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Andrzej Falniowski . Vladimir Pešić . Brian Lewarne . Jozef Grego .

Aleksandra Rysiewska . Artur Osikowski . Sebastian Hofman

Received: 15 June 2021 / Revised: 27 August 2021 / Accepted: 30 August 2021 / Published online: 13 September 2021

� The Author(s) 2021

Abstract The subterranean aquatic snails may serve

as a model of endemism and isolation vs. migration in

subterranean habitats. The aim of the present paper is

to verify the hypothesis that subterranean aquatic

snails can migrate through diverse subterranean habi-

tats, applying four molecular markers as well as a

RAPD technique and shell morphometry. They were

used to estimate the differences and gene flow between

populations of the hydrobiid subterranean aquatic

species Montenegrospeum bogici, collected in the

Dinaric karst region. Three molecularly distinct tax-

onomic units were distinguished. The mOTU B was

found at single locality, mOTU C at two, but the

mOTU A at ten localities, scattered along 236 km

distance, at two of them in sympatry with either

mOTU B or C. Within mOTU A, the estimated levels

of the gene flow were high. The pairwise measures of

genetic differentiation were statistically significantly

associated with geographic distances between the

populations. In general, neither the infinite-island

model of interpopulation differentiation, expected for

isolated populations, nor the stepping-stone one, but
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rather the isolation-by-distance model explained the

observed pattern. Our results suggest that interstitial

habitats provide ways of migration for the stygobiont

M. bogici, as has been already suggested for other

subterranean gastropods.

Keywords Stygobiont � Cytochrome oxidase �
RAPD � Gene flow � Isolation by distance

Introduction

Of the approximately 20,000 worldwide described

species of subterranean animals (Culver & Pipan,

2009), stygobionts and troglobionts, there are over 350

described species of stygobiont (obligate subter-

ranean-dwelling aquatic) gastropods, with 97% of

them, and over 50 genera representing the superfamily

Truncatelloidea (‘‘Hydrobiidae s. lato’’ in Bernasconi

& Riedel, 1994; Culver, 2012). They are worldwide

distributed in all kind of brackish and freshwater

habitats, and grouping small or minute (shell height

1–3 mm), dioecious gill-breathing snails, whose phy-

logenetic relationships are still far from being clear,

and whose systematics remains poorly understood.

Sket et al. (2004) reported 169 stygobiont gastropod

species inhabiting the Balkan Peninsula; 148 of them,

representing 41 genera and 6 families, were found in

the Western Balkans, 8 (4 truncatelloid genera) in

Greece, and 13 (11 truncatelloid genera) in Bulgaria.

Among the subterranean gastropods, aquatic species

are much more numerous than the terrestrial ones—for

example, in the USA stygobionts’ species diversity is

nearly six times higher than that of troglobionts

(Hobbs, 2012; Gladstone et al., 2021). However,

despite the obvious existence of many still unde-

scribed species in these not easily accessible and

explorable habitats, the number of those already

known is overestimated (e.g. Falniowski & Beran,

2015; Osikowski et al., 2018). As pointed out by

Falniowski (2018), using intraspecies variable shells

as the only known structures, coupled with the

widespread belief among many taxonomists in geo-

graphic isolation and unavoidable, immediate speci-

ation of the cave animals has resulted in descriptions

of new species (nearly) in each cave or other

subterranean habitat (e.g. Reischütz et al., 2008;

Georgiev, 2013; Glöer et al., 2015; Grego et al.,

2017). The incredibly long list (more than 60 species

and many subspecies) of the nominal species of

Bythiospeum Bourguignat, 1882 presented by Glöer

(2002), may serve as a good example. Even after

including detailed, thorough morphological (e.g. shell

morphology) and molecular (e.g. allozymes, mito-

chondrial data) information, the correct species iden-

tification in the Truncatelloidea still pose quite a

challenge even for experienced taxonomic specialists

(Falniowski, unpublished data). Usually one can find

varying quantities of empty, often more or less

damaged shells, found at the surface, at groundwa-

ter-fed springs. Among such shells only a few living

individuals were ever found, washed out into springs

at times of high flow, especially during the spring

season (Haase, 1995; Richling et al., 2016). At a few

localities, more living snails can sometimes also be

found in springs and streams at the surface. There are

also subterranean snails whose shells can only be

found deep inside caves and are often incomplete, to

say nothing of the extreme scarcity of living speci-

mens. Collection of stygobiont Truncatelloidea is,

therefore, difficult, especially in adequate numbers for

any study of population genetic structure—subter-

ranean populations are usually not dense, rich in

individuals (e.g. Mammola et al., 2021). In fact,

nothing but shell morphology is known for the vast

majority of the subterranean gastropods. Even the soft

parts, if accessible, are not usually informative enough

to resolve taxonomic questions, since the animals are

very tiny compared to other gastropods, and minia-

turisation, coupled with convergent adaptations to

freshwater habitats (osmoregulation, internal fertili-

sation, eggs in capsules, etc.) has resulted in simpli-

fication and unification of their anatomy (e.g. Fretter &

Graham, 1994; Culver, 2012; Falniowski, 2018). Such

incompleteness of the data, coupled with assumptions

that they must be endemic, has resulted in strongly

biased estimates of biodiversity, to say nothing about

systematics, evolution, and ecology of these snails.

Molecular data—DNA sequences—are helpful, but

there are still only a few studies applying them (e. g.

Grego et al., 2019; Hofman et al., 2019). Another

limitation concerns the low number of applied

molecular markers—in fact often COI only—which

is a result of common problems with PCR amplifica-

tion or lack of polymorphism. Many of the known

stygobiont species primarily inhabit the interstitial

habitats formed by the alluvial gravel (frequently not
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dependent on karst); thus, caves and spring are for

them a secondary or occasional habitat, so their

distribution ranges may be more widespread than

originally supposed (Richling et al., 2016).

A relatively high species diversity of the subter-

ranean snails could be expected, as the group is well

preadapted to such an environment, as being nocturnal

(or at least avoiding direct sunlight), opportunistic,

ecologically (especially feeding) generalist animals,

with well-developed mechano-sensory and/or chemo-

sensory traits (Trajano & Cobolli, 2012). They are also

well adapted to food-limited habitats, since their size-

related energy requirements are low, being four times

lower than in fishes and salamanders, and more than

twice lower than in arthropod detritivores (Poulson,

2012). Thus, among the subterranean aquatic inverte-

brates, Crustacea dominate, but gastropods are the

second group in species diversity (Culver & Sket,

2000). Animals adapted to subterranean, especially

cave environments are often thought to be highly

geographically isolated because of their limited

dispersal ability, resulting from limited physiological

tolerances and, especially in the case of snails,

physical limitations of their locomotion (Purchon,

1977; Trueman, 1983). Nevertheless, the stygobiont

gastropods (whose interstitial representatives hardly

differ from the ones inhabiting caves) are known

nearly only from taxonomic descriptions, mostly

based on their shell morphology alone.

For example, Sbordoni et al. (2012) in their review

of the structural studies of subterranean (meta) pop-

ulations do not present any examples concerning the

Gastropoda, as is also the case with Mammola et al.

(2021). Simply there are no data about the Gastropoda

from shallow hypogean habitats of many kinds, in

similarity with hyporheic and deeper interstitial habi-

tats along rivers and streams (Culver & Pipan, 2014).

Apart from the descriptions of new species and

faunistic lists, when considering the information on

the stygobiont gastropod (meta)population genetic

structure, robustly inferred levels of endemism, gene

flow, etc. (perhaps because of the limited available

material), the data are scarce. Thus, neither species

boundaries nor phylogenetic relationships with the

snails inhabiting surface environments are well under-

stood (Falniowski, 2018). There are a few studies

concerning the stygobiont gastropods, nearly exclu-

sively of the Truncatelloidea. Falniowski et al.

(1998, 1999) studied gene flow and metapopulation

genetic structure (applying allozyme data) in By-

thinella Moquin-Tandon, 1856 inhabiting springs.

Bichain et al. (2007) also studied Bythinella in two

caves (Padirac and Folatière) in France. Cytochrome

oxidase (COI) sequences indicated several subter-

ranean lineages, still belonging to the epigean species,

thus, confirming that colonizations of hypogean habi-

tats by epigean individuals are not rare events in the

genus, as already suggested earlier (Boeters, 1979;

Giusti & Pezzoli, 1982; Bole & Velkovrh, 1986;

Bernasconi, 2000). Bichain et al. (2007) also found in

sympatry or parapatry with those epigean lineages also

distinct, exclusively hypogean phylogenetic lineages,

thus, indicating multiple invasions of the caves and/or

radiation already in caves. It has to be noted that

Bythinella is, in general, not a stygobiont, but rather a

stygophile, which means inhabiting both subterranean

and epigean waters. In the western Balkans, Bythinella

rather avoids the cave environment (JG personal

observation).

COI sequences were used to estimate the time of

divergence between Heleobia dobrogica (Grossu et

Negrea, 1989) from the Movile Cave in Dobrogea,

Romania and the epigean H. dalmatica (Radoman,

1974). The time 2.172 ± 0.171 Mya coincided with

the period marking the beginning of the fall in

temperature and precipitation that predated the Pleis-

tocene, when H. dobrogica found a safe shelter within

a warm cave (Falniowski et al., 2008). Falniowski &

Sarbu (2015) described new species of Iglica A.

J. Wagner, 1928 and Daphniola Radoman, 1973 from

the Melissotripa Cave in Greece, inferring their

molecular relationships (COI, 18S) with epigean

species. Osikowski et al. (2015) studied the genetic

and morphological differences between Bulgarian

surface- and cave-dwelling populations of the genus

Bythinella; while Rysiewska et al. (2016) have studied

16 populations of the Bulgarian cave/spring genus

Pontobelgrandiella Radoman, 1978. Osikowski et al.

(2017) described a new and entirely stygobiont clade

from Bulgaria. Based on shell morphology and soft

parts morphology and anatomy only, Hershler &

Holsinger (1990) described the zoogeography of the

stygobiont North American Truncatelloidea, demon-

strating that in some regions of the USA and Mexico,

some stygobiont hydrobioids originated from their

ancestors invading cave habitats directly from the sea

during the late Cretaceous. Similar invasions from the

sea have been also postulated for Dinarides’ cave

123

Hydrobiologia (2021) 848:4967–4990 4969



fauna (e.g. Sket, 2012), through the brackish/fresh-

water coastal sediments, especially during the Messi-

nian Salinity Crisis (Boutin & Coineau, 2000).

Contrary to common reports on the hydrobioid

stygobiont species endemic to very restricted area—

often just one cave—the hydrobiid cave snail Fonti-

gens tartarea Hubricht, 1963 is known from dozens of

caves in West Virginia (North America), its geo-

graphic range reaching 200 km and showing patchy

distribution, sporadic occurrence, and high variability

of the shell (Hershler & Holsinger, 1990; Culver,

2012). In caves, one can also find some widely

distributed generalist species, also inhabiting surface

waters—such as the pulmonate gastropod Ancylus

fluviatilis O. F. Müller, 1774 (reported by e.g. Sket,

2012; it has also been found in several interstitial

pumped materials during our research), Radomaniola

Szarowska, 2006, and the isopod crustacean Asellus

aquaticus (Linnaeus, 1758) (reported by: Verovnik

et al., 2003; Verovnik, 2012). Molecular studies on the

stygobiotic genus Bythiospeum Bourguignat, 1882

revealed the relatively late post-glacial colonisation of

large regions north of the Alps by one genetically

uniform species, while two other species of this genus

had a very limited distribution colonised from their

post-glacial refugia (Richling et al., 2016). This

pattern also suggested that the river alluvium and

gravels are effective ways of dispersal for some

species of Bythiospeum, but which are not so effective

for some other species, not inhabiting gravel alluvia,

which are rare in the karst Balkan regions.

In general, the central question for understanding

the biogeography of the subterranean animals, for

years known mostly from caves, is that of the relative

role of surface and subterranean dispersal (Holsinger,

2005). In the case of obligatory subterranean aquatic

species assuming isolation in caves is not obvious. In

fact, there are many subterranean habitats which are

not caves, but which also harbour eyeless, depig-

mented animals (Culver & Pipan, 2009, 2014), espe-

cially in unconsolidated sediments bordering and

underlying streams and rivers (hyporheic zone). They

are parts of the interstitial habitat, neither rare nor

discontinuous, thus, making possible migration

between caves (Lamoreaux, 2004; Culver et al.,

2009; Dole-Olivier, 2011). There are some studies

confirming this possibility (e.g. Buhay & Crandall,

2005), but they are still few and are mostly devoted to

the Crustacea (e.g. Lefébure et al., 2007; Eme et al.,

2013), rather than the Gastropoda. The finds of live

Paladilhiopsis oshanovae (Pintér, 1968) from the

alluvial springs of the Danube (G. Majoros, pers.

com.) clearly confirm alluvial gravel deposits as a

habitat of this species; thus, the ways of its dispersal

become obvious.

Pešić & Glöer (2013) described a new genus of the

stygobiont snail—Montenegrospeum Pešić et Glöer,

2013, with its type species Bythiospeum bogici Pešić et

Glöer, 2012 from the underground waters of the spring

Taban, in the central part of Montenegro. Falniowski

et al. (2014) applied molecular markers (COI and 18S)

to resolve phylogenetic relationships of Montene-

grospeum, as belonging to the Hydrobiidae, rather

than the Moitessieriidae. Later, Grego et al. (2018)

described another nominal species: M. sketi Grego et

Glöer, 2018, whose description was based on the slight

differences in the shell morphology and geographic

distribution, but which was not confirmed by the

molecular differences (Grego et al., 2018). The aim of

the present paper is to check the genetic structure

(applying mtDNA cytochrome oxidase subunit I

(COI), three nuclear markers and RAPD analysis) of

the populations of Montenegrospeum inhabiting

diverse subterranean habitats, including caves and

interstitial ones, to estimate the levels of gene flow, to

confirm the hypothesis that these snails can migrate

through them and forms a genetically uniform

metapopulation through a relatively long distance as

a result of a high level of gene flow.

Material and methods

The snails were collected in 2018 and 2019, 27

specimens from 11 localities (Table 1), distributed in

Croatia, Bosnia and Herzegovina, and Montenegro

(Figs. 1 and 2). They were either collected by hand and

sieve in caves and springs, or with a pump applying the

Bou-Rouch technique (Bou & Rouch, 1967), to

sample interstitial fauna below the bottom of streams,

at a depth of about 50 cm. The tube was inserted in the

streambed five times, and 20 L were pumped each

time. Samples were sieved through a 500 lm sieve

and fixed in 80% analytically pure ethanol, replaced

twice, and later sorted. Next, the snails were put in

fresh 80% analytically pure ethanol and kept at -

20 �C temperature in a refrigerator.
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The shells were photographed with a Canon EOS

50D digital camera, under a Nikon SMZ18 micro-

scope with dark field. Morphometric parameters of the

shell (Table 2) were measured by one person using a

Nikon DS-5 digital camera and ImageJ image analysis

software (Rueden et al., 2017). The linear measure-

ments were then logarithmically transformed; for

angular measurements, the arcsine transformation

was applied. Principal component analysis (PCA),

based on the matrix of correlation, was computed,

applying a descriptive, non-stochastic approach. The

original observations were projected into PC space, to

show relationships between the specimens, without

any classification given a priori. For PCA analysis

ClustVis 2.0 web tool (Metsalu & Vilo, 2015) was

used.

DNA was extracted from whole specimens includ-

ing their crushed shell; tissues were hydrated in TE

buffer (3 9 10 min); then total genomic DNA was

extracted with the SHERLOCK extraction kit (A&A

Table 1 Sampling localities with geographical coordinates

Id Site Coordinates Extraction no.—

haplotype/mOTU

1* Croatia, Izvora Ruda Begusa 43� 400 0900 N 16� 470 4100 E 2H70—H5/A

M. sketi—H6/A

2 BiH, Vrelob ,,Vrijeka’’ (Bijelajani), BiH19-08–2 43� 040 2700 N 18� 140 2000 E 2D09—H1/A

2D10—H1/A

2D13—H4/A

3 Croatia, Modro Oko, SP20 43� 030 2700 N 17� 300 3900 E 1T57—H7/A

4 BiH, Vrelob ,,Bitomišlje’’ (Golubinac), BiH19-07a 42� 500 1600 N 17� 580 1700 E 2D02—H2/A

2D04—H3/A

5 Montenegro, Studenačko vrelob 1 42� 450 5800 N 18� 550 5600 E 2C28—H16/B

2J40—H15/A

2J41—H11/A

2J42—H14/A

6 Montenegro, Studenačko vrelob 2 42� 450 5800 N 18� 550 5300 E 2J37—H15/A

2J38—H12/A

2J39—H13/A

7 BiH, Gorica Studenac spring 42� 420 3800 N 18� 220 3300 E 2C41—H17/C

8 Montenegro, Medurečije Oko 42� 390 5900 N 18� 590 2300 E 2C43—H9/A

2C44—H9/A

2C45—H9/A

9 Montenegro, Pričelje, M1 42� 300 2200 N 19� 130 2300 E 2C15—H11/A

10 Montenegro, Rijekac Crnojevića, M10 42� 210 1800 N 19� 010 1000 E 1T19—H11/A

2C18—H9/A

2C19—H9/A

2C40—H8/A

2G20—H18/C

2G23—H18/C

11* Montenegro, spring Taban 42� 310 3800 N 19� 130 1000 E M. bogici—H10/A

Haplotype and mOTU are also indicated
aIzvor—non-cave spring
bVrelo—cave resurgence spring, typical for karst areas
cRijeka—river

*Type localities
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Biotechnology), and the final product was dissolved in

20 ll of tris–EDTA (TE) buffer. The concentration of

DNA was measured with EPPENDORF BIOPHOT-

OMETER. The extracted DNA was stored at - 80 �C
at the Department of Malacology, Institute of Zoology

and Biomedical Research, Jagiellonian University in

Kraków (Poland).

A fragment of mitochondrial cytochrome oxidase

subunit I (COI) and three nuclear fragments (18S

ribosomal RNA—18S, 28S ribosomal RNA—28S,

histone H3—H3) were sequenced, as commonly used

markers in phylogenetic studies of Truncatelloidea.

Some other markers (nuclear internal transcription

spacers ITS-1 and ITS-2, elongation factor—EF as

well as mitochondrial 16S ribosomal RNA—16S) did

not amplify despite numerous attempts. Details of

PCR conditions, primers used, and sequencing tech-

niques were given in Szarowska et al. (2016a). The

Sanger sequencing was performed in Genomed Com-

pany in Warsaw, Poland. Sequences were initially

aligned in the MUSCLE (Edgar, 2004) programme in

MEGA 7 (Kumar et al., 2016). The correctness of the

alignment was checked in BIOEDIT 7.2.5 (Hall,

1999), this programme was also used to translate

sequences and check for reading frame and stop

codons. Uncorrected p-distances were calculated in

MEGA 7. The estimation of the proportion of invariant

sites and the saturation test (Xia, 2000; Xia et al.,

2003) were performed using DAMBE (Xia, 2018). In

the phylogenetic analysis, additional sequences from

GenBank were used (Table 3). The phylogenetic

analysis was performed applying two approaches:

Bayesian Inference (BI) and Maximum Likelihood

(ML). In the BI analysis, the GTR ? I ? C model of

nucleotide substitution was applied. Model was

selected using MRMODELTEST 2.3 (Nylander,

2004). The Bayesian analyses were run using

MrBayes v. 3.2.3 (Ronquist et al., 2012) with defaults

of most priors. Two simultaneous analyses were

performed, each with 10,000,000 generations, with

one cold chain and three heated chains, starting from

random trees and sampling the trees every 1000

generations. The first 25% of the trees were discarded

as burn-in. The analyses were summarised as a 50%

majority-rule tree. Convergence was checked in

Tracer v. 1.7 (Rambaut et al., 2018). FigTree v.1.4.4

(Rambaut, 2010) was used to visualise the trees. The

Maximum Likelihood analysis was conducted in

RAxML v. 8.2.12 (Stamatakis, 2014) using the

‘‘RAxML-HPC v.8’’ on XSEDE (8.2.12) tool via the

CIPRES Science Gateway (Miller et al., 2010). We

applied the GTR model whose parameters were

Fig. 1 Localities of the studied populations of Montenegrospeum. The lines surround the localities of molecularly distinct operational

taxonomic units (mOTUs): red—mOTU A, blue mOTU B; black—mOTU C
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estimated by RaxML (Stamatakis, 2014). Rapid

bootstrap was calculated. Two species delimitation

methods were performed: Poisson Tree Processes

(PTP) (Zhang et al., 2013) and Automatic Barcode

Gap Discovery (ABGD). The PTP approach was run

using the web server https://species.h-its.org/ptp/,

with 100,000 MCMC generations, 100 thinning, and

0.1 burn-in. We used RAxML output phylogenetic

tree. The ABGD approach is using the web server

(https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.

html) and the default parameters. To infer haplotype

network of the marker, we used a median-joining

calculation implemented in NETWORK4 (Bandelt

et al., 1999). The parameters describing a genetic

variation and other statistics were calculated with

DnaSP software (Librado & Rozas, 2009) and Arle-

quin v. 3.5 (Excoffier & Lischer, 2010). Arlequin was

also used to perform Tajima’s D test of neutrality

(Tajima, 1989a, 1989b, 1993). The geographical dis-

tances between the localities were calculated with

Fig. 2 Some of the studied localities: A Vrelo (cave spring) ‘‘Vrijeka’’ (locality 2), B Pričelje (locality 9), C Rijeka (river) Crnojevića

(locality 10)
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Geographic Distance Matrix Generator v. 1.2.3 (Ersts,

2020). Mantel tests were performed with NTSYSpc

(Rohlf, 1998).

In the RAPD analysis, run to obtain another source

of information about genetic diversity, five primers

were used (Table 4), based on the data from

Kulsantiwong et al. (2013). The RAPD reaction mix

contained: 10 ll of 1 9 reaction buffer, 1 unit of Taq

DNA polymerase (Thermo Fisher Scientific), 2.5 mM

of potassium chloride, 0.2 lM of primer, 0.2 mM of

dNTPs mix, and 10 ng of DNA0. The amplification

conditions were as follows: the first step at 94 �C for

5 min, followed by 41 cycles of 1 min each at 94 �C,

1 min 30 s at 35 �C, and then 2 min at 72 �C. The final

elongation step was for 5 min at 72 �C. The amplifi-

cation products were separated in 2% agarose gel with

ethidium bromide in TBE buffer. The banding patterns

were visualised under UV light. The bands were

scored visually, and those of similar molecular size

(for the same primer) were assumed to be homologous.

Each band was treated as an independent locus with

two alleles: the presence or absence of the band. The

PopGen 32 software package (Yeh & Yang, 2000) was

used to estimate the genetic variation. The following

parameters were calculated: mean number of alleles

per locus, effective number of alleles per locus,

percentage of polymorphic loci and Nei’s (1973) gene

diversity, and the Shannon index. This same software

was used to calculate the Nei’s genetic distances

between populations.

Results

Both techniques of species delimitation resulted in

distinction of three mOTUs. The shells of the

sequenced specimens (Fig. 3A–Y) were slightly vari-

able, only their size differed between the specimens.

Neither the paratype of Montenegrospeum sketi

(Fig. 3A), nor the specimens of molecularly distinct

operational taxonomic unit (mOTU—see below) B

and C differed morphologically from the other.

Moreover, PCA analysis illustrates no variability and

Table 2 Measurements of the shells

a b c d e a b

2H70 2.08 0.87 0.74 1.04 0.56 56 19

2D09 1.35 0.61 0.48 0.58 0.40 62 18

2D10 1.15 0.55 0.44 0.49 0.33 60 20

2D13 1.72 0.71 0.59 0.86 0.46 61 23

1T57 2.28 0.80 0.58 1.35 0.52 55 18

2D02 1.37 0.67 0.50 0.59 0.43 64 20

2D04 1.61 0.73 0.57 0.72 0.44 60 19

2J40 1.88 0.85 0.72 0.82 0.55 60 17

2J41 1.35 0.64 0.56 0.57 0.42 63 20

2J42 1.59 0.73 0.58 0.75 0.45 61 20

2J37 1.70 0.78 0.58 0.73 0.49 60 20

2J38 1.84 0.82 0.66 0.83 0.52 59 18

2J39 2.06 0.92 0.80 0.92 0.61 58 17

2C44 1.52 0.71 0.53 0.69 0.45 63 20

2C45 1.44 0.66 0.52 0.64 0.41 62 17

2C15 1.56 0.69 0.58 0.67 0.48 58 18

1T19 1.58 0.68 0.59 0.74 0.45 66 20

2C18 1.86 0.78 0.62 0.87 0.51 63 17

2C40 2.03 0.78 0.71 0.98 0.55 64 20

2C19 1.44 0.64 0.52 0.65 0.42 60 19

2C28 1.67 0.79 0.68 0.71 0.52 62 17

2C41 1.39 0.58 0.44 0.67 0.37 61 19

2G20 1.53 0.59 0.44 0.88 0.31 56 21

2G23 1.48 0.61 0.41 0.80 0.35 57 16

Measured parameters as shown in Fig. 4

Table 3 Reference sequences used in phylogenetic analyses

Species GB numbers References

Belgrandia thermalis (Linnaeus, 1767) AF367648 Wilke et al. (2001)

Dalmatinella fluviatilis Radoman, 1973 KC344541 Falniowski & Szarowska, (2013)

Montenegrospeum bogici (Pešić & Glöer, 2012) KM875510 Falniowski et al. (2014)

Montenegrospeum sketi Grego & Glöer 2018 MG880216-17 Grego et al. (2018)

Sarajana apfelbecki (Brancsik, 1888) MN031432 Hofman et al. (2019)

Tanousia zrmanjae (Brusina, 1866) KU041812 Beran et al. (2015)
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no morphological distinctiveness of the three clades as

well as for populations of the Montenegrospeum

(Fig. 4).

The tests for COI and H3 revealed no saturation.

We obtained 25 new sequences of each marker: COI

(451 bp, GenBank Accession numbers OK001173-

OK001197), 18S (401 bp, GenBank Accession num-

bers OK001198-OK001222), 28S (512 bp, GenBank

Accession numbers OK001281-OK001305), and H3

(307 bp, GenBank Accession numbers OK033490-

OK03351). For three nuclear fragments, all sequences

were identical, so all analyses were made for the COI

fragment. In the analysis of the COI, we included also

all the sequences of Montenegrospeum available in the

GenBank as well as for four sequences of the genera

previously identified as the closest of Montene-

grospeum for rooting the trees (Table 3).

We obtained 18 haplotypes for COI, with the

haplotype diversity (Hd) 0.955 ± 0.024. In total, 44

sites were variable and nucleotide diversity per site

(Pi) was 0.0276 ± 0.007.

The maximum likelihood (ML) phylogram (Fig. 5)

presented the same topology as the consensus tree

based on the Bayesian inference (BI). Reconstructing

a shallow phylogeny of closely related taxa, it showed

high values of bootstrap support or Bayesian proba-

bility, respectively. COI tree topology consisted of

three molecular groups—mOTUs (confirmed by PTP

and ABGD analysis), considering the identity of the

sequences in the other loci they rather do not represent

distinct species, although the values of pairwise

p-distances for COI (Table 5) are within the inter-

species level. All but four sequences of the snails,

inhabiting ten localities (the type locality of M. sketi

included: Fig. 1), formed mOTU A. Within this group,

the genetic variation was very restricted, despite its

wide (for stygobionts) geographic distribution,

reaching 236 km (Table 5); three haplotypes were

found in two (H9 and H15) or three (H11) populations

(Table 1) mOTU B was found as a single specimen at

one locality, and mOTU C as three specimens at two

localities (Figs. 1 and 5). The above pattern of genetic

differentiation was further supported by the results of

AMOVA (Table 6). As much as 86.40% of the

variance occurred between the mOTUs, confirming

low genetic diversity within vs high between the

mOTUs. Within the mOTUs, among the populations,

only 7.36% of the variance was noted, and was not

much more than 6.25% within the populations.

The results of Tajima’s D test of neutrality were

statistically insignificant for the mOTU A. For the

other two clades (B and C) they were statistically

significant, their values were 0.0000, rejecting selec-

tion (although in the mOTU B, with one sequence, the

value was meaningless). In the clade A, the result was

nearly significant (p = 0.8890), and D = 1.1291.

Tajima’s D[ 0 reflects, in general, scarce rare alleles

(in our case substitutions), balancing selection and

sudden population contraction. With one polymorphic

locus only, this result should be interpreted with

caution. The results of Fu’s F test were statistically

insignificant. The FST pairwise values between the

mOTUs were statistically not significant.

The Mantel test, checking the association between

the matrices of pairwise p-distance and geographic

distance, thus, testing the isolation-by-distance model

(Table 5, Fig. 6), with 9999 permutations, resulted in p

[random Z B observed Z] = 0.0318. The test between

the matrices of geographic distance and FST (h)

(Table 7, Fig. 6), with 9999 permutations, resulted in p

[random Z B observed Z] = 0.3021. Pairwise theta

(FST), Fisher’s estimator of the amount of structuring

of a population into subpopulations, in general was

high, but, with the exception of the ones between

Table 4 Characteristics of RAPD fragments generated by the five primers

Primer Nucleotide sequence 50–30 Total number of bands Number of polymorphic fragments

BIH01 GGTGCGGGAA 7 6

BIH02 GTTTCGCTCC 6 6

BIH03 GTAGACCCGT 8 8

BIH04 AACGCGCAAC 7 6

BIH05 CCCGTCAGCA 12 12

Total 40 38
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populations 2 and 4, as well as 10 and 4, not

statistically significant. Nm, an estimator derived

from Fisher’s F-statistics, may reflect the levels of

gene flow, thus, migration in a subdivided population.

In our populations, the values of Nm (Table 7) were, in

general, high, with exceptions of the pairs of popula-

tions belonging to different mOTUs, or the pairs

including the snails from the localities 10 and 5,

Fig. 3 Shells of the sequenced specimens of Montene-
grospeum: A-U—molecularly distinct operational unit (mOTU)

A: A 2H70, locality 1, B 2D09, locality 2, C 2D10, locality 2,

D 2D13, locality 2, E 1T57, locality 3, F 2D02, locality 4,

G 2D04, locality 4, H 2J40, locality 5, I 2J41, locality 5, J 2J42,

locality 5, K 2J37, locality 6,L 2J38, locality 6, M 2J39, locality

6, N 2C43, locality 8, O 2C44, locality 8, P 2C45, locality 8,

Q 2C15, locality 9, R 1T19, locality 10, S 2C18, locality 10,

T 2C40, locality 10, U 2C19, locality 10; V mOTU B, 2C28,

locality 5; W–Y mOTU C: W 2C41, locality 7, X–Y locality 10

(2G20 and 2G23, respectively)
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inhabited by the representatives of two mOTUs, in

sympatry.

The network of 18 found haplotypes (Fig. 7)

confirms the distinctiveness of the mOTU C, but not

necessarily that of the mOTU B. Within the most

diversified mOTU A, there are 15 haplotypes, and the

pattern more or less resembles the so-called ‘‘star

phylogeny’’.

In the RAPD analysis, each primer amplified from

six to twelve fragments, with an average of eight, and

among them, 38 bands (90%) were polymorphic

(Table 4). Basic parameters of diversity are given in

Fig. 4 Principal component analysis (PCA) on the shell of Montenegrospeum based on the measured characters given in Table 2
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Fig. 5 Maximum likelihood COI tree showing phylogenetic relationships between the studied snails. Bootstrap support and Bayesian

posterior probabilities are shown
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Table 8. Nei’s (1973) gene diversity ranged from

0.103 to 0.243 (mean 0.138, and the Shannon index

ranged from 0.035 to 0.366, (mean 0.159)). The values

were rather low, with the exception of the snails from

the localities 7 and 10, inhabited each by two mOTUs.

The Mantel test of association between the matrices of

geographic distance and Nei’s genetic distances

(Table 9, Fig. 8) with 9999 permutations, resulted in

p [random Z B observed Z] = 0.0189. There were not

found to be any population-specific RAPD fragments,

defined as RAPD bands found exclusively in one

population in over 90% of individuals. Most of the

detected RAPD bands were distributed across most

populations (Fig. 9). In general, UPGMA clustering

(Fig. 10) showed groupings of specimens in accor-

dance with the localities from where they came, and

within six main clusters. The first of them groups all

individuals from the localities 1, 3, and 4. The second

groups individuals from the locality 7, belonging to

mOTU A. The third groups all the individuals from the

localities 5 and 6, belonging to mOTU A. The fourth

consists of specimens from the locality 2, while the

fifth consists of all the individuals of mOTU C

(however, high genetic distance within mOTU C may

suggest the existence of two divergent groups). The

sixth clusters the specimens from the localities 8, 9, 10

and a single individual of mOTU B from the locality 5

(Fig. 10).

In the karst areas of the Balkans the gravel

substratum is not common, with interstitial waters

usually filling small fractures in the rocks, making the

collection of the meiofauna problematic, especially

when using the Bou-Rouch pump. Coupled with low

densities of such subterranean snails’ populations,

most of the pumping does not result in the collection of

live snails. We collected live specimens of Montene-

grospeum at two localities: 2 and 10. Locality 2 was

geographically most close (geographic distance

34 km) to the locality 4 (Table 4), which was a cave,

and genetically, the populations were very close

(p = 0.007; Table 4), confirming the possible migra-

tion from one locality to another. The locality 10

Table 5 The p-distances between Montenegrospeum populations (below the diagonal), p-distance within population (diagonal, bold,

italic) and geographic distances (in km) between population (above diagonal)

1 2 3 4 5 6 7 8 9 10 11

1 0.009 134.33 89.43 132.92 200.43 200.37 166.91 210.28 236.07 232.78 234.52
2 0.014 0.002 59.24 34.14 66.10 66.05 41.99 76.24 102.27 102.38 100.60
3 0.014 0.007 – 44.79 120.34 120.28 80.45 128.29 152.76 146.09 151.54
4 0.019 0.007 0.012 0.003 78.87 78.81 35.96 85.40 108.88 101.31 107.81
5 0.023 0.016 0.017 0.020 0.015 0.06 45.90 12.06 37.48 46.32 35.51
6 0.019 0.014 0.015 0.017 0.011 0.011 45.84 12.09 37.53 46.33 35.55
7 0.087 0.092 0.093 0.097 0.091 0.094 – 50.47 73.03 65.97 72.04
8 0.016 0.010 0.005 0.015 0.013 0.010 0.095 0.000 26.15 34.75 24.38
9 0.013 0.007 0.008 0.012 0.010 0.007 0.093 0.003 – 23.72 2.36
10 0.041 0.036 0.034 0.041 0.038 0.038 0.066 0.032 0.032 0.050 25.23
11 0.012 0.010 0.011 0.015 0.013 0.010 0.095 0.005 0.003 0.034 –

Table 6 Results of AMOVA for COI: percentage of variation in all data and in three separated species

Source of variation d.f Sum of squares Variance components Percentage of variation

Among groups 2 91.826 12.3659 Va* 86.40

Among populations within groups 10 31.674 1.0533 Vb* 7.36

Within populations 14 12.500 0.8929 Vc* 6.24

Total 26 136.000 14.3147

Statistical significance *P\ 0.001
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harboured two mOTUs: A and C. The mOTU C was

found also in a spring at locality 7, which is 66 km far

from the locality 10, and p = 0.066 (Table 4), and Nm

equalled 0.000. For the representatives of the mOTU

A, the localities closest to 10 were 9 (24 km), 11

(25 km), and 8 (35 km; Table 4), all being springs.

The representatives of mOTU A from the locality 10

shared haplotypes with either locality 8 or 9.

Discussion

Neither morphology nor molecular data (Grego et al.,

2018) confirmed the species distinctiveness of Mon-

tenegrospeum sketi. Thus, M. sketi becomes a younger

synonym of B. bogici. Such unjustified species

descriptions are not rare in truncatelloid gastropods

(e. g. Wilke & Falniowski, 2001; Falniowski & Beran,

2015; Falniowski, 2018; Osikowski et al., 2018).

Fig. 6 Pairwise genetic p-distances, and FST (h) plotted against pairwise geographic distances between the populations
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Again, for the reasons outlined by e.g. Falniowski

(1987, 2018), the morphostatic mode of evolution, as

defined by Davis (1992), and common cryptic species,

morphologically based species identification in the

Truncatelloidea is often impossible. On the other

hand, in our Montenegrospeum molecular data, we

uncovered three molecularly distinct units; their

distinctiveness is within the range of COI interspecies

differentiation in the Truncatelloidea (e.g. Bichain

et al., 2007; Falniowski & Szarowska, 2011), although

not confirmed by the other loci, thus, not satisfying the

criteria of species delimitation (Fišer et al., 2018).

Fig. 7 Haplotype network (non-hierarchical, no dichotomous tree) of the studied populations

Table 7 Below diagonal: population pairwise FST (h); in bold significant, at significance level 0.05, 110 permutations

1 2 3 4 5 6 7 8 9 10 11

1 5.00 1.90909 ∞ ∞ ∞ ∞ 0.27273 ∞ 4.80000 ∞ ∞
2 0.52301 0.667 1.00000 1.90909 2.88889 2.50000 0.25000 1.00000 1.88889 1.00000 1.00000

3
−
0.11111 0.75000 0.000 ∞ ∞ ∞ 0.00000 0.00000 3.25000 0.00000 0.00000

4 0.53846 0.68657 0.77778 1.000 ∞ ∞ 0.27273 ∞ 4.80000 ∞ ∞
5 0.34226 0.44343 0.15385 0.44773 5.500 ∞ 0.66667 ∞ 14.66667 ∞ ∞
6 0.32759 0.56250 0.29412 0.55000 − 0.17836 4.000 0.50000 ∞ 5.70000 ∞ ∞
7 0.84848 0.98077 1.00000 0.97260 0.83942 0.88785 0.000 0.00000 2.05263 0.00000 0.00000
8 0.68085 0.90909 1.00000 0.93878 0.34328 0.45455 1.00000 0.000 ∞ 0.00000 0.00000

9
−
0.11111 0.75000 1.00000 0.77778 − 0.46667 − 0.50000 1.00000 1.00000 0.000 3.25000 3.25000

10 0.01365 0.11675 − 0.46667 0.10016 0.08692 0.07830 0.23733 0.04561 − 0.58889 19.067 0.00000

11
−
0.11111 0.81818 1.00000 0.81818 − 0.15789 − 0.09091 1.00000 1.00000 1.00000 − 0.46667 0.000

Along diagonal, italic: average number of pairwise differences within population (PiX). Above diagonal: population pairwise M

values (M = Nm for haploid data)
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Perhaps mOTU C represents a distinct species, which

is not reflected in its morphology—thus, there may be

one more example of a cryptic species, not as rare as it

had been thought before the common application of

molecular techniques in taxonomy (e. g. Bickford

et al., 2006; Pfenninger & Schwenk, 2007; Macher

et al., 2016; Razkin et al., 2016, 2017). Cryptic species

seem especially common in subterranean habitats (e.g.

Culver & Pipan, 2009; Culver, 2012). In our case, the

species distinctiveness of mOTU C is somewhat

confirmed by the sympatric occurrence with mOTU

A. Thus, instead of one stygobiont species, rather

widely geographically dispersed, we may observe one

widely distributed species (235 km of linear distance

is neither characteristic nor common for subterranean

species: e.g. Culver & Pipan 2009), and two possible

cryptic species whose ranges are restricted to one or

two localities known so far. Such a pattern has already

been found for some stygobiont species (e.g. Eme

et al., 2013; Gorički & Trontelj, 2006).

Within the mOTU A, which includes the topotypes

of M. bogici and, thus, represents M. bogici s. stricto,

the interpopulation differentiation is low, lower than

in, for example, the crenobiont/stygophile (inhabiting

springs and facultatively subterranean habitats) By-

thinella Moquin-Tandon, 1856 (Falniowski et al.,

1998, 2009; Falniowski & Szarowska, 2011; Osi-

kowski et al., 2015; Szarowska et al., 2016b). Low

values of p-distance and low levels of intrapopulation

polymorphism may suggest rather high levels of gene

flow, and either sudden population contraction (sug-

gested by Tajima’s test, although the results have been

marginally significant only), or a ‘‘star phylogeny’’

pattern visible in the haplotype network, which could

be interpreted as an expected signature for a species

that has expanded its range rather recently, from a

small or modest number of founders (Avise, 2000). As

was stressed by Endler (1977), adaptive differences

among populations can be maintained by natural

selection even under high levels of gene flow, as well

as selection may mimic effects of gene flow. This

similarity may be also due to numerous stochastic

factors, area effects, etc. Thus, another possible

background of low variation may be selection, which

is rather obvious in COI, a part of the respiratory chain.

However, such selection should act uniformly in such

a rather homogenous (at least concerning respiration:

in a general low oxygenated) habitat as a subterranean

one, but the mOTUs B and C, living in the same

habitats (even in sympatry with A) are molecularly

markedly distinct, which makes selection a much less

probable factor shaping low molecular diversity. If

Nm[ 1, the allele frequencies in the subpopulations

remain homogenised (Wright, 1931, 1969). If Nm\ 1

Table 8 Genetic variation parameters: N—mean number of

alleles per locus, Ne—effective number of alleles per locus,

P—percentage of polymorphic loci, He—Nei’s (1973) gene

diversity, Ho—the Shannon index

Population N Ne P He Ho

1 1.000 1.000 – 0.000 0.000

2 1.125 1.125 12.50 0.062 0.087

3 1.000 1.000 – 0.000 0.000

4 1.050 1.050 5.00 0.025 0.035

5 1.500 1.320 50.00 0.194 0.288

6 1.250 1.180 25.00 0.103 0.150

7 1.600 1.380 60.00 0.231 0.344

8 1.250 1.200 25.00 0.111 0.159

9 1.000 1.000 – 0.000 0.000

10 1.675 1.404 67.50 0.243 0.366

Table 9 Nei’s genetic

distances between

populations based on RAPD

s analysis

1 2 3 4 5 6 7 8 9

2 0.447

3 0.357 0.488

4 0.305 0.537 0.146

5 0.365 0.342 0.287 0.338

6 0.358 0.436 0.321 0.370 0.035

7 0.277 0.459 0.337 0.186 0.348 0.354

8 0.372 0.362 0.573 0.422 0.294 0.394 0.427

9 0.511 0.488 0.693 0.453 0.345 0.459 0.565 0.101

10 0.283 0.313 0.531 0.354 0.204 0.280 0.302 0.071 0.128
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but is still positive, an equilibrium based on the rate of

mutation, migration, and genetic drift will be estab-

lished. In our populations, the values of Nm were, in

general, high, with exceptions of the pairs of popula-

tions belonging to different mOTUs, or the pairs

including the snails from the localities 10 and 5,

inhabited by the representatives of two mOTUs, in

sympatry. The infinite-island model of interpopulation

differentiation (Wright, 1978), expected for isolated

populations, does not characterise the observed pat-

tern. Together with the results of the Mantel test, it

suggests isolation-by-distance (although slightly

marked), rather than the stepping-stone model. RAPD

confirms the same conclusion. Another three avail-

able, nuclear loci were not varied, which only confirms

close relationships/high levels of gene flow of the

studied individuals.

The low subsurface dispersal hypothesis (Lefébure

et al., 2006), most popular for many years, states that

after a vicariant event, invasion of subterranean

habitat (group of caves) followed by extinction of

the surface ancestor, there is little or no dispersal

between the subterranean microhabitats. Inhabitants

of subterranean habitats were often traditionally

understood as being either living fossils, relic species

(last survivors of ancient radiation), or relict species

(geographically separated from related species) and

showing no progressive evolution, being isolated an

extremely space-limited habitat. This already aban-

doned concept seems to be the background of the

popular practice among some taxonomists, many of

them rather speleologists than biologists—to describe

distinct species or at least subspecies for nearly each

cave (two species described from two caves at the

same village may serve as an example), with no

understanding of either mechanisms of speciation or

of potentially available dispersal pathways. Molecular

markers, especially DNA partial sequences, have

identified numerous cryptic subterranean species

(e.g. Trontejl et al., 2009) but have also rejected the

species distinctiveness of many nominal species

described following the low subsurface dispersal

hypothesis (e.g. Osikowski et al., 2017, 2018). How-

ever, Christman et al. (2005) in their study of the

troglobiotic (terrestrial) fauna in eastern North Amer-

ica reported as many as 45% (211 of 467 species) to be

single cave endemics.

Such high levels of endemism seem not so charac-

teristic for the aquatic, stygobiont fauna. Ward &

Palmer (1994) in their overview of dispersal of

meiofauna, applicable to stygobionts in general,

stressed the connections of subterranean habitats, such

Fig. 8 Nei’s pairwise genetic distances plotted against pairwise geographic distances between the populations
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as caves and springs, by alluvial aquifers, with their

sand and gravel deposited by flowing waters. Williams

(2008) stressed that in almost all caves, the rock

around is fractured, forming small solution tubes that

allow subsurface connections between caves; in karst

areas, epikarst and associated vertical downward

percolation of water is more or less continuous. Their

opinion was confirmed by phylogenetic analysis of

four species of Proasellus Dudich, 1925 (belonging to

the Crustacea: Isopoda) by Eme et al. (2013). There

are some more studies confirming this possibility,

which are mostly devoted to the Crustacea (e.g.

Lefébure et al., 2007; Villacorta et al., 2008; Malard

et al., 2009; Eme et al., 2013), but also to anchialine

Fig. 9 Geographic distribution of RAPD bands for particular populations

123

4984 Hydrobiologia (2021) 848:4967–4990



annelids (Gonzalez et al., 2017) which are the

prevailing group in the stygobiont fauna (Sket,

2012). To our knowledge, there are no such studies

on any stygobiont gastropod species. Our study,

although based on a few specimens—as already

stressed stygobiont gastropods do not form dense

populations and are not easily collectable—presents

the same picture: dispersal through the subterranean

interstitial waters which they also inhabit, leading to

low levels of isolation and the resultant endemism.

There may be various hydrological routes of

migration of the stygobiont fauna. For example, in

the Dinarids, there are large flat depressions (karst

poljes), some with neither aerial inflow nor aerial

outflow of water (closed karst poljes) and having

insoluble polje-floor sediments. They are periodically

flooded. During such a flood, aquatic cave animals are

frequently washed out of their subterranean habitat,

and some of them may reach caves at other parts of the

polje, or even reach a subterranean connection to

another polje. Such a route of migration was suggested

by Zakšek et al. (2009) for the shrimp Troglocaris

Dormitzer, 1853. However, Troglocaris is a swimmer,

and for creeping snails, such a means of dispersal

seems less probable, although some may possibly

passively wash out and disperse.

The relatively wide geographical distribution of

Montenegrospeum bogici, over 230 km, with one or

two cryptic species at one/two populations, presents a

pattern already found for some other, non-gastropod

more motile stygobionts. The phylogenetic analysis of

five morphospecies of the crustacean Proasellus,

widely distributed (more than 200 km) along the

hyporheic corridors of rivers, resulted in the discovery

of ten new cryptic species, seven known from a single

locality and being peripheral isolates (Eme et al.,

2013)—such peripheral isolates may be mOTUs B and

C. The most widely known and familiar stygobiont

animal Proteus anguinus Laurenti, 1768, the European

Cave Salamander, has a wide geographical range

along the western part of former Yugoslavia, although

the range is discontinuous (Sket, 1997). Gorički &

Trontelj (2006) sequenced several regions on its

mtDNA and distinguished six groups of its popula-

tions, with genetic divergence between them higher

than between most species of salamanders within a

genus. The greatest geographic extent of a single

group does not extend 200 km, compared with

500 km for all the nominal species. All the distin-

guished six species were cryptic. The dispersal pattern

of Montenegrospeum also strongly resembles the one

described for Bythiospeum presented by Richling et al.

(2016).

The relatively broad geographic range and high

levels of gene flow in M. bogici observed over areas

without alluvial connection need some possible

explanation. The hydrogeological map of the species

range (Fig. 11) suggests thatM. bogici may inhabit not

Fig. 10 UPGMA dendrogram for specimens using RAPD data
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only the alluvial gravels and the spring heads, but

should also be capable of spreading through the cave

streams and lakes. Additionally, the species may use

the intermittent connections between the aquifers of

river drainage basins. Such an intermittent connection

between the Drin (Zeta) and Trebišnjica River Basins

is relatively well understood through Nikšičko Polje

(Gornjepolski Vir) to Nikšičko Vrelo near Bileća

(divergence an in Fig. 11). The species also passes the

second intermittent divergence line between the

Trebišnjica and Neretva River Basins, where it exists

between the Dabarsko and Fatničko Poljes. Although

this hydrological connection has been previously

proven to exist when the karst groundwater exceeds

400 m a.s.l. elevation, the identical stygobiont mala-

cofauna of both Poljes, with Plagigeyeria reischuet-

zorum Grego, 2020 and Travunijana gloeri Grego,

2020, now adds further evidence to confirm the

existence of this connection. Furthermore, the stygo-

fauna of both basins may be in contact through the

springs in the delta of the Lower Neretva River in

Hutovo Blato/Deranjsko Jezero and also near Metko-

vić (springs Bajovci, Sjekoše, Glušći, Bijeli Vir,

Mlinišče). The third, hydrogeologically least under-

stood, unremittent connection possibly exists between

the Neretva and Cetina Basins. Most likely it is formed

by occasional groundwater flow around Imotsko Polje,

from Prološko Blato to the spring of Ričina in Buško

Blato, or may be directly to the spring Ruda Beguša.

The high levels of gene flow presented above

indirectly prove the existence of this groundwater

connection, at least intermittently. The finds of

Montenegrospeum shells at the nearby spring Peć

Mlini (Tihaljina, BiH) and in the spring Lukavac

(Veliki Prolog, HR) indicate the wider distribution of

the genus in areas between the hitherto-proven

localities.

Concluding our results, in general, neither the

infinite-island model of interpopulation differentia-

tion, which would be expected for isolated popula-

tions, nor the stepping-stone one, but rather the

isolation-by-distance model explained the observed

Fig. 11 Hydrological map of the studied area with possible

intermittent groundwater connections among Drin-Trebišnjica

(A), Trebišnjica—Neretva (B), and Neretva—Cetina (C) River

basins. Light blue arrows: Groundwater flow; Light blue ring:

Karst spring; Blue ring with green centre and black X:

Estavelles; dark green diamond: Submarine or brackish karst

spring; Grey fields: permeable (conductive) karst; White field:

not permeable (non-conductive) non-karstic bedrock; Yellow

fields: Permeable (conductive) alluvial gravel; Orange fields:

Alluvial sands with limited permeability (conductivity)

123

4986 Hydrobiologia (2021) 848:4967–4990



pattern. Our results suggest that interstitial habitats

provide ways of migration for the stygobiont

M. bogici, as has been already suggested for other

subterranean gastropods.
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networks for inferring intraspecific phylogenies. Molecular

Biology and Evolution 16: 37–48.

Beran, L., S. Hofman & A. Falniowski, 2015. Tanousia
zrmanjae (Brusina, 1866) (Caenogastropoda: Truncatel-

loidea: Hydrobidae): a living fossil. Folia Malacologica 23:

263–271.
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Lefébure, B. Sket & V. Zakšek, 2009. A molecular test for

cryptic diversity in groundwater: how large are the ranges

of macro-stygobionts? Freshwater Biology 54: 727–744.

Trueman, E. R., 1983. Locomotion in Molluscs. In Saleuddin,

A. S. M. & K. M. Wilbur (eds), The Mollusca, Volume 4:

Physiology, Part 1. Academic Press, Inc., (New York-

London-Paris-San Diego-San Francisco-Sao Paulo-Syd-

ney-Tokyo-Toronto): 155–198.

Verovnik, R., 2012. Asellus aquaticus: a model system for

historical biogeography. In Culver D. C. & W. B. White

(eds), Encyclopedia of Caves (Second Edition). Academic

Press, Amsterdam: 30–36.

Verovnik, R., B. Sket, S. Prevorčnik & P. Trontelj, 2003. Ran-
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