Skip to main content
Log in

Ecological factors shaping cyanobacterial assemblages in a coastal lake system

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cyanobacteria are photosynthetic prokaryotes responsible for most of the global primary production, recurrently showing high abundance levels in freshwater ecosystems. Here, we used variation partitioning to quantify the relative effects of environmental (water parameters), biotic (abundance of eukaryotic phytoplankton) and spatial (geographic distance) factors on cyanobacteria distribution, using taxonomic (species and order levels) and functional (Reynolds Functional Groups and life form) approaches in a coastal lake system (southern Brazil). Cyanobacteria distribution was affected by all factors, but mainly by environmental conditions. Overall, environmental and biotic factors were more important in shaping the cyanobacterial distribution using a taxonomic approach than using a functional-group approach. Filamentous cyanobacteria (both heterocystous and non-heterocystous) were influenced mainly by the environmental variables, and coccoid species by the spatial fraction. Our results demonstrate that taxonomic and functional approaches may reflect different responses to ecological factors, thus being complementary for a better understanding of cyanobacterial distribution patterns in lake systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abonyi, A., Z. Horváth & R. Ptacnik, 2017. Functional richness outperforms taxonomic richness in predicting ecosystem functioning in natural phytoplankton communities. Freshwater Biology 63: 178–186.

    Google Scholar 

  • Agawin, N. S. R., S. Rabouille, M. Veldhuis, L. Servatius, S. Hol, H. M. J. van Overzee & J. Huisman, 2007. Competition and facilitation between unicellular nitrogenfixing cyanobacteria and non–nitrogen-fixing phytoplankton species. Limnology and Oceanography 52: 2233–2248.

    CAS  Google Scholar 

  • Akinwande, M. O., H. G. Dikko & A. Samson, 2015. Variance Inflation Factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open Journal of Statistics 5: 754–767.

    Google Scholar 

  • Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: Does the use of biological traits matter? Hydrobiologia 722: 279–290.

    Google Scholar 

  • Antunes, J. T., P. N. Leão & V. M. Vasconcelos, 2015. Cylindrospermopsis raciborskii: Review of the distribution, phylogeography, and ecophysiology of a global invasive species. Frontiers in Microbiology 6: 473.

    PubMed  PubMed Central  Google Scholar 

  • Apple, J. K., S. L. Strom, B. Palenik & B. Bianca, 2011. Variability in protist grazing and growth on different marine Synechococcus isolates. Applied and Environmental Microbiology 77: 3074–3084.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Association, American Public Health, 2012. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Baas-Becking, L. G. M., 1934. Geobiologie of Inleiding tot de Milieukunde. W.P. Van Stockum & Zoon, The Hague.

    Google Scholar 

  • Bahl, J., M. C. Y. Lau, G. J. D. Smith, et al., 2011. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications 2: 163.

    PubMed  PubMed Central  Google Scholar 

  • Blanchet, G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    PubMed  Google Scholar 

  • Bocard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Bohnenberger, J. E., F. Schneck, L. O. Crossetti, M. S. Lima & D. Motta-Marques, 2018. Taxonomic and functional nestedness patterns of phytoplankton communities among coastal shallow lakes in southern Brazil. Journal of Plankton Research 40: 555–567.

    Google Scholar 

  • Cardoso, L. S. & D. M. Motta-Marques, 2009. Hydrodynamics-driven plankton community in a shallow lake. Aquatic Ecology 43: 73–84.

    Google Scholar 

  • Castro, D. & R. S. P. Mello, 2013. Atlas Ambiental da Bacia Hidrográfica do Rio Tramandaí. Via Sapiens, Porto Alegre.

    Google Scholar 

  • Chamberlain, S. D., K. A. Kaplan, M. Modanu, K. M. Sirianni, S. Annandale & I. Hewson, 2014. Biogeography of planktonic and benthic cyanobacteria in coastal waters of the Big Island, Hawai’i. FEMS Microbiology Ecology 89: 80–88.

    CAS  PubMed  Google Scholar 

  • Cirés, S. & A. Ballot, 2016. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae 54: 21–43.

    PubMed  Google Scholar 

  • Crossetti, L., D. Bicudo, L. Bini, R. Dala-Corte, C. Ferragut & C. Bicudo, 2019. Phytoplankton species interactions and invasion by Ceratium furcoides are influenced by extreme drought and water-hyacinth removal in a shallow tropical reservoir. Hydrobiologia 831: 71–85.

    CAS  Google Scholar 

  • Cyr, H., 2017. Winds and the distribution of nearshore phytoplankton in a stratified lake. Water Research 122: 114–127.

    CAS  PubMed  Google Scholar 

  • Drakare, S. & A. Liess, 2010. Local factors control the community composition of cyanobacteria in lakes while heterotrophic bacteria follow a neutral model. Freshwater Biology 55: 2447–2457.

    Google Scholar 

  • Dray, S., R. Pélissier, P. Couteron, M. J. Fortin, P. Legendre, P. R. Peres-Neto, E. Bellier, R. Bivand, F. G. Blanchet, M. De Cáceres, A. B. Dufour, E. Heegaard, T. Jombart, F. Munoz, J. Oksanen, J. Thioulouse & H. H. Wagner, 2012. Community ecology in the age of multivariate multiscale spatial analysis. Ecological Monographs 82: 257–262.

    Google Scholar 

  • Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., & Wagner, H. H. (2018). adespatial: Multivariate multiscale spatial analysis. R package version 0.2-0.

  • Dvořák, P., A. Pouličková, P. Hašler, M. Belli, D. A. Casamatta & A. Papini, 2015. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodiversity and Conservation 24: 739–757.

    Google Scholar 

  • Fontes, M. L. S., D. Tonetta, L. Dalpaz, R. V. Antônio & M. M. Petrucio, 2013. Dynamics of planktonic prokaryotes and dissolved carbon in a subtropical coastal lake. Frontiers in Microbiology 4: 71.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galand, P. E., E. O. Casamayor, D. L. Kirchman & C. Lovejoy, 2009. Ecology of the rare microbial biosphere of the Arctic Ocean. Proceedings of the National Academy of Sciences of the United States of America 106: 22427–22432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez-Rodrıguez, A., G. Slack, E. F. Daniels, K. E. Selph, B. Palenik & M. R. Landry, 2014. Fine spatial structure of genetically distinct picocyanobacterial populations across environmental gradients in the Costa Rica Dome. Limnology and Oceanography 59: 705–723.

    Google Scholar 

  • Haande, S., A. Ballot, T. Rohrlack, J. Fastner, C. Wiedner & B. Edvardsen, 2007. Diversity of Microcystis aeruginosa strains (Chroococcales, Cyanobacteria) from East-African waterbodies. Archives of Microbiology 188: 15–25.

    CAS  PubMed  Google Scholar 

  • Hanson, C. A., J. A. Fuhrman, M. C. Horner-Devine & J. B. H. Martiny, 2012. Beyond biogeographic patterns: Processes shaping the microbial landscape. Nature Reviews 10: 497–506.

    CAS  PubMed  Google Scholar 

  • Heino, J., H. Mykrä, J. Kotanen & T. Muotka, 2007. Ecological filters and variability in stream macroinvertebrate communities: Do taxonomic and functional structure follow the same path? Ecography 30: 217–230.

    Google Scholar 

  • Hillebrand, H., D. Dürseken, D. Kirschiel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Google Scholar 

  • Horner-Devine, M. C., M. Lage, J. B. Hughes & B. J. M. Bohannan, 2004. A taxa–area relationship for bacteria. Nature 432: 750–753.

    CAS  PubMed  Google Scholar 

  • Huszar, V. L. M., J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe & L. H. S. Silva, 2015. Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin. Journal of Plankton Research 37: 1190–1200.

    Google Scholar 

  • Ionescu, D., M. Hindiyeh, H. Malkawi & A. Oren, 2010. Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma’in hot springs (Jordan). FEMS Microbiology Ecology 72: 103–113.

    CAS  PubMed  Google Scholar 

  • Jespersen, A. M. & K. Christoffersen, 1987. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiologie 109: 445–454.

    CAS  Google Scholar 

  • Jungblut, A. D., C. Lovejoy & W. F. Vincent, 2010. Global distribution of cyanobacterial ecotypes in the cold biosphere. The ISME Journal 4: 191–202.

    CAS  PubMed  Google Scholar 

  • Komárek, J., 2013. Cyanoprokaryota 3. Teil/3rd part: Heterocytous genera. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süßwasserflora von Mitteleuropa/freshwater flora of Central Europe. Springer Spektrum, Berlin.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1999. Cyanoprokaryota. 1: Chroococcales. In Ettl, H., H. Heynig & D. Möllenhauer (eds), Süßwasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart: 1–548.

    Google Scholar 

  • Komárek, J. & K. Anagnostidis, 2005. Cyanoprokaryota. 2: Oscillatoriales. In Büdel, B., G. Gärtner, L. Krienitz & M. Schagerl (eds), Süßwasserflora von Mitteleuropa. Elsevier, Stuttgart-Munich: 1–759.

    Google Scholar 

  • Komárek, J., J. Kaštovský, J. Mareš & J. R. Johansen, 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) using a polyphasic approach. Preslia 86: 295–335.

    Google Scholar 

  • Kristiansen, J., 1996. Dispersal of freshwater algae: A review. Hydrobiologia 336: 151–157.

    Google Scholar 

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.

    CAS  Google Scholar 

  • Kruk, C., V. L. de M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. S. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Google Scholar 

  • Kruk, C., A. Martínez, L. Nogueira, C. Alonso & D. Calliari, 2014. Morphological traits variability reflects light limitation of phytoplankton production in a highly productive subtropical estuary (Río de la Plata, South America). Marine Biology 162: 331–341.

    Google Scholar 

  • Kruk, C., M. Devercelli, V. L. M. Huszar, E. Hernández, G. Beamud, M. Diaz, L. H. S. Silva & A. M. Segura, 2017. Classification of Reynolds phytoplankton functional groups using individual traits and machine learning techniques. Freshwater Biology 62: 1681–1692.

    CAS  Google Scholar 

  • Legendre, P. & L. Legendre, 2012. Numerical Ecology, 3rd ed. Elsevier, Oxford.

    Google Scholar 

  • Lima, M. S., D. da Motta Marques, N. H. K. D. McMahon, L. R. Rodrigues, S. Cardoso & L. O. Crossetti, 2016. Contrasting factors drive within-lake bacterial community composition and functional traits in a large shallow subtropical lake. Hydrobiologia 778: 105–120.

    CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The invert microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Machado, K. B., P. P. Borges, F. M. Carneiro, J. F. Santana, L. C. G. Vieira & V. L. M. Huszar, 2015. Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia 743: 255–267.

    CAS  Google Scholar 

  • Marmen, S., D. Aharonovich, M. Grossowicz, L. Blank, Y. Z. Yacobi & D. J. Sher, 2016. Distribution and habitat specificity of potentially-toxic microcystis across climate, land, and water use gradients. Frontiers in Microbiology 7: e271.

    Google Scholar 

  • Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fihrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. J. Naeem, L. Ovreas, A. L. Reysenbach, V. H. Smith & J. T. Stanley, 2006. Microbial biogeography: Putting microorganisms on the map. Nature Reviews 4: 102–112.

    CAS  PubMed  Google Scholar 

  • Michaud, A. B., M. Šabacká & J. C. Priscu, 2012. Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica. FEMS Microbiology Ecology 82: 268–278.

    CAS  PubMed  Google Scholar 

  • Moreira, C., A. Fathalli, V. Vasconcelos & A. Antunes, 2015. Phylogeny and biogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii. Archives of Microbiology 197: 47–52.

    CAS  PubMed  Google Scholar 

  • Mühling, M., N. J. Fuller, A. Millard, et al., 2005. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: Evidence for viral control of phytoplankton. Environmental Microbiology 7: 499–508.

    PubMed  Google Scholar 

  • Naimi, B. (2017). usdm: Uncertainty analysis for species distribution models. R Package Version 1.1-18. http://r-gis.net.

  • Naimi, B., N. A. S. Hamm, T. A. Groen, A. K. Skidmore & A. G. Toxopeus, 2014. Where is positional uncertainty a problem for species distribution modelling? Ecography 37: 191–203.

    Google Scholar 

  • Obertegger, U. & G. Flaim, 2018. Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 823: 79–91.

    Google Scholar 

  • Oksanen, J. F., G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2018). vegan: Community Ecology Package. R Package Version 2.5-2. https://github.com/vegandevs/vegan.

  • Östman, O., S. Drakare, E. S. Kritzberg, S. Langenheder, J. B. Logue & E. S. Lindström, 2010. Regional invariance among microbial communities. Ecology Letters 13: 118–127.

    PubMed  Google Scholar 

  • Padisák, J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Archiv für Hydrobiologie, Supplementband, Monographische Beiträge 107: 563–593.

    Google Scholar 

  • Padisák, J., É. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: An experimental study. Hydrobiologia 501: 243–257.

    Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621: 1–19.

    Google Scholar 

  • Padisák, J., G. Vasas & G. Borics, 2016. Phycogeography of freshwater phytoplankton: Traditional knowledge and new molecular tools. Hydrobiologia 764: 3–27.

    Google Scholar 

  • Papke, R. T., N. Ramsing, M. M. Bateson & D. M. Ward, 2003. Geographical isolation in hot spring cyanobacteria. Environmental Microbiology 5: 650–659.

    CAS  PubMed  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87: 2614–2625.

    PubMed  Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org.

  • Rejmánková, E., J. Komárek & J. Komárková, 2004. Cyanobacteria: A neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Diversity and Distributions 10: 189–199.

    Google Scholar 

  • Reynolds, C. S., 2006. The ecology of phytoplankton. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Google Scholar 

  • Ribeiro, K. F., C. M. da Rocha, D. de Castro, L. R. Rodrigues & L. O. Crossetti, 2018a. Distribution and coexistence patterns of phytoplankton in subtropical shallow lakes and the role of niche-based and spatial processes. Hydrobiologia 814: 233–246.

    Google Scholar 

  • Ribeiro, K. F., L. Duarte & L. O. Crossetti, 2018b. Everything is not everywhere: A tale on the biogeography of cyanobacteria. Hydrobiologia 820: 23–48.

    CAS  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2014. Functional classifications and their application in phytoplankton ecology. Freshwater Biology 60: 603–619.

    Google Scholar 

  • Schwarzbold, A. & A. Schäfer, 1984. Gênese e morfologia das lagoas costeiras do Rio Grande do Sul, Brasil. Amazoniana 9: 87–104.

    Google Scholar 

  • Shiaffino, M. R., M. L. Sánchez, M. Gerea, F. Unrein, V. Balagué, J. Gasol & I. Izaguirre, 2015. Distribution patterns of the abundance of major bacterial and archaeal groups in Patagonian lakes. Journal of Plankton Research 38: 64–82.

    Google Scholar 

  • Shirani, S. & F. L. Hellweger, 2017. Neutral evolution and dispersal limitation produce biogeographic patterns in Microcystis aeruginosa populations of lake systems. Microbial Ecology 74: 416–426.

    PubMed  Google Scholar 

  • Sompong, U., P. R. Hawkins, C. Besley & Y. Peerapornpisal, 2005. The distribution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand. FEMS Microbiology Ecology 52: 365–376.

    CAS  PubMed  Google Scholar 

  • Sønstebø, J. H. & T. Rohrlack, 2011. Possible implications of chytrid parasitism for population subdivision in freshwater cyanobacteria of the genus Planktothrix. Applied and Environmental Microbiology 77: 1344–1351.

    PubMed  Google Scholar 

  • Sukenik, A., R. Eshkol, A. Livne & O. Hadas, 2002. Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel allelopathic mechanism. Limnology and Oceanography 47: 1656–1663.

    Google Scholar 

  • Sukenik, A., O. Hadas, A. Kaplan & A. Quesada, 2012. Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes: Physiological, regional, and global driving forces. Frontiers in Microbiology 3: 86.

    PubMed  PubMed Central  Google Scholar 

  • Sullivan, M. B., J. B. Waterbury & S. W. Chisholm, 2003. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424: 1047–1051.

    CAS  PubMed  Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Google Scholar 

  • Tian, C., H. Pei, W. Hu & J. Xie, 2012. Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. Journal of Environmental Sciences 24: 1394–1402.

    CAS  Google Scholar 

  • Tomazelli, L. J., S. R. Dillenburg & J. A. Villwock, 2000. Late Quaternary geological history of Rio Grande do Sul coastal plain, southern Brazil. Revista Brasileira de Geociências 30: 474–476.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van Wichelen, J., I. van Gremberghe, P. Vanormelingen, et al., 2010. Strong effects of amoebae grazing on the biomass and genetic structure of a Microcystis bloom (Cyanobacteria). Environmental Microbiology 10: 2797–2813.

    Google Scholar 

  • Vardi, A., D. Schatz, K. Beeri, U. Motro, A. Sukenik, A. Levine & A. Kaplan, 2002. Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Current Biology 12: 1767–1772.

    CAS  PubMed  Google Scholar 

  • Werner, V. R., 2002. Cyanophyceae/Cyanobacteria no sistema de lagoas e lagunas da planície costeira do estado do Rio Grande do Sul. Tese (Doutorado em Ciências Biológicas) - Universidade Estadual Paulista, Rio Claro, Brasil: 363.

    Google Scholar 

  • Whitton, B. A. & M. Potts, 2000. The ecology of cyanobacteria. Kluwer, Dordrecht.

    Google Scholar 

  • Wickham, H. (2017). reshape2: Flexibly Reshape Data: A Reboot of the Reshape Package. R Package Version 1.4.3. https://github.com/hadley/reshape.

  • Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., & Woo, K. (2018). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. R Package Version 3.0.0. http://ggplot2.tidyverse.org, https://github.com/tidyverse/ggplot2.

  • Wu, T., B. Qin, J. D. Brookes, K. Shi, G. Zhu, M. Zhu, W. Yan & Z. Wang, 2015. The influence of changes in wind patterns on the areal extension of surface cyanobacterial blooms in a large shallow lake in China. Science of the Total Environment 518–519: 24–30.

    PubMed  Google Scholar 

  • Xiao, L. J., Y. Zhu, Y. Yang, Q. Lin, B. P. Han & J. Padisák, 2018. Species-based classification reveals spatial processes of phytoplankton meta-communities better than functional group approaches: A case study from three freshwater lake regions in China. Hydrobiologia 811: 313–324.

    Google Scholar 

  • Zhang, M., Y. Zhang, Z. Yang, L. Wei, W. Yang, C. Chen & F. Kong, 2016. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors. Phycological Research 64: 44–55.

    Google Scholar 

Download references

Acknowledgements

The first author is supported by a student fellowship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Finance Code 001 (File No. 1588368). We thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the financial support granted for this project (Process No. 474279/2013-8). We also thank Bianca Damacena for the translation of the English version of the text and Janet W. Reid for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariê Mello Cabezudo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 458 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabezudo, M.M., Ribeiro, K.F., Schneck, F. et al. Ecological factors shaping cyanobacterial assemblages in a coastal lake system. Hydrobiologia 847, 2225–2239 (2020). https://doi.org/10.1007/s10750-020-04250-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04250-w

Keywords

Navigation