Skip to main content
Log in

Evaluating the potential of treated effluent as novel habitats for aquatic invertebrates in arid regions

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Increasing anthropogenic demands for freshwater have altered many aquatic systems, including the drying of formerly perennial streams. The discharge of treated effluent has returned perennial flow in some of these streams, especially in arid and semi-arid regions, but the ability of treated effluent to support diverse aquatic communities is poorly understood. We examined the potential of treated effluent to create aquatic invertebrate habitat using the effluent-dependent Santa Cruz River in southern Arizona, USA as a case study. We identified 92 invertebrate taxa across our ten sampling sites and two sampling dates. Community composition was primarily shaped by water quality but also by stream drying (on daily time scales) and benthic substrate. Specifically, Linear Mixed-Effects models revealed a strong positive relationship between dissolved oxygen and taxonomic richness and a strong negative relationship between stream drying and invertebrate density. Although there are unique challenges to biota in effluent-dependent systems, our results suggest that treated wastewater could be managed to augment or recreate aquatic habitats that have been otherwise diminished or lost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, D. R. & K. P. Burnham, 2002. Avoiding pitfalls when using information-theoretic methods. The Journal of Wildlife Management 66: 912–918.

    Google Scholar 

  • Andersen, T., P. S. Cranston & J. H. Epler (eds), 2013. Chironomidae of the Holarctic Region: Keys and Diagnoses. Scandinavian Entomology, Larvae.

    Google Scholar 

  • Arce, E., V. Archaimbault, C. P. Mondy & P. Usseglio-Polatera, 2014. Recovery dynamics in invertebrate communities following water-quality improvement: taxonomy-vs trait-based assessment. Freshwater Science 33(4): 1060–1073.

    Google Scholar 

  • Aristi, I., D. von Schiller, M. Arroita, D. Barceló, L. Ponsatí, M. J. García-Galán, S. Sabater, A. Elosegi & V. Acuña, 2015. Mixed effects of effluents from a wastewater treatment plant on river ecosystem metabolism: subsidy or stress? Freshwater Biology 60(7): 1398–1410.

    CAS  Google Scholar 

  • Arnon, S., N. Avni & S. Gafny, 2015. Nutrient uptake and macroinvertebrate community structure in a highly regulated Mediterranean stream receiving treated wastewater. Aquatic Sciences 77(4): 623–637.

    CAS  Google Scholar 

  • Bartoń, K., 2019. MuMIn: Multi-Model Inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn

  • Bischel, H. N., J. E. Lawrence, B. J. Halaburka, M. H. Plumlee, A. S. Bawazir, J. P. King, J. E. McCray, V. H. Resh & R. G. Luthy, 2013. Renewing urban streams with recycled water for streamflow augmentation: hydrologic, water quality, and ecosystem services management. Environmental Engineering Science 30(8): 455–479.

    CAS  Google Scholar 

  • Boda, P., A. Móra, G. Várbíró & Z. Csabai, 2018. Livin’ on the edge: the importance of adjacent intermittent habitats in maintaining macroinvertebrate diversity of permanent freshwater marsh systems. Inland Waters 8(3): 312–321.

    Google Scholar 

  • Bogan, M. T., 2017. Hurry up and wait: life cycle and distribution of an intermittent stream specialist (Mesocapnia arizonensis). Freshwater Science 36(4): 805–815.

    Google Scholar 

  • Bogan, M. T. & K. S. Boersma, 2012. Aerial dispersal of aquatic invertebrates along and away from arid-land streams. Freshwater Science 31(4): 1131–1144.

    Google Scholar 

  • Bogan, M. T., K. S. Boersma & D. A. Lytle, 2013. Flow intermittency alters longitudinal patterns of invertebrate diversity and assemblage composition in an arid-land stream network. Freshwater Biology 58(5): 1016–1028.

    Google Scholar 

  • Bonada, N., N. Prat, V. H. Resh & B. Statzner, 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology 51: 495–523.

    CAS  PubMed  Google Scholar 

  • Boyle, T. P. & H. D. Fraleigh Jr., 2003. Natural and anthropogenic factors affecting the structure of the benthic macroinvertebrate community in an effluent-dominated reach of the Santa Cruz River, AZ. Ecological Indicators 3(2): 93–117.

    CAS  Google Scholar 

  • Brinkhurst, R. O. & C. R. Kennedy, 1965. Studies on the biology of the Tubificidae (Annelida, Oligochaeta) in a polluted stream. The Journal of Animal Ecology 34: 429–443.

    Google Scholar 

  • Brooks, B. W., T. M. Riley & R. D. Taylor, 2006. Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia 556(1): 365–379.

    CAS  Google Scholar 

  • Brown, J., B. Start, D. Stanisic, M. Ternack, R. Wass & J. Coughenour, 2011. Tres Ríos constructed wetlands: maximizing beneficial reuse while balancing demands of diverse stakeholder needs. WIT Transactions on Ecology and the Environment 145: 723–735.

    Google Scholar 

  • Bruno, M. C., A. Siviglia, M. Carolli & B. Maiolini, 2013. Multiple drift responses of benthic invertebrates to interacting hydropeaking and thermopeaking waves. Ecohydrology 6(4): 511–522.

    Google Scholar 

  • Buffagni, A., S. Erba, M. Cazzola, J. Murray-Bligh, H. Soszka & P. Genoni, 2006. The STAR common metrics approach to the WFD intercalibration process: full application for small, lowland rivers in three European countries. In Hering, D. (ed), The ecological status of European rivers: evaluation and intercalibration of assessment methods. Springer, Dordrecht: 379–399.

    Google Scholar 

  • Bunzel, K., M. Kattwinkel & M. Liess, 2013. Effects of organic pollutants from wastewater treatment plants on aquatic invertebrate communities. Water Research 47(2): 597–606.

    CAS  PubMed  Google Scholar 

  • Burdon, F. J., M. Reyes, A. C. Alder, A. Joss, C. Ort, K. Räsänen, J. Jokela, R. I. Eggen & C. Stamm, 2016. Environmental context and magnitude of disturbance influence trait-mediated community responses to wastewater in streams. Ecology and Evolution 6(12): 3923–3939.

    PubMed  PubMed Central  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research 33: 261–304.

    Google Scholar 

  • Butler, D. & N. J. D. Graham, 1995. Modeling dry weather wastewater flow in sewer networks. Journal of Environmental Engineering 121(2): 161–173.

    CAS  Google Scholar 

  • Canobbio, S., V. Mezzanotte, U. Sanfilippo & F. Benvenuto, 2009. Effect of multiple stressors on water quality and macroinvertebrate assemblages in an effluent-dominated stream. Water, Air, and Soil Pollution 198: 359–371.

    CAS  Google Scholar 

  • Carey, R. O. & K. W. Migliaccio, 2009. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environmental Management 44(2): 205–217.

    PubMed  Google Scholar 

  • Carlson, M. A., K. A. Lohse, J. C. McIntosh & J. E. McLain, 2011. Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin. Journal of Hydrology 409: 196–211.

    CAS  Google Scholar 

  • Chang, F. H., J. E. Lawrence, B. Rios-Touma & V. H. Resh, 2014. Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environmental Monitoring and Assessment 186(4): 2135–2149.

    CAS  PubMed  Google Scholar 

  • Chesner, W. H. & M. Pai, 1981. Hourly diurnal flow variations in publicly-owned wastewater treatment facilities. EPA-600/S2-81-218. U.S. Environmental Protection Agency.

  • Cook, D. R., 1974. Water mite genera and subgenera. Memories of the American Entomological Institute 21: 1–860.

    Google Scholar 

  • Datry, T., 2012. Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: effects of duration of dry events. Freshwater Biology 57(3): 563–574.

    Google Scholar 

  • Datry, T., S. T. Larned, K. M. Fritz, M. T. Bogan, P. J. Wood, E. I. Meyer & A. N. Santos, 2014. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence. Ecography 37: 94–104.

    Google Scholar 

  • Davies, B. R., 1976. The dispersal of Chironomidae larvae: a review. Journal of the Entomological Society of Southern Africa 39(1): 39–62.

    Google Scholar 

  • de Graaf, I. E., T. Gleeson, L. R. van Beek, E. H. Sutanudjaja & M. F. Bierkens, 2019. Environmental flow limits to global groundwater pumping. Nature 574(7776): 90–94.

    PubMed  Google Scholar 

  • del Rosario, R. B. & V. H. Resh, 2000. Invertebrates in intermittent and perennial streams: is the hyporheic zone a refuge from drying? Journal of the North American Benthological Society 19(4): 680–696.

    Google Scholar 

  • Dong, B., A. Kahl, L. Cheng, H. Vo, S. Ruehl, T. Zhang, S. Synder, A. E. Sáez, D. Quanrud & R. G. Arnold, 2015. Fate of trace organics in a wastewater effluent dependent stream. Science of the Total Environment 518: 479–490.

    PubMed  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. Prieur-Richard, D. Soto, M. L. J. Staissny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81(2): 163–182.

    PubMed  Google Scholar 

  • Enfinger, K. L. & P. L. Stevens, 2006. Sewer Sociology-The Days of Our (Sewer) Lives. Proceedings of the Water Environment Federation, WEFTEC Dallas, Texas, USA 2006: 6962–6974.

    Google Scholar 

  • Foley, C. J., Z. S. Feiner, T. D. Malinich & T. O. Höök, 2018. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Science of the Total Environment 631: 550–559.

    PubMed  Google Scholar 

  • Fritz, K. M. & W. K. Dodds, 2004. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia 527(1): 99–112.

    Google Scholar 

  • Grabicova, K., R. Grabic, M. Blaha, V. Kumar, D. Cerveny, G. Fedorova & T. Randak, 2015. Presence of pharmaceuticals in benthic fauna living in a small stream affected by effluent from a municipal sewage treatment plant. Water Research 72: 145–153.

    CAS  PubMed  Google Scholar 

  • Grantham, T. E., M. Cañedo-Argüelles, I. Perrée, M. Rieradevall & N. Prat, 2012. A mesocosm approach for detecting stream invertebrate community responses to treated wastewater effluent. Environmental Pollution 160: 95–102.

    CAS  PubMed  Google Scholar 

  • Halaburka, B. J., J. E. Lawrence, H. N. Bischel, J. Hsiao, M. H. Plumlee, V. H. Resh & R. G. Luthy, 2013. Economic and ecological costs and benefits of streamflow augmentation using recycled water in a California coastal stream. Environmental Science & Technology 47(19): 10735–10743.

    CAS  Google Scholar 

  • Hamdhani, H., D. E. Eppehimer & M. T. Bogan, 2020. Release of treated effluent into streams: a global review of ecological impacts with a consideration of its potential use for environmental flows. Freshwater Biology. https://doi.org/10.1111/fwb.13519.

    Article  Google Scholar 

  • Hungerford, H. B., 1948. The Corixidae of the Western Hemisphere (Hemiptera). The University of Kansas Science Bulletin 32: 5–827.

    Google Scholar 

  • Johnson, B. R., J. Phillips, G. Smith & J. Sherlock, 2015. Using step-feed to improve secondary effluent ammonia control. Proceedings of the Water Environment Federation, WEFTEC, Chicago, Illinois, USA 2015: 2784–2796.

    Google Scholar 

  • Kinouchi, T., H. Yagi & M. Miyamoto, 2007. Increase in stream temperature related to anthropogenic heat input from urban wastewater. Journal of Hydrology 335: 78–88.

    Google Scholar 

  • Larson, D. J., Y. Alarie & R. E. Roughley, 2000. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Nearctic Region, with Emphasis on the Fauna of Canada and Alaska. NRC Research Press, Ottawa.

    Google Scholar 

  • Lefcheck, J. S. & R. Freckleton, 2016. Piecewise SEM: piecewise structural equation modelling in R for ecology, evolution and systematics. Methods in Ecology and Evolution 7(5): 573–579.

    Google Scholar 

  • Lin, K. J. & S. P. Yo, 2008. The effect of organic pollution on the abundance and distribution of aquatic oligochaetes in an urban water basin, Taiwan. Hydrobiologia 596(1): 213–223.

    CAS  Google Scholar 

  • Logan, M. F., 2002. The lessening stream: an environmental history of the Santa Cruz River. University of Arizona Press, Tucson, USA.

    Google Scholar 

  • Luthy, R. G., D. L. Sedlak, M. H. Plumlee, D. Austin & V. H. Resh, 2015. Wastewater-effluent-dominated streams as ecosystem-management tools in a drier climate. Frontiers in Ecology and the Environment 13(9): 477–485.

    Google Scholar 

  • Mandaville, S. M., 2002. Benthic Macroinvertebrates in Freshwaters: Taxa Tolerance Values, Metrics, and Protocols. Soil & Water Conservation Society of Metro Halifax, Nova Scotia.

    Google Scholar 

  • Marshall, J. W. & M. J. Winterbourn, 1979. An ecological study of a small New Zealand stream with particular reference to the Oligochaeta. Hydrobiologia 65(3): 199–208.

    CAS  Google Scholar 

  • Martí, E., J. L. Riera & F. Sabater, 2009. Effects of wastewater treatment plants on stream nutrient dynamics under water scarcity conditions. In Sabater, S. (ed.), Water Scarcity in the Mediterranean. Springer, Berlin: 173–195.

    Google Scholar 

  • Martin, P., E. Martinez-Ansemil, A. Pinder, T. Timm & M. J. Wetzel, 2007. Global diversity of oligochaetous clitellates (“Oligochaeta”; Clitellata) in freshwater. Hydrobiologia 595: 117–127.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 1999. PC-ORD: Multivariate Analysis of Ecological Data; Version 4 for Windows. MJM Software Design, Gleneden Beach, USA.

    Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of ecological communities. MJM Software Design, Gleneden Beach, USA.

    Google Scholar 

  • Merritt, R. W., K. W. Cummins & M. B. Berg, 2008. An introduction to the aquatic insects of North America, 4th ed. Kendall Hunt Publishing, Iowa, USA.

    Google Scholar 

  • Mezzanotte, V., R. Fornaroli, S. Canobbio, L. Zoia & M. Orlandi, 2013. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing. Chemosphere 91(5): 629–634.

    CAS  PubMed  Google Scholar 

  • Mielke, P. W. & K. J. Berry, 2001. Description of MRPP. In Castro, R. M. (ed.), Permutation Methods. Springer, New York, USA: 9–65.

    Google Scholar 

  • Monda, D. P., D. L. Galat & S. E. Finger, 1995. Evaluating ammonia toxicity in sewage effluent to stream macroinvertebrates: I. A multi-level approach. Archives of Environmental Contamination and Toxicology 28(3): 378–384.

    CAS  Google Scholar 

  • Mor, J. R., S. Dolédec, V. Acuña, S. Sabater & I. Muñoz, 2019. Invertebrate community responses to urban wastewater effluent pollution under different hydro-morphological conditions. Environmental Pollution 252: 483–492.

    CAS  PubMed  Google Scholar 

  • Nakagawa, S. & H. Schielzeth, 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4(2): 133–142.

    Google Scholar 

  • Nakagawa, S., P. C. Johnson & H. Schielzeth, 2017. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface. https://doi.org/10.1098/rsif.2017.0213.

    Article  PubMed Central  Google Scholar 

  • Needham, J. G., M. J. Westfall Jr. & M. L. May, 2000. Dragonflies of North America. Scientific Publishers Inc, Gainesville.

    Google Scholar 

  • Ode, P. R., A. E., Fetscher & L. B. Busse, 2016. Standard operating procedures for the collection of field data for bioassessments of California wadeable streams: Benthic macroinvertebrates, algae, and physical habitat. California State Water Resources Control Board Surface Water Ambient Monitoring Program: Sacramento, USA.

  • Ortiz, J. D. & M. A. Puig, 2007. Point source effects on density, biomass and diversity of benthic macroinvertebrates in a Mediterranean stream. River Research and Applications 23(2): 155–170.

    Google Scholar 

  • Pinheiro, J. C., D. M. Bates, S. DebRoy, & D. Sarkar, 2019. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-142, https://CRAN.R-project.org/package=nlme.

  • Pinheiro, J. C. & D. M. Bates, 2000. Linear mixed-effects models: basic concepts and examples. In Bates, D. M. (ed.), Mixed-effects models in S and S-Plus. Springer, Berlin: 3–56.

    Google Scholar 

  • Plumlee, M. H., C. J. Gurr & M. Reinhard, 2012. Recycled water for stream flow augmentation: Benefits, challenges, and the presence of wastewater-derived organic compounds. Science of the Total Environment 438: 541–548.

    CAS  PubMed  Google Scholar 

  • Quinn, J. M. & C. W. Hickey, 1990. Magnitude of effects of substrate particle size, recent flooding, and catchment development on benthic invertebrates in 88 New Zealand rivers. New Zealand Journal of Marine and Freshwater Research 24(3): 411–427.

    Google Scholar 

  • R Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Sonoran Institute, 2017. A living river: Charting wetland conditions of the lower Santa Cruz River 2016 water year. https://sonoraninstitute.org/files/Living-River-Charting-Wetland-Conditions-of-the-Lower-Santa-Cruz-River-2016-Water-Year-1.pdf.

  • Tchobanoglous, G., F. L. Burton & H. D. Stensel, 2003. Wastewater engineering: treatment and reuse. McGraw Hill, New York, USA.

    Google Scholar 

  • Thorp, J. H. & A. P. Covich (eds), 2009. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Cambridge.

    Google Scholar 

  • Velasco, J. & A. Millán, 1998. Insect dispersal in a drying desert stream: effects of temperature and water loss. The Southwestern Naturalist 43(1): 80–87.

    Google Scholar 

  • Webb, R. H., J. L. Betancourt, R. R. Johnson, R. M. Turner & B. L. Fontana, 2014. Requiem for the Santa Cruz: an environmental history of an Arizona river. University of Arizona Press, Tucson, USA.

    Google Scholar 

  • Westfall, M. J. & M. L. May, 1996. Damselflies of North America, Vol. 649. Scientific Publishers, Gainesville, USA.

    Google Scholar 

  • Williams, D. D. & J. H. Mundie, 1978. Substrate size selection by stream invertebrates and the influence of sand. Limnology and Oceanography 23(5): 1030–1033.

    Google Scholar 

  • Ziajahromi, S., P. A. Neale & F. D. Leusch, 2016. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Science and Technology 74(10): 2253–2269.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was completed as part of DE Eppehimer’s PhD dissertation at the University of Arizona and was supported by funding from the University of Arizona, Arid Lands Resource Sciences, the Graduate and Professional Student Council, National Park Service, WateReuse Arizona, Southern Arizona Environmental Management Society, and the Lincoln Institute’s Babbitt Dissertation Fellowship Program. We thank student technicians Andrew Corrales and Betsy Allen for their field and lab contributions. Gary Deen and the Pima County Flood Control District provided access to field sites. This paper was greatly improved by the comments of multiple reviewers. The lower Santa Cruz River is the traditional homeland of the Tohono O’odham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew E. Eppehimer.

Additional information

Handling editor: Verónica Ferreira

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eppehimer, D.E., Hamdhani, H., Hollien, K.D. et al. Evaluating the potential of treated effluent as novel habitats for aquatic invertebrates in arid regions. Hydrobiologia 847, 3381–3396 (2020). https://doi.org/10.1007/s10750-020-04343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04343-6

Keywords

Navigation