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nitrogen amounts, by promoting bacteria involved in 
their cycles. The shade exerted by the meadows mini-
mized the UVR effects, driving to a community simi-
lar to that of the UVR-filtered environment. There-
fore, macrophytes, through different mechanisms, 
can mitigate the harmful effects of UVR in sediment 
communities. Thus, the conservation of macrophyte 
meadows in highly vulnerable wetlands becomes cru-
cial in a global change context.
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Introduction

Within the aquatic microbial community organisms 
tightly linked to the sediment of waterbodies, or the 
sediment microbial community, are of special inter-
est (Orland et  al., 2020). This is a complex assem-
blage occupying different layers of sediment with dis-
tinct physical and chemical conditions (Spring et al., 
2000). Differences in the abundance, composition, 
and functions of this community are expected in the 
different layers (Baveye et  al., 2019). In the superfi-
cial sediment, where photosynthetic active radiation 
arrives, there is the periphyton biofilm composed of a 
variety of autotrophic and heterotrophic microorgan-
isms, mostly benthic microalgae and cyanobacteria, 
but also bacteria and Archaea (Rysgaard et al., 1995; 
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Song et al., 2016). This assemblage plays significant 
roles in the primary productivity, energy flow, and 
nutrient cycling in aquatic ecosystems (Azim et  al., 
2005; Canfield et al., 2010), and it is used to sort out 
water quality (Sabater et al., 2007; Wu et al., 2018). 
In addition, the complex bacterial assemblage of the 
sediment microbial community also develops relevant 
biogeochemical activity in the sub-superficial anoxic 
sediment (Morina et al., 2018).

It is well-known that microbial community compo-
nents are vulnerable to both biotic and abiotic envi-
ronmental conditions on a local scale; for example, 
being affected by light quality, temperature, nitrogen 
pollution (Navarro et al., 2009; Baron et al., 2013), or 
the presence of macrophytes (Rojo et al., 2017a; Xian 
et al., 2020). Therefore, it is predictable that this com-
munity will change in abundance and composition in 
the different sediment layers when certain stressors 
act. Furthermore, these shifts in the sediment micro-
bial community are especially worrying in shallow 
lakes or wetlands, since these ecosystems are highly 
vulnerable to global change (Jeppesen et  al., 2014). 
In fact, disturbances can occur rapidly in these sys-
tems (within a few days), making shallow lakes a type 
of temporary waterbody, where the microbial com-
munity will have to respond in the short-term (Rojo 
et al., 2017b).

The most studied foreseeable environmental 
changes in lakes are warming, eutrophication, salini-
zation, and changes in light quality (Jeppesen et  al., 
2014; Carrillo et al., 2015; Rojo et al., 2019). In this 
regard, Mediterranean shallow lakes or wetlands rep-
resent a paradigmatic case because they are already 
suffering the concomitant effects of these mentioned 
factors (Giorgi & Lionello, 2008; Parcerisas et  al., 
2012; IPCC, 2014; Cabrerizo et  al., 2020). Moreo-
ver, these processes occur in ecosystems sited in 
areas with abusive anthropogenic nitrogen inputs 
(i.e. coastal Mediterranean area where there is inten-
sive agricultural fertilization; Jeppesen et  al., 2011). 
Therefore, the biotic communities involved in the N 
biogeochemical cycle, particularly those involved in 
denitrifying processes in the sediments, are of main 
interest (Canfield et al., 2010; Jordan et al., 2011).

Concerning the alteration in light quality, one of 
the consequences of the loss of water column depth 
in aquatic ecosystems will be that ultraviolet radiation 
(UVR hereafter) can reach the bottom of these sys-
tems, impacting the benthic community by affecting 

a wide range of aquatic organisms, including micro-
organisms from the sediment microbial community 
(Rojo et al., 2019). The harmful effect of UVR on the 
photosynthetic metabolism and DNA of aquatic pri-
mary producers, such as microalgae and cyanobacte-
ria, reduces their production (Barrado-Moreno et al., 
2017). Moreover, UVR triggers a loss in their diver-
sity towards more resistant taxa (Harrison & Smith, 
2009; Rojo et  al., 2012). Furthermore, UVR could 
also directly modify the abundance and composition 
of the aquatic bacterial community (Manrique et al., 
2012; Xiao et  al., 2020), and indirectly affect it by 
altering its matter and energy sources (Mayer et  al., 
2006).

With respect to the submerged macrophytes, such 
as charophytes, these green macroalgae, through their 
contribution of organic matter rich in nitrogen com-
pounds, could be accompanied by a greater density 
and activity of denitrifying bacteria (Rodrigo et  al., 
2007, 2013; Morina et  al., 2018; Rojo et  al., 2020). 
Consequently, this will have implications in the sedi-
ment stoichiometric composition (Hansson et  al., 
2005; Zhang et  al., 2013), being beneficial to the 
ecosystem (Rabalais, 2002) since this activity would 
reduce the internal nitrogen loading of the system. 
The presence of macrophytes affects denitrifica-
tion rates by altering the oxygen conditions (Veraart 
et al., 2011) and organic carbon availability (Vermeer 
et al., 2003; Rodrigo et al., 2007), both in the water 
column and in the sediment. In addition, macrophyte 
morphological architecture both above and below 
ground (e.g. the rhizoidal system) provides a land-
scape to develop the microbial community, and could 
imply beneficial shading for the sediment commu-
nity, minimizing the harmful UVR effect in shallow 
waterbodies (Hilt & Gross, 2008; Morina et al., 2018; 
Dai et al., 2019; Puche et al., 2020). Therefore, it is 
expected that aquatic plant meadows affect not only 
the physical and chemical properties of the sediment 
(Neubauer et  al., 2005), but also the structure and 
function of the microbial communities in the periphy-
ton biofilm and sub-superficial layers (Morina et al., 
2018).

Hence, our main goal is to establish how UVR, 
and the presence of macrophyte meadows, affect the 
structure–function of the sediment microbial com-
munity (both the periphytic microbial community and 
that of sub-superficial sediment layers) from a nitrate-
enriched system. We disentangle different effects 
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of these two factors and test our hypothesis that the 
presence of macrophyte meadows, through different 
mechanisms, mitigates the harmful effect, of UVR.

Methods

Experimental design

Obtaining the charophytes and the preparation 
of cultures

The charophyte species chosen for the study was 
Chara hispida Linnaeus (Characeae family), a fresh-
water benthic macroalga which is anchored to the 
substrate by means of rhizoids. This is a cosmopolitan 
species, naturally present in freshwater ecosystems in 
the Mediterranean region and it has previously been 
used in studies related to global change (Rojo et al., 
2017a). The original plant material was collected 
from a small Mediterranean coastal lagoon (39° 12′ 
29″ N and 0° 14′ 5″ W; reference system WGS84) 
close to where the experiment took place. Using this 
collected material, small plants of C. hispida were 
cultivated in an indoor culture room and, when the 
roots had sprouted, they were planted in the limno-
corrals (more detailed in Supplementary Material).

Two‑way ANOVA experimental design

The experiment followed a two-way ANOVA design: 
(i) the presence or absence of charophytes (CH or 
NCH, respectively), and (ii) sunlight or sunlight with 
reduced UVR (hereinafter termed PAB and PAR, 
respectively). Therefore, the experiment had four 
conditions (CHPAB, CHPAR, NCHPAB, NCHPAR) 
with three replicates of each of them, which meant a 
total of 12 limnocorrals were needed. The 12 limno-
corrals were located in a protected wetland, El Tancat 
de la Pipa (39° 21′ 51″ N and 0° 20′ 47″ W; reference 
system WGS84), a restored area from former rice 
fields belonging to the Albufera de València Natural 
Park (Fig. S1a). The limnocorrals were quadrangular 
cages anchored to the sediment; the sides and tops 
were covered with plastic mesh and plastic sheets, 
respectively, to prevent animal incursions (Rodrigo 
et al., 2013; Fig. S1b, c). For the PAB treatment, the 
limnocorrals were covered with polyethylene sheets 
which transmitted 90% of photosynthetic active 

radiation (400–700  nm) and the majority of UVR 
[100% UVB (280–320 nm) and 92% UVA (320–400) 
nm)].

The UVR filter sheet for the PAR treatment trans-
mitted 80% of the photosynthetic active radiation, 
48% of the UVB and 56% of the UVA. The under-
water radiation doses were measured in each lim-
nocorral with a JAZ system spectrometer (Ocean 
Optics, Inc.; details in Supplementary Material). The 
significant difference in the UVR doses in the limno-
corrals of these treatments was tested (Table S1). The 
limnocorrals were placed at a distance of 1  m from 
each other, occupying a total area of approximately 
25  m2; the treatments corresponding to each limno-
corral were established randomly (Fig. S1d). For the 
CH treatment, 16 small pots (4.6 cm diameter) with 
charophytes belonging to the laboratory stock were 
planted in each limnocorral (Fig. S1e), thus, 96 cul-
tures in total. These pots were transplanted, keeping 
the small portion of the substrate (a mixture in pro-
portion 1:1 of previously autoclaved sediment and 
commercial sand) which held the rhizoids to ensure 
their anchorage in the new site. Hence, approximately 
10% of the sediment surface of these limnocorrals 
was substituted by introduced substrate, and the cha-
rophyte surface coverage after planting was 30%. In 
the NCH-treatment limnocorrals 16 sediment units 
(from pots containing the same mixture of substrate 
as for charophyte cultures, treated in the lab the same 
as the former ones) were also placed in each limno-
corral to simulate the same disturbance on the natural 
sediment. The experiment lasted seven weeks, after 
an acclimatization period of some weeks to make 
sure the plants were growing. At the beginning of 
the experiment (after the acclimatization period) 3 
cores were extracted per limnocorral, and at the end 
of the experiment 5 cores were extracted per limno-
corral in order to include the possible spatial hetero-
geneity due to the treatments. In each core, two parts 
of the substrate were distinguishable according to 
their coloration and the presence of primary produc-
ers (Fig. S1f): a lighter surface part corresponding to 
the more oxygenated zone where the periphytic bio-
film was located (hereafter the superficial layer), and 
a deeper part, darker in colour, corresponding to the 
more anoxic part (hereafter the sub-superficial layer). 
In the field, these layers were separated and kept in 
sterile plastic pots. Once in the laboratory, the super-
ficial parts of the cores of each limnocorral were 
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homogenized; the same procedure was carried out 
with the cores from the sub-superficial layers. These 
integrated sediment samples were the material used 
to obtain the data used in this study.

Limnological conditions: water column, sediment 
and charophytes

Limnological conditions, including physical, chemi-
cal and stoichiometric variables in the water column 
and in the sediment were reported for each limnocor-
ral at the beginning and end of the experiment (Tables 
S1, S2).

From the extracted sediment cores in each lim-
nocorral, and the subsequent homogenization of 
the superficial and sub-superficial layers (explained 
above), subsamples of sediment were destined for the 
analysis of the chemistry of the sediment interstitial 
water and the sediment stoichiometry. The subsam-
ples for the interstitial water analysis were centrifuged 
at 500 × g for 15  min (centrifuge Sorvall ST 16R) 
and the supernatant (interstitial water) was analysed 
for main chemical variables (following APHA, 2005 
techniques) and stoichiometry. The carbon and nitro-
gen contents of these samples were measured using 
a Perkin-Elmer CHSN-2400 elemental analyser. The 
phosphorus concentration was measured following 
the technique described in Sparks et al. (1996) which 
solubilizes all phosphorus fractions, and this was later 
measured as Soluble Reactive Phosphorus in a Seal-3 
QuAAtro AQ2 auto-analyser. The precision (repro-
ducibility) of all measurements was 0.22%, 0.06% and 
0.006% for carbon, nitrogen and phosphorus, respec-
tively. The limits of detection were 0.10%, 0.05% and 
0.008% for carbon, nitrogen and phosphorus, respec-
tively. The subsamples for sediment stoichiometric 
analyses were kept in tubes in the freezer at − 20°C 
until proceeding with the stoichiometric analyses (fol-
lowing the same procedures explained above).

The charophyte meadows were collected at the 
end of the experiment (by cutting the parts above the 
sediment) and their biomass (fresh weight) was meas-
ured. Furthermore, samples of charophytes from the 
different conditions were analysed for photosynthetic 
pigments and for UVR absorbing compounds con-
centration (for detailed methodology see Rubio et al., 
2015). There were no differences in plants or mead-
ows based on the radiation treatments (Table S3).

Response variables

The response variables were selected due to their 
common and effective use to assess changes in 
the sediment microbial community: bacterial den-
sity (Duhamel & Jacquet, 2006) and their OTUs 
diversity (Dai et  al., 2019; Menéndez-Serra et  al., 
2019), microalgae and cyanobacteria biomass and 
their specific diversity (Rojo et  al., 2017a; Morina 
et  al., 2018), as well as the changes in taxonomic-
functional relevant groups, both in bacteria and in 
microalgae and cyanobacteria (Gugliandolo et  al., 
2016).

Bacteria: counting and density estimation

The preparation of the samples (0.5 ml of fresh sed-
iment) for counting by flow cytometry was carried 
out from an adaptation of the dilution/fixation/stain-
ing protocol to analyse freshwater bacteria in lake 
sediments proposed by Duhamel & Jacquet (2006) 
(see Supplementary Material for more details). 
Once each sample was prepared, it was put into the 
cytometer (Cytomics FC 500 Beckman Coulter) and 
a high flow rate for 120  s was programmed; this 
process was repeated 3 times per sample in three 
different sessions. These results were analysed with 
the specific program Flowing Software 2. A dot plot 
was made with channels FL1 and FL4, which dis-
criminate bacteria from other particles since bacte-
ria stained with SYBR Green II have a maximum 
emission collected by channel FL1, and a minimum 
collected by FL4. From this graph, the region corre-
sponding to the bacteria was delimited (more details 
in Fig. S2).

In parallel, the water content of the sediment 
(both for superficial and sub-superficial layers) was 
assessed by weighing aliquots (known volume) of 
this sediment fresh weight (FW) initially and dry 
weight (DW) after 24  h at 70°C. The relationship 
between the FW and DW of the sediment was cal-
culated by measuring them from aliquots of all the 
samples (DW = 0.179 × FW; R2 = 0.99). Thus, bacte-
rial counting was normalized by the grams of DW 
of sediment considered for the sample, and, in this 
way, the number of bacteria per gram of DW of 
sediment for each layer and each limnocorral was 
obtained.
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Bacteria and Archaea: composition

For DNA analyses, 0.25 g of sediment was used fol-
lowing the PowerSoil® DNA Isolation Kit (Qiagen) 
manufacturer’s protocol. 16S rRNA gene sequencing 
and bioinformatic data analyses were carried out at 
the Genomics core facility of the SCSIE-Universitat 
de València. Variable V3 and V4 regions of the 16S 
rDNA were amplified following the 16S rRNA gene 
Metagenomic Sequencing Library Preparation Illu-
mina protocol (Cod. 15044223 Rev. A). Gene-spe-
cific primers (PCR1_f: 5′-TCG TCG GCA GCG TCA 
GAT GTG TAT AAG AGA CAG CCT ACGGGNGGC 
WGC AG-3′; PCR1_r: 5′-GTC TCG TGG GCT CGG 
AGA TGT GTA TAA GAG ACA GGA CTACHVGGG 
TAT CTA ATC C-3′) containing Illumina adapter over-
hang nucleotide sequences were selected according 
to Klindworth et  al. (2013). After 16S rDNA gene 
amplification for each sample, the multiplexing step 
was performed using the Nextera XT Index Kit. 
Amplicon libraries were sequenced using a 2 × 300 
pb paired-end run on a MiSeq Sequencer according to 
the manufacturer’s instructions (Illumina). Sequenc-
ing data were demultiplexed using the Illumina 
bcl2fastq© program. Forward and reverse raw reads 
were checked for quality, adapter trimmed and fil-
tered using AfterQC (Chen et al., 2017) and FastQC 
v0.11.8 (http:// www. bioin forma tics. babra ham. ac. uk) 
tools.

Sequence analysis was conducted using the 
16S-based metagenomics workflow of MiSeq 
Reporter v2.5 (Illumina), including forward and 
reverse read joining, data filtering and taxonomic 
annotation. OTUs clustering and classification at sev-
eral taxonomic levels were performed using a high-
performance implementation of the Ribosome Data-
base Project (RDP) Classifier algorithm, described 
in Wang et  al. (2007). Taxonomic classification was 
carried out using an Illumina-curated version of the 
Greengenes database (http:// green genes. secon dgeno 
me. com/ downl oads/ datab ase/ 13.5).

The results were reported as the number of 
sequences (hits) obtained on the different sample 
sizes analysed and the percentage of sequences from 
each OTU. To obtain a measure of the abundance 
of each OTU these percentages were used on total 
bacteria abundance (cells/g DW sediment), obtain-
ing an approximation to hits of each OUT/g DW of 
sediment; this is an abundance measurement which 

is more easily comparable to the abundance of other 
organisms inhabiting the sediment, such as microal-
gae and cyanobacteria. For each sample, we selected 
OTUs with more than 300 hits, or 0.1% of total hits; 
although some OTUs are at the species level, we 
considered the matrix of the genera more trustwor-
thy (Fox et al., 1992; Azua-Bustos et al., 2018). For 
the comparative analysis of sample composition, we 
used phyla that had more than 1% of hits. Archaea 
sequences, despite being detected in all the samples, 
did not result in more than 1% of hits of each sample.

Abundance and composition of microalgae 
and cyanobacteria

To study the microalgae and cyanobacteria assem-
blages, a subsample of the sediment from the super-
ficial layer of each core was weighed. Then, this frac-
tion was washed by stirring it in 50 ml of deionized 
water. This water preserved with a Lugol’s iodine 
solution was the sample used to observe and count 
the organisms.

Taxonomic classification (at the finest possible 
resolution), counts and measurements of these popu-
lations were conducted using Utermöhl chambers 
under an inverted microscope at × 400 and × 1000 
magnification following standard protocols (cited in 
Rojo et al., 2012). To determine whether most of the 
periphytic species richness of each assemblage was 
covered, a species accumulation curve was plotted 
as a saturating criterion (Rojo et al., 2017a). Counted 
individuals were single cells, colonies and filaments; 
their biovolume was calculated following Hillebrand 
et al. (1999). Therefore, the biomass for each species 
and site was expressed as  mm3/g DW of sediment.

Diversity analysis

We also calculated the diversity for each assemblage 
in the sediment as the richness, the effective num-
ber of species and the evenness value. We used the 
Shannon–Wiener index (H, using natural logarithms), 
which is sensitive to less frequent species (Shan-
non & Weaver, 1949), and determined the departure 
from the maximal value of this index with the even-
ness value (expH/richness). The effective number of 
species was calculated following Jost et  al. (2010) 
as expH. These diversity indicators were calculated 
on both the biomass  (mm3/g DW of sediment) of 

http://www.bioinformatics.babraham.ac.uk
http://greengenes.secondgenome.com/downloads/database/13.5
http://greengenes.secondgenome.com/downloads/database/13.5
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microalgae and cyanobacteria species and the density 
of hits (hits/g DW sediment) of bacterial phyla.

Response variables at the beginning and end 
of the experiment

All the above-mentioned response variables were 
obtained at the beginning of the experiment to test 
that their values were not significantly different 
between treatments (P > 0.05; Table S4). Once proved 
that the conditions at the beginning of the experiment, 
after the considerable disturbance of the setup, did 
not show significant differences among treatments, 
we assessed, at the end of the experiment, the effects 
of the tested factors acting on the sediment microbial 
community over 7 weeks.

Statistical analyses

The normality of the residuals and the homoscedas-
ticity of the variances of data were verified using the 
Shapiro–Wilk and Levene tests, respectively. When 
both conditions were met, two-way ANOVAs were 
performed to study the effect of the tested factors 
(charophytes and radiation), as well as their inter-
action on the response variables. When the require-
ments for ANOVA were not met, non-parametric 
tests were used (i.e. Mann–Whitney test) and then 
Mann–Whitney U and Kruskal–Wallis (χ2) tests were 
used for comparisons between two, or more than two 
groups. When considered helpful, correlations (Pear-
son coefficient) between variables were carried out.

SIMPER analyses, based on Euclidean distances 
and considering the set of comparisons between 
conditions, were performed for superficial and sub-
superficial samples to highlight which phyla of bacte-
ria are the most relevant for characterizing the condi-
tions. Principal component analyses were performed 
to order the samples based on the selected main 
bacterial phyla by SIMPER. To order samples based 
on their sediment microbial composition, a clus-
ter analysis (Euclidean distances and UPGMA) was 
performed. Statistically significant differences were 
considered from a probability P < 0.05. The analyses 
were carried out using the PAST 3.14 software (Ham-
mer et  al., 2001; ohammer@nhm.uio.no) and SPSS 
Statistics v.22 software (IBM Corp, Armonk, NY).

Results

Chemistry of the sediment and the sediment 
interstitial water

In the superficial sediment, the average C:N molar 
ratio was significantly higher in the limnocorrals 
with charophytes (Tables S2, S5). In the sub-super-
ficial sediment, the presence of charophytes was 
accompanied by significantly higher %C and %N 
(Tables S2, S5). No significant effect was found 
due to the radiation factor. Furthermore, no sig-
nificant changes in the chemistry of the sediment 
interstitial water were detected regarding either of 
the two factors.

Bacterial (and archaeal) communities under different 
experimental conditions

Comparing the two sediment layers (regardless of 
experimental treatments), the average bacterial den-
sity was significantly different (F = 20.3, P < 0.001); 
the periphytic bacteria density almost doubled that 
from the sub-superficial sediment (Fig. 1). As for the 
effect of radiation, when the UVR was removed, the 
bacterial density was significantly higher (Fig.  1a; 
Table 1), but it is remarkable that the highest density 
was reached in the limnocorrals without UVR and 
with charophyte meadow (Fig. 1a). In the sub-super-
ficial sediment, the tested factors did not significantly 
affect the bacterial density, although it was under 
the condition with the presence of charophytes and 
filtered UVR where the highest density was, again, 
observed (Fig. 1b).

Of the total number of analysed DNA sequences 
(including all the samples), no more than 6% were 
unclassified, 30% were bacteria but not classified, 
0.4% were Archaea and the rest were bacteria classi-
fied in 16 phyla (Table 2). The total richness of bacte-
rial phyla was higher in the superficial compared to 
the sub-superficial layer (16 ± 0 and 11 ± 0 respec-
tively; Mann–Whitney test P < 0.001). And it is in this 
superficial layer where only some differences between 
treatments were observed: unvegetated limnocor-
rals had one phylum more than those with meadows 
(Tables  1, S6). Only 9 of them accounted for more 
than 1% of each superficial and sub-superficial sam-
ple, and the five most abundant phyla (in order of 
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abundance) were: Gamma- and Deltaproteobacteria, 
Bacteroidetes, Verrucomicrobia and Betaproteobacte‑
ria (Table 2; Fig. 1).

In the periphytic communities (i.e. superficial 
ones), Gamma- and Deltaproteobacteria, Bacte‑
roidetes, Betaproteobacteria and Verrucomicrobia 
were the phyla that contributed most to the differ-
ence between the four experimental conditions 
(SIMPER analysis showed a contribution of 38, 
37, 10, 9 and 5%, respectively). These phyla were 
more abundant when UVR was filtered (Table 1). In 
fact, they were negatively correlated with radiation-
related variables (Table  S7). Among phyla, only 
the Gammaproteobacteria density was statistically 
higher when charophytes were present (Table 1). In 
fact, a principal component analysis based on SIM-
PER selected phyla separated two sets of samples, 
with or without UVR (Fig.  2a), the latter together 
with the five phyla. In addition, axis 2 separated the 
samples into ones with Deltaproteobacteria domi-
nance or Gammaproteobacteria dominance.

In sub-superficial samples, SIMPER highlighted 
Gamma- and Deltaproteobacteria plus Bacteroidetes 
(41, 23 and 12%, respectively). In the principal com-
ponents analysis of the sub-superficial layer (Fig. 2b) 
most of the samples with charophytes were located 
in the most positive part of axis 1, together with the 
three bacterial phyla. In addition, again, it was the 
dominance of Delta- or Gammaproteobacteria which 
established the division in axis 2. The correlation 
analysis of these phyla with environmental variables 
(Table  S7) showed a positive correlation of Gam‑
maproteobacteria with N-related variables and posi-
tive correlations of Deltaproteobacteria and Bacte‑
roidetes with the carbon percentage in the sediment.

Microalgae and cyanobacteria communities under 
different experimental conditions

There was a strong negative correlation between the 
biomass of microalgae and cyanobacteria and the 
UVR-related variables (Table  S7). When UVR was 
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removed their biomass doubled that of those limno-
corrals with full UVR, and reached its highest level if, 
in addition, there were charophytes (Fig. 3a; Table 3).

Among diversity indicators, only greater species 
richness was observed under the filtered UVR treat-
ment compared with that of unfiltered UVR (23 ± 1 
vs. 20 ± 1, respectively; Table  3). All the taxonomic 
groups showed a negative correlation with UVR 
(UVA and UVB). Moreover, diatoms showed a posi-
tive correlation with the interstitial water C:P and N:P 
(Table S7). The biomass of these groups was affected 
by the tested factors but in different ways (Fig. 3b, c; 
Table  3): diatoms, the dominant group, were more 
abundant under the filtered UVR conditions, while 
Chlorophytes together with Cyanobacteria (the scarc-
est group) were more abundant if, in addition, charo-
phytes were present (Table 3).

A multivariate analysis of ordination and clas-
sification based on populations highlighted that 
a specific composition was also sensitive to the 
tested factors, since it clustered the limnocorrals 
of meadows and filtered UVR separately from 
the others (Fig.  3d). Limnocorrals with UVR and 
meadows were clustered with those of filtered UVR 
without meadows. For their part, unvegetated lim-
nocorrals with full UVR showed the highest vari-
ability in their composition. The filamentous chlo-
rophyte Oedogonium sp. explained almost 60% of 
the dissimilarity between vegetated, without UVR, 
limnocorrals and those under the other conditions. 
When UVR was filtered, the difference between 
vegetated and unvegetated limnocorrals was mainly 
due to two filamentous chlorophytes, Oedogonium 
sp. and Spirogyra sp., each being present only in 
one of these conditions. In addition, amongst the 
limnocorrals with charophytes the main difference 
was due to UVR: the absence of chlorophytes and 
the disappearance of diatoms, such as Nitzschia 
sigmoidea (Nitzsch) W. Smith and N. tryblionella 
Hantzsch.

Discussion

The negative effect of UVR on freshwater aquatic 
microorganisms has been known for a long time 
(Rojo et  al., 2012; Carrillo et  al., 2017). However, 
when primary producers and bacteria are part of the 
community under UVR conditions the results can 
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follow different patterns. The predictable reduction 
in bacterial growth due to this radiation can be off-
set by a greater availability of organic carbon excreted 
by microalgae. In this vein it is known that the com-
mensalistic phytoplankton–bacteria relationship is 
dependent on UVR in oligotrophic systems (Carrillo 
et al., 2015). However, this is not the case in the shal-
low lagoon considered here, which is a highly nutrient 
enriched environment so that no compensation effect 
is observed. In the periphyton biofilm (superficial 
layer), the abundance of both groups of organisms 
(bacteria and microalgae plus cyanobacteria) was 
greater when UVR was mostly removed. Here, we 

demonstrate that UVR, although not very intense in 
these latitudes and altitude, can negatively affect the 
abundance of periphytic microorganisms. This affir-
mation is relevant because it has been demonstrated 
in the periphyton from the bottom of an aquatic sys-
tem, a habitat which is generally less studied than the 
planktonic, and even much less studied with regard to 
UVR as it is generally assumed that UVR does not 
reach the bottom. Our results warn that the foresee-
able penetration of UVR to the bottom, due to loss 
of water level, will degrade the periphytic commu-
nity: the loss of biomass and changes in composition 
(structure–function).

Moreover, we suggest that charophyte meadows 
can fuel the sediment microbial community through 
different mechanisms (e.g. shading and fertilizing 
the sediment). The surface area for attached biofilms 
provided by charophytes (both in the rhizoids and in 
the basal part of the shoots) and the reduction in the 
harmful effects of UVR generate a propitious micro-
environment for the development of an abundant and 
particular microbiota. In fact, the most favourable 
condition for both components of the periphyton bio-
film, with regard to its abundance, was the combined 
presence of charophyte meadows and filtered UVR. 
The periphyton biofilm composition with natural light 
and a charophyte meadow was similar to that of the 
biofilm without a meadow, but with filtered UVR, 
which demonstrates a beneficial charophyte shad-
ing effect on the biofilm. This fact would agree with 
the recent results of Dai et al. (2019) who observed a 
greater abundance of some bacterial groups in envi-
ronments with macrophytes (angiosperms), and with 
Xiao et  al. (2020) who stated that the reduction of 
radiation doses, mainly by the shading effect exerted 
by submerged macrophytes, favoured nitrogen-related 
bacteria in the rhizosphere. The shading effect has 
usually been described as a negative impact for pri-
mary producers, for example, phytoplankton and 
epiphyton on submerged macrophytes (Sandjensen 
& Sondergaard, 1981) or floating plants on phyto-
plankton and submerged macrophytes (Scheffer et al., 
2003); however, in light of our results, it should also 
be seen as a protector against the increase in UVR at 
the bottom of wetlands.

Another macrophyte effect in the sub-superficial 
sediment layer was tested here. We found relation-
ships between the main bacteria phyla with the ele-
mental composition of the sediment, which in turn, 

Table 2  Mean and standard error of hit percentages of the 
most represented (> 1%) phyla and the most representative spe-
cies

The numbers in italics in the table are only for differentiating 
the results of the phyla from that of the species
Data included samples from the superficial and sub-superficial 
sediment layers

Mean Standard error

Bacterial phyla 64.3 1.4
Its main species
Actinobacteria 1.8 0.1
Bifidobacterium bombi 0.6 0.0
Bacteroidetes 7.9 0.2
Pedobacter kwangyangensis 1.3 0.0
Chlorobi 2.5 0.1
Ignavibacterium sp. 2.2 0.1
Chloroflexi 3.5 0.1
Longilinea arvoryzae 1.1 0.0
Firmicutes 4.1 0.2
Clostridium sp. 0.7 0.0
Betaproteobacteria 5.9 0.3
Thiobacillus sp. 2.7 0.1
Deltaproteobacteria 13.3 0.5
Desulfococcus sp. 2.8 0.1
Gammaproteobacteria 17.4 0.8
Steroidobacter denitrificans 4.1 0.5
Marichromatium gracile 2.1 0.1
Verrucomicrobia 7.4 0.4
Luteolibacter sp. 3.0 0.5
Candidatus methylacidiphilum 1.4 0.0
Archaea 0.4 0.0
Unclassified 5.8 0.1
Other bacteria 29.9 1.3
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were favoured by the biological activity of macro-
phytes (increased %C and %N). The increase in the 
proportion of these elements is related to the contri-
bution of organic matter rich in carbon and nitrogen 
through charophyte senescence and the exudation of 
organic compounds (Rodrigo et al., 2013; Rojo et al., 
2020). Thus, our results with regard to the bacterial 
community in the sediment suggest that UVR is the 
driving force affecting this community in the super-
ficial layer, while submerged macrophytes seem to 
influence mainly the community deeper in the sedi-
ment. Summarising, charophytes indirectly benefit 
the sediment microbial community by mitigating the 
increase in UVR and providing elemental nutrients to 

the sediment. This opens up an interesting research 
line that currently deserves more attention (Xian 
et al., 2020).

We found that 12 phyla made up over 63% of read 
sequences, and only 9 phyla accounted for more than 
1% of sequences in each sample; similar proportions 
were observed in a macrophytes-sediment experi-
ment in a Shanghai river (Dai et al., 2019). Thus, in 
the bottom sediments of wetlands there is a largely 
unknown bacterial biosphere, as has been highlighted 
in other freshwater systems (Fang et al., 2015). Some 
phyla and genus were co-dominant, so that only a few 
sets of metabolic functions were repeated (Table S8). 
A similar lack of combinations was described in 

Fig. 2  Two-dimensional 
principal components biplot 
describing: a the super-
ficial sediment microbial 
community of the limnocor-
rals based on their main 
bacterial phyla density, and 
b the sub-superficial sedi-
ment microbial community 
of the limnocorrals based 
on the number of hits of 
the main phyla. The order 
of the main phyla is also 
indicated. Abbreviations as 
in Fig. 1
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Fig. 3  Structural differences in periphytic microalgae and 
cyanobacteria communities (MC) inhabiting the sediment 
superficial layer under the four experimental conditions (pres-
ence or not of charophytes, and filtered or unfiltered UVR; 
abbreviations as in Fig. 1). a Average and standard error (thin 
bars) of the biomass; the capital letters indicate statistically 
significant differences due to the radiation treatment; the low-
ercase letters are in accordance with the result of a post hoc 

Tukey analysis of variance on the biomass. b Average and 
standard error (thin bars) of the biomass of main MC groups 
in each experimental condition. c Percentage of total biomass 
for the main taxonomic groups. d Dendrogram based on the 
biomass of MC species of the 12 limnocorrals; the cluster-tree 
is based on the unweighted pair-group method with arithmetic 
mean (UPGMA) calculated on Euclidean distance similarity; 
the numbers in the nodes are the 1,000 bootstrap results



4580 Hydrobiologia (2021) 848:4569–4583

1 3
Vol:. (1234567890)

wetlands with very different conditions (i.e. salinity 
and vegetation; Menéndez-Serra et al., 2019). When 
periphytic bacteria were more developed (under fil-
tered UVR), a different combination of bacteria 
containing sulphur (or nitrogen) reducers with meth-
ane oxidizers was observed (Deltaproteobacteria 
along with Bacteroidetes and Gammaproteobacte‑
ria together with, for example, Verrucomicrobia). It 
has been described how the presence of macrophytes 
affects many microbial processes in the sediment by 
changing the nutrient concentrations by uptake and 
release during growth, by influencing oxygen lev-
els—O2 released from roots, and pH and organic car-
bon availability (Veraart et  al., 2011). The presence 
of rhizoids, which can penetrate deep in the sediment 
(Vermeer et al. 2003), can create heterogeneous oxy-
gen conditions affecting both aerobic and anaerobic 
reactions (e.g. nitrification and denitrification pro-
cesses) generating micro-environments which favour 
certain bacterial communities. For instance, the oxy-
gen released into the sediment can hamper methano-
genic microorganisms and enhance methane oxidizers 
(Fritz et al., 2011; Ribaudo et al., 2011). Our results 
clearly indicate that the effect of meadows can reach 
the sub-superficial sediment bacterial communi-
ties, with phyla associated with carbon and nitrogen 
cycles being the most influenced. A greater presence 
of Delta- and Gammaproteobacteria (Table  S8) is 
established and, as was observed in the superficial 
sediment layers, their distribution seems exclusive, 
i.e. either one or the other.

With respect to periphytic primary producers, 
there were two groups that make up the greatest pro-
portion of biomass: diatoms and chlorophytes. These 
groups presented a different pattern: diatoms turned 
out to be UVR resistant, while chlorophytes (i.e. the 

filamentous Oedogonium and Spirogyra genera) only 
appeared when UVR was filtered. Diatom resistance 
to UVR is considered an evolutionary trait related to 
the screen-protection provided by the frustule against 
UVR (Aguirre et  al., 2018). However, although dia-
toms were present in all conditions, their composi-
tion changed. When UVR was present, two large 
species of the genus Nitzschia did not appear and 
the biomass was lower. These large pennate diatoms 
play an important role in the generation of biofilms, 
which provide a suitable microenvironment for bacte-
rial communities (Landoulsi et al., 2011; Hou et al., 
2020) so that their loss is relevant to the entire micro-
bial community.

In conclusion, we have tested that the sediment 
microbial community is altered even by small doses 
of UVR on the Mediterranean coast by decreasing the 
periphyton abundance (both bacteria and microalgae 
involved in C and N metabolism) and changing their 
metabolic and trophic functions. In this context, the 
role of submerged macrophyte meadows becomes 
crucial. On the one hand, their presence minimizes 
the incidence of UVR on the sediment, so that the 
biota behaves as in locations with filtered UVR. We 
therefore recognize a beneficial shadow effect under 
the foreseeable decrease of water column depth in 
wetlands due to global change, which will allow the 
resistance of periphyton to changes in radiation qual-
ity. On the other hand, the presence of these meadows 
is related to greater proportions of C and N in the sub-
superficial sediment layer. This higher availability of 
elemental nutrients covaries with the main bacterial 
phyla involved in their cycles. Therefore, the conser-
vation of charophyte meadows in aquatic ecosystems 
is of great importance. This is even more crucial in 

Table 3  Two-way ANOVA parameters (F and probability P) applied on species diversity indicators and total biomass of microalgae 
and cyanobacteria and the main taxonomic groups

1 Degree of freedom for the two factors (presence or not of charophytes and filtered or unfiltered UVR) and their interaction, and 8 
degrees of freedom within groups. In bold, significant values of P (P < 0.05); only the response variables with significant differences 
are shown

Factor Richness Total biomass Chlorophytes Diatoms Cyanobacteria

F P F P F P F P F P

UVR 6.3 0.036 37.8  < 0.001 43.2  < 0.001 9.7 0.010 21.7 0.001
Charophytes 0.4 0.549 4.2 0.075 13.1 0.007 0.0 0.951 11.1 0.010
Interaction 0.8 0.407 11.4 0.009 13.1 0.007 3.9 0.084 0.4 0.523
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the Mediterranean area, where these ecosystems are 
highly vulnerable to global change.
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