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Disentangling the effect of climatic and hydrological
predictor variables on benthic macroinvertebrate
distributions from predictive models
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Abstract Lotic freshwater macroinvertebrate spe-

cies distribution models (SDMs) have been shown to

improve when hydrological variables are included.

However, most studies to date only include data

describing climate or stream flow-related surrogates.

We assessed the relative influence of climatic and

hydrological predictor variables on the modelled

distribution of macroinvertebrates, expecting model

performance to improve when hydrological variables

are included. We calibrated five SDMs using

combinations of bioclimatic (bC), hydrological

(H) and hydroclimatic (hC) predictor datasets and

compared model performance as well as variance

partition of all combinations. We investigated the

difference in trait composition of communities that

responded better to either bC or H configurations. The

dataset bC had the most influence in terms of

proportional variance, however model performance

was increased with the addition of hC or H. Trait

composition demonstrated distinct patterns between

associated model configurations, where species that

prefer intermediate to slow-flowing current conditions

in regions further downstream performed better with

bC–H. Including hydrological variables in SDMs

contributes to improved performance, it is however,
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species-specific and future studies would benefit from

hydrology-related variables to link environmental

conditions and diverse communities. Consequently,

SDMs that include climatic and hydrological variables

could more accurately guide sustainable river ecosys-

tem management.

Keywords Species distribution models (SDMs) �
Hydrology � Climate � Benthic macroinvertebrate �
Rivers

Introduction

Species distribution models (SDMs) are ecological

predictive models, increasingly used to inform and

complement large-scale distribution analyses to aid

conservation efforts (Araújo et al., 2011; Guisan et al.,

2013; Eaton et al., 2018). In river ecosystems, SDMs

have been less often applied due, in part, to (1)

complex interactions between the numerous driving

factors of river systems and (2) insufficient abiotic and

biotic data to effectively describe hydro-ecological

relationships in streams.

The hydrological regime is said to be the ‘‘master

variable’’ (Power et al., 1995) of lotic habitats and

critical to the ecological stability of river ecosystems

(Poff et al., 1997). It is highly variable, both spatially

and temporally, making it a core driver of the physical

structure of river habitats and a regulator of species

distribution and abundance (Resh et al., 1988; Poff

et al., 1997). For many river species, flow regimes are

very important for, at least, part of their life history

(Lytle & Poff, 2004). Numerous macroinvertebrate

species depend on flow-related cues that directly or

indirectly initiate, for example, breeding period

(Hancock & Bunn, 1997), development (Gray, 1981)

and emergence & metamorphosis (Peckarsky et al.,

2000; Lytle, 2002). Therefore, species have evolved to

the heterogeneity in rivers caused by the variability in

flow regime, e.g. average/low/high flows, intermittent

and ephemeral flows. It is essential to understand the

influence stream flow has on the distribution of

species, so that suitable recommendations can be

made to restore or conserve river systems successfully.

This is particularly important with the increasing

changes in hydrological regime due to climate change,

e.g. severity and frequency of floods and droughts

(IPCC, 2007; Döll & Zhang, 2010; Kiesel et al., 2019;

Gudmundsson et al., 2021).

Recently, data describing stream ecosystems in

greater detail are becoming available, e.g. stream

specific climate and land use (Domisch et al., 2015a;

Linke et al., 2019), hydrology (Barbarossa et al. 2018;

Irving et al. 2018), river classification and character-

istics (Vogt et al., 2007; Ouellet Dallaire et al., 2019)

as well as dams and reservoirs (globaldamwatch.org;

Lehner et al., 2011). Despite this increasing availabil-

ity, most studies focus on climate (e.g. Domisch et al.,

2011; Ihlow et al., 2012; Markovic et al., 2014; Ruiz-

Navarro et al., 2016; Kärcher et al., 2019; Rodrı́guez-

Merino et al., 2019) and/or implement precipitation

variables as surrogates of hydrological variables (e.g.

Maloney et al., 2013; Pletterbauer et al., 2015;

Domisch et al., 2019). While climate is certainly a

dominant factor in driving species distribution and

abundance, its sole use may be misrepresenting the

effect on species’ distributions due to correlating

factors, such as topography, which may impact

predictions, leading to ambiguous conclusions (Real

et al., 2013).

There are still only a limited number of studies that

directly investigate the influence of flow regime on

riverine species distribution. Some recent attempts

have been made to include, at least, some aspects of

flow regime, e.g. high flow days (Kuemmerlen et al.,

2015a) as well as aggregated flow statistics, e.g. mean

annual flow (Kuemmerlen et al., 2015b; Pyne & Poff,

2017), which were shown to be of high relevance to

macroinvertebrate distribution. With data describing

climate and hydrology becoming increasingly avail-

able it becomes possible to include both aspects to

SDMs. However, the question remains, if including

both will affect model results, leading to improved

predictive accuracy and/or differing predicted ranges?

Considering both climate and hydrology variables in

SDMs would possibly allow for a distinct examination

of the abiotic drivers of species distribution and

facilitate management decisions to develop wise

conservation or restoration strategies.

We hypothesized that SDMs including hydrologi-

cal variables next to commonly used climatic variables

would improve SDM performance (H1). To investi-

gate this, we applied SDMs on a community of benthic

macroinvertebrates with combinations of three pre-

dictor datasets including (1) climate only variables, (2)

hydrology only variables and (3) both climate and
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hydrology-related variables. We evaluated the influ-

ence of each predictor dataset on species’ distribution

by investigating individual variance as well as shared

variance explained by each dataset. We also compared

differences in the functional traits; current preference

and stream zonation preference. By investigating trait

composition of, for example, species’ that perform

better with hydrology variables, we aimed at better

interpreting the model’s results, from a perspective

closely related to river hydrology. We investigated

which model configuration performed better by eval-

uating differences in model performance. Further, we

analysed how the choice of predictor datasets influ-

ences the predicted species distributions. By compar-

ing differences in model performance, functional traits

and explained variance, we expected to determine the

individual influence of both climate and hydrology

datasets, and to what extent these datasets influence

predicted species’ distributions. If combinations of

datasets that included hydrology outperformed the

climate only combinations, we would accept H1. If

performance across datasets was similar, H1 would be

rejected.

Materials and methods

Study area

The study area comprised the Ems (17,934 km2) and

Weser (46,306 km2) catchments located in Germany

(Fig. 1). Selecting two catchments fully within Ger-

many ensured consistent data availability. The two

catchments are adjacent to each other and both are

split into two distinct ecoregions: central plains

(lowland) and central highlands (mountain, sensu

Illies 1967).

The stream network for the study area was based on

a layer in GeoTIFF raster format of a modeled 1 km2

gridded stream network with a total of 13,749 cells.

The network was downloaded from earthenv.org/

streams, which was derived from Hydrosheds (www.

hydrosheds.org; 30-arc-s spatial grain; Lehner et al.,

2008), which in turn is based on the SRTM dataset

(srtm.csi.cgiar.org; Jarvis et al., 2008). This spatial

resolution was applied due to the requirement of spa-

tially analogous environmental variables in SDMs, i.e.

hydrology, bioclimate and hydroclimate at 1 km2

(Araújo et al., 2019).

Biological data

Macroinvertebrate species datasets were obtained

from German Federal State agencies. These macroin-

vertebrate samples were collected using a 25 9 25 cm

hand net (500 lm mesh size), following the AQEM

STAR sampling methodology, in which samples

consist of 20 microhabitats, sampled based on their

relative cover at the sampling site (AQEM 2002;

Haase et al., 2004). To be included in the study, each

species had to be identified to species level and to

avoid issues with modelling a small sample size, each

species had to have at least 20 occurrences within the

study area (Stockwell & Townsend Peterson, 2002). A

total of 91 species occurrences at 1,258 sites remained

from this process, in a presence only format. Sampling

frequency occurs in a 3-year cycle, all sites were

sampled at least once within the period between 2005

and 2013.

Environmental predictors

The predictor variables for bioclimate, hydroclimate

and hydrology used in this study were all openly

sourced data and freely available to the user. All

datasets are available in raster GeoTIFF format.

Bioclimate

There are 19 bioclimatic variables openly available

from worldclim.org (Hijmans et al., 2005; Lehner

et al., 2008; Fick & Hijmans, 2017) describing

temperature and precipitation. These data are applied

frequently in SDMs and other predictive modelling

studies. The variables were downloaded at a 1 km (30-

arc-s) spatial resolution. All 19 variables were masked

to the base layer 1 km2 stream network described

above. The bioclimate data were measured at local

grid cell scale and represents our measurement of

climate.

Hydroclimate

The hydroclimate variables were downloaded from

earthenv.org/streams (Domisch et al., 2015a) and are

based on, among others, the 19 bioclimatic variables

described above. However, it differs in that the

bioclimatic information is related to the stream

network by accumulating information from the upper
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subcatchment in every point (i.e. grid-cell) along the

stream network. Flow accumulation was used as the

mechanism to relate these environmental variables

with the stream network (see Domisch et al., 2015a for

details). This accumulative feature causes high corre-

lation among many of the variables and with stream

flow (Kuemmerlen et al., 2014, 2015a) and hence

includes an aspect of hydrological information. This

dataset therefore contains information describing both

climate and hydrology, embedded within the values.

Hydrology

The dataset from Irving et al. (2018), includes 53 of the

Indicators of Hydrological Alteration (IHA) metrics

that describe the magnitude, frequency, timing, dura-

tion and rate of change of flow events (Olden & Poff,

2003). IHA metrics are commonly used in flow-

ecology assessments (e.g. Kakouei et al., 2018) and

environmental flow research (Poff et al., 2010; Peres

& Cancelliere, 2016) as they comprehensively

describe hydrological flow regime. These metrics

have only recently been included in river SDMs (but

see Irving et al., 2020). As the information contained

in the IHA metrics is directly related to the hydrolog-

ical regime of rivers, it is logical to suggest that this

data could affect predicted species’ distributions.

In brief, stream flow was extrapolated for the

German stream network through a weighted linear

regression using accumulated seasonal precipitation

from earthenv.org/streams (Domisch et al., 2015a).

The daily stream flow (m3 s-1) was then applied as

input to calculate the IHA metrics via the R package

Eflowstats (www.github.com/USGS-R/EflowStats;

Henriksen et al., 2006; Archfield et al., 2014). These

data were purposefully created at the same spa-

tiotemporal resolution as the bioclimate and hydro-

climate data for explicit use in SDMs. The data have

been found to be effective for use in predictive mod-

elling (Irving et al., 2018) within the same study area

(Irving et al., 2020). All 53 IHA metrics were com-

puted for the time period 1985–2013 to capture

enough variability to produce accurate metrics fol-

lowing Kennard et al. (2010) who recommends at least

15 year’s worth of data, and informs that there is

negligible change in variability over 30 years. In

addition, we wanted to ensure the hydrological data

covered both the biological (2005–2013) and biocli-

mate (1950–2000) data.

These metrics were originally derived from both

gauging station daily stream flow data and seasonal

precipitation sourced from earthenv.org/streams

(Domisch et al., 2015a). It is therefore important to

note that some degree of correlation is to be expected

with the hydroclimate variables used in this study.

Fig. 1 Study area of Ems (green) andWeser (pink) catchments. Location within Germany, along with ecoregion boundaries (red lines)
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Nonetheless, the additional high-resolution stream

flow data adequately adds various aspects of flow

regime at a high temporal resolution and therefore

better represents hydrology.

Model set-up

Three predictor sets containing variables that describe

(1) climate (bioclimate, bC; n = 19), (2) flow regime

(hydrology, H; n = 53), (3) climate and hydrology

combined (hydroclimate, hC; n = 19) were applied in

this study. Hence, we set-up five model configurations

to compare all eventualities: (1) bC only (bC; n = 19),

(2) hydroclimate ? hydrology (hC–H; n = 72), (3)

bioclimate ? hydrology (bC–H; n = 72), (4) hydro-

climate ? bioclimate (hC–bC; n = 38), and (5)

hydroclimate ? bioclimate ? hydrology (hC–bC–H;

full model: n = 91, descriptions in Table S1). By

comparing the explained variance of each predictor set

based on variance partitioning analysis, we identified

the influence of each predictor set (bC, hC and H) on

the spatial distribution of macroinvertebrates. Here,

the full model (hC–bC–H) represents the full coverage

of environmental predictors used in our study (n = 0)

therefore, it is intended for comparative purposes only.

Variable selection process

The variables were selected by adapting the procedure

from Irving et al. (2020) using boosted regression trees

(BRTs), in a two-step process. First, each predictor set

was applied in BRTs separately (hydroclimate n = 19,

bioclimate n = 19, hydrology n = 53) for every

species within the community (n = 91). BRTs calcu-

late the variable importance of each predictor from the

number of times each variable was chosen by the

algorithm (Elith et al., 2008). The variable importance

was averaged (mean) across all species to find the

variable importance for the community. The average

variable importance was used to determine the most

important individual variables (i.e. 30% of variables

with the highest relative importance) from each

predictor set (hydroclimate n = 6, bioclimate n = 6,

hydrology n = 19). The remaining variables from all

predictor sets (n = 31) were then applied collectively

into the 2nd run of BRTs with the same criteria as

above.

A pair-wise Pearson’s correlation analysis was

undertaken for each model configuration with the

threshold 0.7 (Dormann et al., 2013). The variable

importance from the 2nd run of BRTs was used to

determine which of the correlated variables were

chosen to remain in the analysis. In order to compare

the datasets effectively, we retained a minimum of two

predictor variables per dataset. Variables chosen for

each model are outlined in Tables 1 and 2. As the

variables are related, i.e. hydroclimate was derived

from the bioclimate dataset, and hydrology was

derived, in part, from the hydroclimate dataset, it

was likely that a high level of correlation would be

observed between datasets (see Table S2 for correla-

tion matrix).

The selected variables (n = 9) were included in our

final full model (hC–bC–H). The variables contained

in the full model were then distributed according to the

remaining model configurations: bC (n = 5), hC–H

(n = 7), bC–H (n = 7), hC–bC (n = 7).

Species distribution models

All SDM analyses were undertaken in the R package

sdm (Naimi & Araujo, 2016). We applied the four

model configurations outlined above to each species

within the community in separate SDMs. Each SDM

was applied with an ensemble of five algorithms:

artificial neural network (ANN), generalized linear

model (GLM), flexible discriminant analysis (FDA),

BRT, and classification tree analysis (TREE). As the

species occurrence data consisted of presences only,

we applied 2,000 randomly placed pseudo-absences in

geographical space as background absences. Each

model was repeated 10 times by bootstrapping. This

resulted in 50 models per species, per configuration.

For validation, the data were randomly split into

training and testing datasets in 70:30 ratios. The true

skills statistic (TSS) and the sensitivity values were

derived from the validation as a measurement of

model performance. Sensitivity is a measure of true

positives, i.e. where the model correctly places a

presence, and the TSS is derived from both the

sensitivity and the specificity (the number of true

negatives). The TSS values are reported as weighted

mean ± standard error (mean ± SE). In addition,

TSS values for individual species were used as a

grouping measure for the functional traits analysis (see

below).

To predict probability of occurrence for each

species and model configuration, an ensemble model
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was produced by averaging all 50 previously men-

tioned individual models (5 algorithms 9 10 repeti-

tions) weighted by each model’s performance as given

by the TSS values. This weighting emphasizes the

higher performing models, without excluding lower

performing models (Araújo & New, 2007). As output,

the ensemble model produced a probability of occur-

rence map for the entire stream network of the study

area. To convert the probability map to binary

presence/absence predictions (1, 0), we applied a

threshold determined from maximising sensitivity and

specificity (Liu et al., 2005, 2013).

Statistical analysis

Model performance

All analyses were undertaken in R version 3.5.2 (R

Core Team, 2018). Model performance was analyzed

using the TSS values calculated through the training

and testing validation datasets. Pairwise Wilcoxon

tests were applied to the 50 TSS values of each species

to test for differences between model configurations.

Any values P\ 0.05 were considered significantly

different. Each configuration modelled 91 species

resulting in a total of 364 Wilcoxon tests. We

summarize the outcome as a percentage of

significance for each model configuration, i.e. %

S = (number of significant models/364) * 100.

Predicted distribution

The predicted distributions were compared according

to range size and percentage overlap. Range size was

defined as the number of raster cells predicted by the

model as a presence within the study area, after

converting the predicted probabilities to binary pres-

ence/absence predictions by maximizing the sensitiv-

ity and specificity produced by the ensemble

prediction (Liu et al., 2005, 2013). Range size was

determined by counting the number of species pres-

ences predicted by each model configuration. To test

for differences in range size between model configu-

rations, pairwise Wilcoxon tests were applied. To

compare the predicted distribution of the community,

and how they were similar or different in geographical

space, pairwise range overlap values were calculated

by counting the number of grid cells that contained a

same species’ presence predicted by each respective

model configuration. The proportion of shared grid

cells in relation to the predicted range of the pairwise

model configurations, was calculated as percentage

overlap (mean ± SE) for the community. The pre-

dicted distributions of all species per model

Table 1 Bioclimate (bC), hydrology (H) and hydroclimate (hC) predictors used in each model configuration as selected by the

boosted regression algorithm

Dataset Variables

bC Bioclimate 02: mean diurnal range [mean of monthly (max temp–min temp)]; Bioclimate 04: temperature seasonality

(standard deviation * 100); Bioclimate 08: mean temperature of wettest quarter; Bioclimate 09: mean temperature of

driest quarter; Bioclimate 15: precipitation seasonality (coefficient variation)

hC–H Hydroclimate 08: mean upstream temperature of wettest quarter; Hydroclimate 09: mean upstream temperature of driest

quarter; Hydrology MH21: high flow volume; Hydrology RA3: fall rate

bC–H Bioclimate 02: mean diurnal range [mean of monthly (max temp–min temp)]; Bioclimate 04: temperature seasonality

(standard deviation * 100); Bioclimate 08: mean temperature of wettest quarter; Bioclimate 09: mean temperature of

driest quarter; Bioclimate 15: precipitation seasonality (coefficient variation); Hydrology MH21: high flow volume;

Hydrology RA3: fall rate

hC–bC Hydroclimate 08: mean upstream temperature of wettest quarter; Hydroclimate 09: mean upstream temperature of driest

quarter; Bioclimate 02: mean diurnal range (mean of monthly (max temp–min temp)); Bioclimate 04: temperature

seasonality (standard deviation * 100); Bioclimate 08: mean temperature of wettest quarter; Bioclimate 09: mean

temperature of driest quarter; Bioclimate 15: precipitation seasonality (coefficient variation)

hC–bC–

H

Hydroclimate 08: mean upstream temperature of wettest quarter; Hydroclimate 09: mean upstream temperature of driest

quarter; Bioclimate 02: mean diurnal range (mean of monthly (max temp–min temp)); Bioclimate 04: temperature

seasonality (standard deviation * 100); Bioclimate 08: mean temperature of wettest quarter; Bioclimate 09: mean

temperature of driest quarter; Bioclimate 15: precipitation seasonality (coefficient variation); Hydrology MH21: high
flow volume; Hydrology RA3: fall rate
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configuration were combined and projected into the

study area in QGIS version 3.4 (QGIS.org, 2021) as a

measure of species richness. Pairwise Wilcoxon tests

were performed on the species richness of each model

configuration.

Variance partitioning

Variance partitioning analysis was applied on all 2-set

model configurations for each species. First, GLMs

were performed on all binary predictions (i.e. pres-

ence/absence) to determine the proportional variance

for each predictor set separately, then collectively

according to the model configuration to ascertain the

shared variance. Due to the nature of logistic regres-

sion, i.e. GLM, the standard coefficient of determina-

tion (R2) cannot be derived from the model. Therefore,

from each GLM a pseudo R2 value was calculated

through the Nagelkerke function in the rcompanion

package (Mangiafico, 2019) using the McFadden

method (de Araujo et al., 2014). It is important to

note that pseudo R2 values cannot be interpreted in

same manner as other regression techniques, i.e.

ordinary least squares (OLS) where R2 can be

interpreted as the amount of variance in the response

variable explained by the predictor variable. The

pseudo R2 value in GLM context is a relative measure

between models of the same type describing how well

the model explains the data (http://rcompanion.org/

handbook/G_10.html, online book, accessed 25/09/

2020). The pseudo R2 values were used here to

determine the proportional contribution of variance as

explained by the model, the total variance explained

by the model being 1. This proportion was calculated

following de Araujo et al. (2014), where the propor-

tion of variance explained by the first predictor set can

be described as total variance explained minus the

proportion of variance explained by the second pre-

dictor set in the configuration.

The shared variance of both predictor sets can be

described as the total variance explained minus the

sum of both predictor sets in the configuration. For

example, the proportional variance of the hydrocli-

mate data in the hydroclimate and hydrology config-

uration would be; R2
hydroclimate = 1 - R2

hydrology, the

proportional variance of hydrology; R2
hydrology-

= 1 - R2
hydroclimate, and the amount of shared vari-

ance: R2
shared = 1 - (R2

hydrology ? R2
hydroclimate).

These proportional variance values were then used

as input into the varPart function in modEva package

(Barbosa et al., 2016) to calculate the proportional

variance partition. This procedure was applied to

every species and proportional variance was averaged

across all species and reported as community propor-

tional variance.

Table 2 Comparison of model configurations. Total number of

species that performed significantly better (P\ 0.05) in pair-

wise Wilcoxon tests. Model bC–H outperforms the others.

MC = model configuration (hC–H; hydroclimate and hydrol-

ogy, bC–H; bioclimate and hydrology, hC–bC; hydroclimate

and bioclimate, hC–bC–H; hydroclimate, bioclimate and

hydrology). S = number of significantly better performing spe-

cies (n = 91). Overall % determined by number of significantly

better performing species from total number of pairwise com-

parisons (n = 364)

Pairwise Wilcox test S % significance 

bC hC-H 36 9.9 

bC-H 3 0.8 

hC-bC 3 0.8 

hC-bC-H 3 1.4 

Total (n=364) 47 Overall %  = 12.9 

hC-H bC 11 3 

bC-H 7 1.9 

hC-bC 4 1.1 

hC-bC-H 1 0.3 

Total (n=364) 23 Overall %  = 6.3 

bC-H bC 24 6.6 

hC-H 55 15.1 

hC-bC 15 4.1 

hC-bC-H 2 0.5 

Total (n=364) 96 Overall %  =  26.4 

hC-bC bC 17 4.7 

hC-H 44 12.1 

bC-H 11 3 

hC-bC-H 2 0.5 

Total (n=364) 74 Overall %  = 20.3 

hC-bC-H bC 36 9.9 

hC-H 63 17.3 

bC-H 16 4.4 

hC-bC 16 4.4 

Total (n=372) 131 Overall %  = 36.0 
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Analysis of traits

To better understand the influence of the different

datasets on the composition of species’ communities,

we grouped species according to their performance for

each configuration based on TSS values from the

SDMs. The highest TSS value determined a model

configuration group for each species, that is, if 5

species showed higher TSS values for the bC config-

uration than all other configurations, those species

were grouped as ‘‘bC’’.

We compared the patterns of species response using

functional traits describing; (1) stream zonation pref-

erence, and (2) current preference. These traits were

chosen as they’ve been successfully used in a similar

application and have high data availability (Irving

et al., 2020). Trait information was downloaded from

www.freshwaterecology.info (Bauernfeind et al.,

1995; Eder et al., 1995; Graf et al.,

1995a, 1995b, 2002a, 2002b, 2008, 2016–2019a,

2016–2019b; Hörner et al., 1995; Jäch et al., 1995;

Janecek et al., 1995a, 1995b, 2002; Moog, 1995;

Nesemann & Moog, 1995; Nesemann & Reischütz,

1995a, 1995b; Zettel, 1995; Schmedtje & Colling,

1996; AQEM, 2002; Bauernfeind et al., 2002; Buf-

fagni et al., 2009; Schmidt-Kloiber & Hering, 2015;

Schmidt-Kloiber et al., 2017; Buffagni et al., 2016–

2019). Stream zonation are available in a 10-point

assignment system in which each species was assigned

10 points distributed across the trait categories

according to their preferences (e.g. rheophil, limno-

rheophil). Current preference was available in binary

format (1, 0) according to species preference. To

standardize traits across models, trait values were

converted to percentages as a measure of trait

composition.

The percentage of trait composition for each group

(e.g. bC group, bC–H group) were compared visually.

In order to disentangle the influence of each dataset on

species traits, we did not include the full model in this

analysis. To compare trait composition to predictor

variables, we applied pairwise Wilcoxon tests of

difference to compare values located at the species

occurrences associated with each group.

Results

Variable selection process

The variable selection process resulted in nine

predictors: five bioclimate, two hydroclimate and

two hydrology variables (Table S3 for BRT coeffi-

cients). These were applied in the full model config-

uration and distributed to each 2-set model (Table 1).

Interestingly, variables describing mean temperature

of both wettest quarter and of driest quarter from both

the hydroclimate and the bioclimate predictor sets

were included in the model (see Table 1). It could be

expected that the same variable from both climate-

related predictor sets would be highly correlated,

however the correlation was negligible: Bioclimate/

Hydroclimate 08 from bC and hC, corr = 0.37,

Bioclimate/Hydroclimate 09 from bC and hC, corr =

0.30 (Table S2). Mean values for all chosen predictor

variables are outlined in Table 2.

Model performance

The SDMs performed well over all (mean ± SE: bC;

TSS = 0.58 ± 0.02, S = 0.79 ± 0.02, hC–H; TSS =

0.55 ± 0.02, S = 0.76 ± 0.02, bC–H; TSS = 0.61 ±

0.02, S = 0.80 ± 0.02, hC–bC; TSS = 0.60 ± 0.02,

S = 0.79 ± 0.02, hC–bC–H; TSS = 0.62 ± 0.02,

S = 0.80 ± 0.02, Table S4; Fig. 2). The percentage

of significance for model configuration hC–bC–H

(36%, n = 142) was greater than all remaining model

configurations, followed by (in order of decreasing

performance); bC–H (26.4%, n = 98), hC–bC (20.3%,

n = 81), bC (12.9%, n = 40) then hC–H (6.3%,

n = 16). See Table 3 for pairwise totals of significantly

better models/species and % of significance.

Variance partitioning

We applied variance partitioning to the predicted

distributions from the SDMs (presence/absence). The

variance partitioning of the 2-set model configurations

showed that bioclimate also had the highest explained

variance compared with hydroclimate (0.4, Fig. 3a)

and hydrology (0.57, Fig. 3b). Hydrology showed the

lowest amount of explained variance in all 2-set

models, compared with hydroclimate (0.16, Fig. 3c)

and bioclimate (0.09, Fig. 3b). Hydroclimate showed

lower explained variance than bioclimate (0.12,
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Fig. 3a) but higher explained variance than hydrology

(0.44, Fig. 3c). The shared variance in all 2-set models

was relatively low (Fig. 3a–c), the highest being

between Bioclimate and Hydroclimate (0.1, Fig. 3a).

This demonstrates that the predictor sets have a

separate influence on species’ distribution.

Model configurations hC–H and bC–H showed a

negative shared variance meaning that the two

predictor sets explain the variance in different direc-

tions, i.e. both a positive and negative relationship.

Unexplained variance was lowest in bC–H model

configuration (0.36, Fig. 3b), compared with hC–H

(0.44, Fig. 3a) and hC–bC (0.38, Fig. 3c).

Predicted distributions

Model configurations predicted similar range sizes

(mean no. of presences; bC–H; 1,949.8 ± 159, bC;

1,917.1 ± 150.6, hC–H; 1,939.5 ± 131.1, hC–bC;

1,827.4 ± 139.5, hC–bC–H; 1,916 ± 145.9, Fig. 4).

Pairwise Wilcoxon tests showed a significant differ-

ence (P = 0.02), between predicted range sizes of hC–

H vs. hC–bC.

However, differences were apparent in the geo-

graphical location of predicted ranges as shown by the

range overlap. The smallest percentage range overlap

was between model configurations bC and hC–H

(42.3 ± 1.6%, n = 945, Table 4). The largest range

overlap was between model configurations bC and

hC–bC (73.2 ± 1.3%, n = 1,477, Table 4). The

differences in predicted ranges are shown when

mapping species richness (Fig. 4) in geographical

space. The pairwise Wilcoxon tests on species rich-

ness showed a significant difference between hC–H

and all other model configurations (P\ 0.001). In

addition a significant difference was found between

bC and hC–bC–H (P = 0.03) and a near significant

difference between bC and bC–H (P = 0.08).

Analysis of traits

We compared the influence of model configurations

groups; bC, bC–H and hC–bC on species trait

composition. Group hC–H was removed from this

analysis as it comprised only three species, hence was

not data sufficient to investigate patterns in trait

composition. There then remained models configura-

tion groups of 10 species in bC, 44 species in bC–H

and 37 species for hC–bC. This analysis derived some

noteworthy patterns (Fig. 5). Trait composition for

current preference showed rheophil and rheo-limophil

(Fig. 5a) comprised species from model group bC

(both 30% trait composition) and hC–bC (both 27%

trait composition). Species in model group bC–H

showed a high trait composition within limo-rheophil

category (36%). Trait composition for stream zonation

(Fig. 5b) for all model configurations tended to

increase from upstream to downstream until a peak

was reached, then the values decreased further down-

stream. Distinct peaks were associated with some

Fig. 2 Comparison of TSS

and sensitivity values across

five models (variable

combinations): bC;

bioclimate only, hC–H;

hydroclimate and

hydrology, bC–H;

bioclimate and hydrology,

hC–bC; hydroclimate and

bioclimate, hC–bC–H;

hydroclimate, bioclimate

and hydrology. Boxplots

(bar = median, box = IQR,

whiskers = 1.5 9 IQR and

outliers)
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models, i.e. bC (20%) and hC–bC (18%) species

peaked within lower-trout region, whereas bC–H

(20%) peaked in barbel region further downstream.

Patterns of trait composition from current preference

and stream zonation are comparable in that bC and

hC–bC species were associated with higher current

velocity and regions further upstream in comparison to

bC–H species that were associated with lower current

velocity and downstream regions. Trait composition

for all models showed a high association for littoral

region, i.e. bC (17%), bC–H (26%) and hC–bC (16%).

The Wilcoxon tests of difference between species

occurrence associated with each model configuration

group showed a significant difference between groups

bC and bC–H for predictors; Bioclimate 04 (mean ±

SE; bC = 628 ± 0.4, bC–H = 619.6 ± 0.3,

P = 0.01) and Bioclimate 08 (mean ± SE; bC = 12.3

± 0.1, bC–H = 14.5 ± 0.05, P = 0.0005).

Discussion

We compared three datasets, combined in five dataset

configurations, to evaluate their influence on macroin-

vertebrate distribution predictions and traits using

SDMs. We found that the dataset bC had the most

influence on the model in terms of proportional

variance, however model performance was increased

with the addition of hC or H. After the full model, the

configuration bC–H performed best, while hC–H

configuration performed least well. The different

model configurations predicted similar range sizes,

however were not always consistent in geographical

space. The composition of species’ functional traits,

demonstrated distinct patterns between the species

with and without the dataset describing hydrology.

Variable selection

One precipitation variable was included in each model

configuration, i.e. precipitation seasonality (Biocli-

mate 15, Tables 1, 2) from the bioclimate dataset. The

inclusion of this variable indicates that precipitation-

Table 3 Mean ± SE (standard error), min and max of predictor variables throughout the study area, descriptions and units

Variable Mean  ± se Min Max Variable Unit 

Hydroclimate 08 156  ± 0.2 –8 171 
Mean Upstream 

Temperature of Quarter 
[°C] * 10 

Hydroclimate 09 37.1  ± 0.1 –3 112 
Mean Upstream 

Temperature of Quarter 
[°C] * 10 

Bioclimate 15 15.1  ± 0.02 10.2 27.7 
Precipitation 

Seasonality (coefficient 
variation) 

Dimensionless 

Bioclimate 02 7.8  ± 0.0 6.2 8.8 
Mean Diurnal Range 

(Mean of monthly (max 
temp - min temp)) 

°C 

Bioclimate 04 618.8  ± 0.2 565.4 687 
Temperature 

Seasonality (standard 
deviation *100) 

Dimensionless 

Bioclimate 08 13.7  ± 0.05 –0.8 17.6 
Mean Temperature of 

Quarter 
°C 

Bioclimate 09 4.6  ± 0.01 0.2 11.9 
Mean  Temperature of 

Quarter 
°C 

mh21 95.9  ± 0.2 62.7 201.4 

High flow volume: 
Mean of the high flow 
volume (area between 

hydrograph and the 
upper threshold (1) 
during high flow) 

divided by median daily 
flow 

m3 s-1

ra3 19.4  ± 0.5 1.8 590 

Fall Rate: Mean rate of 
negative changes in 

flow from one day to 
the next 

m3 s-1 d-1
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related data are important to include in SDMs as a

separate entity to hydrology-related parameters (such

as high flow volume), suggesting that local precipita-

tion should not be used as a substitute for hydrology-

related data (e.g. Domisch et al., 2019). This is

supported by the high variance explained individually,

as well as the low amount of shared explained variance

demonstrated in all model configurations through

variance partitioning.

Model performance and variance partitioning

The full model performed best overall. The full model,

however, was only used a comparison in our study,

therefore from the model configurations containing 1

or 2 datasets the model bC–H performed best. We

therefore argue that these two predictor sets (bC and

H) complement each other well and that adding

hydrology into the model configuration can improve

model performance, while keeping the number of

predictor variables low. The only model configuration

that did not contain bC variables, i.e. hC–H, performed

least well overall, confirming the importance of

including climate when evaluating species

distribution.

Variance partitioning of the individual predictor

sets both suggest that bC, i.e. spatially static temper-

ature and precipitation-related variables, have the

most influence on the studied macroinvertebrate

community, at this scale. Nonetheless, hC and H, i.e.

stream and flow-related variables improved model

performance, even though they demonstrated a

smaller influence in terms of variance partitioning.

Our finding is not consistent with current flow-ecology

theory that suggests hydrology (H) to be as important

as climate (bC) in determining species distribution

(Pyne & Poff, 2017).

The scale (13,749 km2) and resolution (1 km2 grid

cells) at which the predictors are applied may partially

explain these results (Pearson & Dawson, 2003;

Randin et al., 2009; Lenoir et al., 2013; Domisch

et al., 2015b; Record et al., 2018) as it may be too

coarse to fully capture the influence of all the

dimensions of the hydrological regime on macroin-

vertebrate distribution. The IHA metric MH21; high

flow volume is the discharge of the highest flow,

represents the more extreme aspects of hydrological

regime. High flow volume is likely related to catch-

ment size, i.e. peak flows driven by climate and

geology, at large-scales (i.e. catchment scale) (Poff,

Fig. 3 Proportional variance partitioning of all four models; a hC–H; hydroclimate and hydrology, b bC–H; bioclimate and hydrology,

and c hC–bC; hydroclimate and bioclimate
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1997). At small scales, i.e. reach scale, large-scale

variables describing the hydrological regime, such as

flood and droughts, are able to induce changes in river

biota communities by influencing small-scale habitat,

e.g. hydraulics, riverbed substrates and stream channel

morphology (Allen & Vaughn, 2010; Soranno et al.,

2010). However, local-scale hydraulics, e.g. pool/

riffles, and their resultant impact on physical micro-

habitats, e.g. creation of refugia, influence the distri-

bution of biota, which reduces the influence of large-

scale drivers (Poff, 1997; Frissell et al., 1986). Of the

few freshwater SDM studies that include variables

directly describing hydrology, together with climate,

most show a high importance of either both climate

Fig. 4 Distribution of all species predicted by each model:

a bC; bioclimate only, b hC–H; hydroclimate and hydrology,

c bC–H; bioclimate and hydrology, d hC–bC; hydroclimate and

bioclimate, and e hC–bC–H; hydroclimate, bioclimate and

hydrology. Points represent locations, colours represent number

of species predicted presence at point locations

Table 4 Range overlap from predicted range size of model configurations

bC hC–H bC–H hC–bC hC–bC–H

bC 945 1,484 1,477 1,397

hC–H 42.3 – 1.6 1,076 1,032 1,192

bC–H 72.0 – 1.3 48.5 – 1.5 1,390 1,527

hC–bC 73.2 – 1.3 50.3 – 1.7 67.6 – 1.5 1,451

hC–bC–H 66.25 – 1.5 57.1 – 1.5 72.4 – 2.1 72.1 – 1.5

Bold is mean percentage overlap in geographical space across all species (n = 91) ± standard error. Italics is absolute averaged

number of overlapping predicted presences
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and hydrology, or hydrology as the most importance

variable (Bond et al., 2011; Kuemmerlen et al., 2014;

Huang et al., 2016), although a lower influence of

hydrology has been documented in stream headwaters

(Monbertrand et al., 2019). Hydrology is certainly

important at finer spatial scales (Kuemmerlen et al.,

2014), and climate becomes more important with

increasing scale (Friedrichs-Manthey et al., 2020).

This scale-dependency is a recognised challenge in

SDM research (Domisch et al., 2015b; Friedrichs-

Manthey et al., 2020). Nonetheless, hydrology metric

RA3; Fall Rate, describing the rate of negative

changes in flow between consecutive days, can drive

potential drought stress. This negatively affects

different communities in the ecosystem such as local

plant communities (The Nature Conservancy, 2009),

and initiates cascading effects like resource scarcity.

Therefore, even on large-scales, factors impacting

local-scale changes may still be influential.

In addition, the disproportionate number of vari-

ables could drive the differences in explained vari-

ance, that is, five variables were applied from the

Bioclimate dataset, whereas two variables were

applied from each of Hydroclimate and Hydrology

datasets. Although we ensured at least two variables

from each dataset for a robust comparison, the

remaining variable selection was chosen by the

selection process. As the selection process had a high

influence in determining the most important variables

for this community and study area, we believe this

approach is less biased than forcing the exact same

number of variables from each dataset.

Despite these challenges, incorporating hydrology

at the scale of this study does not hinder predictive

ability (Araújo et al., 2019) and resulted in an

improvement in SDM performance compared with

climate alone. Applying the same predictors at a

smaller spatial (e.g. reach scale) with finer resolution

(e.g.\ 100 m2: Kuemmerlen et al., 2014) may result

in hydrology demonstrating a stronger influence

(Friedrichs-Manthey et al., 2020), on macroinverte-

brate distribution, however further investigation

would be needed for confirmation.

Predicted distributions

The model configuration bC–H predicted the largest

range size overall. Conversely, hC–bC predicted the

smallest range size. However, we only found a

significant difference in range size between model

configurations hC–H (the model that performed least

well) and hC–bC.

Despite similar range size, some model configura-

tions predicted species’ distributions in different

geographical locations as suggested by the range

overlap and differences in species richness between

model configurations. The ranges predicted by model

configuration hC–H overlap between 42 and 57%with

all other models and were significantly different to all

other configurations in terms of species richness. The

correlation analysis and variance partitioning suggests

that the datasets contain distinct environmental infor-

mation, rendering the differences in predicted range

size and location plausible. Here, the SDMs are

Fig. 5 Functional traits of species; a current preference, b stream zonation associated with each model configuration; bC (bioclimate),

bC–H (bioclimate and hydrology) and hC–bC (hydroclimate and bioclimate)
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relating different environmental conditions to the

species’ known occurrences and predicting suit-

able habitat accordingly. Nonetheless, as hC–H per-

formed least well, and does not include the most

important dataset (bC) it is reasonable to suggest that

these predicted ranges do not contain enough relevant

information for accurate predictions.

For other model configurations 67–77% range of

each model overlapped. We found a significant

difference in species richness between our most basic

model (bC) and the full model (hC–bC–H). This

difference may be driven by the addition of hydrology-

related variables (i.e. hC and H datasets), or it may be

driven by the full model containing the most infor-

mation, hence higher complexity (Araújo et al., 2019).

As the full model, in this study, was evaluated for

comparison purposes only, it is challenging to disen-

tangle the reason behind this result. Considering the

near significance of the differences between bC and

bC–H it is possible that the addition of pure hydrology

variables (H) influences species’ predicted range,

however we were unable to confirm this conclusion

with our analysis.

Analysis of traits

The models that contained specific information on

hydrology (bC–H) performed best when applied on

species that prefer intermediate to slow-flowing cur-

rent conditions in regions that were further down-

stream. Species modelled with more information

regarding climate (bC, hC–bC) showed preference

for high to intermediate flow conditions located

further upstream. Model configurations hC–bC and

bC–H were comparable in terms of model perfor-

mance, explained variance and predicted ranges.

However, the species that performed better with each

configuration, demonstrate distinct differences in their

trait composition. These findings agree with Irving

et al. (2020) where species that were modelled with

additional descriptive hydrology variables prefer rel-

atively slower current conditions and downstream

regions.

Variables describing climate (mean temperature of

wettest quarter and temperature seasonality) varied

significantly for species occurrences grouped in bC

and bC–H models, with higher temperature and lower

seasonality shown for bC–H. These differences sug-

gest that the variability in climate is strong enough

upstream to drive the distribution of certain macroin-

vertebrate species, however in downstream regions,

hydrology plays a much larger role. It is possible that

the species located in upstream regions, at least in

relative terms, are better adapted to colder tempera-

tures than species located downstream (Monbertrand

et al., 2019), and hence may respond more strongly to

climate than hydrology.

Flow regime in both the Ems andWeser catchments

is generally driven by precipitation (i.e. pluvial) with

seasonal high flows driven by snowmelt and precip-

itation (Koeniger et al., 2009). In the Weser catch-

ment, increasing low flows as well as decreasing low

flow duration have been documented over the last few

decades (Bormann and Pinter, 2017). Although

increased precipitation due to climate change may

have influence (Hisdal et al., 2001), increased flows

are likely attributed to reservoir management (Bor-

mann & Pinter, 2017). The climate datasets (hC and

bC) applied in this study may therefore be unable to

capture changes in flow due to anthrogenic influences.

In contrast, the hydrology dataset is derived, among

other variables, from discharge gauging stations,

which measure real-time stream flow (m3 s-1), and

therefore account, to some extent, hydrological vari-

ability not driven by precipitation, e.g. anthropogenic

alteration, urban run-off and groundwater influence.

The hydrologic variables (and the anthropogenic

disturbance to hydrological regimes) are likely to

assist in better depicting the varied influences on the

physical habitat of the river biota (Resh et al., 1988;

Poff et al., 1997), which shapes the structure and

function of river ecosystems. In contrast, the climate

datasets (bC and hC) are applied as indirect surrogates

for water temperature (Moore et al., 2005; Caissie,

2006) and hydrology (e.g. Domisch et al., 2019).

It is therefore plausible that the species with

upstream preferences, may be located in areas with

limited influence of reservoir management (i.e.

upstream of reservoirs), and hence performed better

with climate-related variables. In contrast, species

downstream of reservoirs are more influenced by

direct measures of hydrology. However, more inves-

tigation is needed to confirm this theory.
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Role of hydrology in SDMs: implication

for practice

Our findings have important implications when apply-

ing such models to inform conservation efforts:

omitting flow regime variables in SDMs may lead to

an underrepresentation of macroinvertebrate species

that are sensitive to changes in flow. For example,

SDMs applied under current, and future climate

conditions have predicted range shifts of e.g. macroin-

vertebrate distribution to higher altitudes (Domisch

et al. 2011, 2013). Adding complementary factors

describing flow regime may result in more accurate

predicted range, both for current and future potential

distributions, subsequently requiring adjustments in

mitigation strategies for conservation efforts. Many

rivers in Germany (and globally) are highly altered

from their natural regime. Water as a resource is in

high demand continuously abstracted, recycled and

discharged back into the system, or rivers serve as

heavily managed waterways. By focusing on climate

or climate-related surrogates, predicting species

ranges may not capture the full diversity of functional

traits, and hence may ignore important relationships

between flow-sensitive species and their environment.

This factor is especially important when predicting

species’ distributions under future conditions, as it can

provide insights to the ultimate drivers of range shifts

(Monbertrand et al., 2019; Irving et al., 2020), and also

should be considered when applying SDMs on other

aquatic species (Ihlow et al., 2011; Markovic et al.,

2014; Ruiz-Navarro et al., 2016; Rodriguez-Merino

et al., 2019).

Concluding remarks

The main findings of our study suggest that by

including environmental predictors describing flow

regime in SDMs applied on macroinvertebrates can

potentially increase model performance, despite a low

contribution of hydrology to explained variance. The

IHA metrics applied in this study are partially derived

from real-time stream flow data from gauging stations,

which incorporate the principal factors that control

river hydrology. The metrics describe direct influenc-

ing factors of river habitat, including some aspects of

anthropogenic disturbance. These characteristics are

not described by either of the climate-related

predictors included in our study. In addition, our

analysis of functional traits provides insights into the

driving factors of macroinvertebrate distribution.

Improvement in model performance is species-speci-

fic and likely linked to the relevance of hydrology to

particular species.

Our study intentionally focused on climatic and

hydrologic variables however, we acknowledge that to

provide a holistic assessment of benthic macroinver-

tebrate distribution, additional elements known to

influence river systems need to be considered. It is

therefore possible that the inclusion of data describing

the surrounding land use (that influences stream flow

and nutrient influx), topography (that influences river

hydraulics) and connectivity (that influences dispersal

and habitat availability) of the study area could

increase predictive accuracy and influence range size.

Our study highlights improvements to predictive

ability, and provides insights into drivers of commu-

nity composition through functional traits. We rec-

ommend that given its fundamental importance,

variables describing flow regime must be considered

in SDM studies applied on river biota.
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