putten, 2014), and 
usually co-occur with rotifers (Sohlenius, 1979; Soh-
lenius et al., 1996–2004), they do not seem to thrive 
in the studied rock pools. Interestingly, Zawierucha 
et al. (2021) also reported a scarcity of nematodes in 
cryoconites holes. Like tardigrades and rotifers, some 
nematodes species are able to undergo anhydrobiosis 
and survive extreme environmental stressors (Crowe 
& Madin, 1974; McSorley, 2003) and thus it is not 
likely that the periodic desiccation events are the rea-
son for their scarcity in the studied rock pools.

Conclusions

We found that thriving populations of tardigrades 
inhabit rock pools with community-level differences 
across different types of these habitats. This supports 
the idea that rock pools are a useful model system for 
the study of the ecological factors influencing tar-
digrade communities. Several fruitful new avenues 
of study are therefore possible. The small size of 
these habitats makes them amenable to experimental 
manipulation, or even in  situ creation of new pools 
(see for example Evans et al., 2016; Sommers et al., 
2019). In addition, their relative simplicity makes 
the application of metabarcoding (Arakawa, 2020; 
Topstad et  al., 2021) possible, which would provide 
a complete and unbiased inventory of the meiofauna 
hosted in this unique and understudied ecosystem.
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