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Abstract Phytoplankton productivity standardized

to chlorophyll a and photon flux (mg C mg chl. a-1

mol photons-1) of natural communities from northern

Bothnian Sea under dynamic (vertically rotating)

incubations and different optical conditions was

studied during four mesocosm experiments between

April 2013 and April 2016. The standardized produc-

tivity showed a positive exponential relationship with

calculated optical depth (P\ 0.001 in all four cases)

although a considerably weaker one for one of the

series where the community was pre-adapted to the

same optical condition as used in the measurements.

This series also showed a lower regression slope than

the three non-adapted series, which in turn showed

identical regression slopes, thus indicating a similar

response on the standardized productivity to short-

term changes in average ambient photon flux and

mixing depth. These results indicate that phytoplank-

ton communities in environments with episodic inflow

and mixing of humus-rich water can partly compen-

sate for the reduced photon flux by increased produc-

tion efficiency.

Keywords Primary production � Mixing depth �
Optical depth � Photosynthetic efficiency � Blackwater
environments

Introduction

Dissolved organic matter (DOM) is of profound

importance for the productivity of aquatic ecosystems

through its content of brown humus that effects the

light attenuation (e.g., Karlsson et al., 2009; Hessen

et al., 2017), and for its function as a bacterial carbon

source (e.g., Jansson et al., 2000; Sandberg et al.,

2004; Ask et al., 2009b; Båmstedt & Wikner, 2016).

The range in light attenuation of natural systems is

high, as shown for 15 small lakes in northern Sweden

by Ask et al. (2009a), and tends to increase, due to

global warming that causes increased precipitation

(Zhang et al., 2007) with increased leaching of DOM

from the surrounding terrestrial environment. Increas-

ing brownification of surface waters in northern

latitudes is therefore common (e.g., Forsberg, 1992;

Evans et al., 2005, 2006; Vuorenmaa et al., 2006;

Johansson et al., 2010; Kritzberg & Ekström, 2012)

and might radically chance the trophic balance in

aquatic ecosystems. Although long-term trends in the

optical environment are well documented, short-term

variability in the optical environment, caused e.g., by

increased river runoff into an estuary due to heavy

rainfall, will be of significance for the phytoplankton
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production on a short time scale. Several studies on

monocultured phytoplankton species have shown that

the production can increase if the photon flux is not

continuous (e.g., Sforza et al., 2012; Chen et al., 2013;

Veirazka et al., 2013) and both laboratory and field

studies have shown that dynamic incubations, i.e.,

incubations with variable light intensities, have given

different phytoplankton production compared to static

incubations (e.g., Marra, 1978a, b; Gallegos & Platt,

1982; Yoder & Bishop, 1985; Kromkamp & Limbeek,

1993; Helbling et al., 2003, 2013; Bertoni & Balseiro,

2005; Bertoni et al., 2011; Gali et al., 2013; Lawrenz

& Richardson, 2017). In a situation where light is the

single limiting factor for primary production, we

would expect that a measure of the average photon flux

in the mixed water column together with a biomass

estimate (e.g., chlorophyll a) and a previously deter-

mined photosynthetic efficiency (i.e., production per

unit of photons) would be sufficient to estimate

primary production. This requires that the photosyn-

thetic efficiency is constant over different optical

environments. By using mesocosm experiments I here

evaluated if this is true in the coastal Bothnian Sea,

northern Sweden, where intrusion of humus-rich river

water are common episodic events.

Materials and methods

Experimental facility

Phytoplankton primary production was measured

during four experimental periods, in April 2013,

2014 and 2016 and in October 2014. The experiments

were conducted in the indoor mesocosm facility at

Umeå Marine Sciences Centre, University of Umeå,

Sweden, situated at the northern Bothnian Sea

(N63�340; E19�500) in the Baltic Sea. The facility is

described by Båmstedt & Larsson (2018). For my

experiments I used two of the 12 mesocosm tanks, 5 m

high and 0.73 m in diameter, filled with pre-filtered

(300 lm porosity) brackish water with salinity rang-

ing between 4.03 and 5.10, and taken from 2 m depth

through the seawater supply system of the laboratory.

One tank was used for maintaining the natural

plankton community and to supply water samples for

the experiments, the other one was used for incuba-

tions of the water samples. In April 2013 the same

treatment of humus was given to both tanks, whereas

humus additions were only given to the incubation

tank in the three other experimental series. The

temperature was held at 15 ± 0.2�C, and the whole

water column was mixed by using a higher temper-

ature setting in the lowest section, 3.6–5 m depth. This

method of thermal convection is very efficient,

without influencing the temperature in the water

column (see Båmstedt & Larsson, 2018). To prevent

surface heating from the light source, the upper 0.6 m

was slowly bubbled with air (see Båmstedt & Larsson,

2018). The methods used in the experiments have been

recently described by Båmstedt (2019), and parts of

the results from April 2013 and 2014 have been used

for a comparison of primary production estimates

from static and dynamic incubations (Båmstedt,

2019). In the present study I have used results of 462

dynamic (vertically rotating) incubations from the

four mentioned periods. Nutrients (nitrate, ammo-

nium, and phosphate) were added to the tank where the

plankton community was maintained, in amounts for

saturated conditions throughout each experiment, and

measurements were started around 1 week after

nutrient additions.

Measurements of primary production

All incubations were done in 23 ml screw-cap glass

vials. The incubations consisted of two groups of five

or six incubation vials each, one group was fixed to a

3-m rubber loop, rotating down to 1.5 m depth, the

other one to a 9-m rubber loop, rotating down to 4.5 m

depth, with the bottles fixed to the rubber loops with

roughly equal distance between them (around 0.5 m

for 3-m loop and around 1.5 m for 9-m loop). Three

rotation speeds were used in each optical environment.

A previous evaluation showed that there were usually

no sustainable differences between the different

speeds I used (cf. ANOVA results in Båmstedt,

2019), and in this study I used them together, thereby

increasing sample size, but thereby also increasing

total variability from each optical environment. I used

three different optical environments for the incuba-

tions by adding either laboratory grade humic acid

(Aldrich pnr: 536080) or earth extract dissolved in

distilled water. Details of the experimental design as

well as analytical procedures can be found in Båmstedt

(2019). The PAR (Photosynthetic Available Radia-

tion, 400–700 nm) attenuation coefficient ranged from

0.806 to 2.515 m-1. Results of measured primary
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production as mg C m-3 h-1 were multiplied with the

mixing depth to get production m-2, and this was

standardized to average chlorophyll a and photon flux

in the mixed layer, the standardized productivity was

thereby expressed as mg Cmg chl. a-1mol photons-1.

Using Lambert-Beers law, Huisman et al. (2002)

showed that the average photon flux in a well-mixed

water parcel (Emix) can be mathematically described

as [E0 - Ed]/[ln(E0) - ln(Ed)], where E0 and Ed is the

photon flux at the top and bottom of the mixed water

parcel. I here use optical depth (OD) in the expression,

which then becomes:

Emix ¼ E0=OD � 1� expð�ODÞ½ �

OD is the product of the PAR attenuation coefficient

(k) in the water column and the mixing depth (m), i.e.,

k*m (se e.g., Reynolds, 2006). In the present exper-

iments m was either 1.5 or 4.5 m. Optical depth is a

dimensionless measure of opacity for the whole mixed

layer and is commonly used in studies of algal

photobioreactor efficiency (e.g., Flynn et al., 2010;

Kenny & Flynn, 2015, Martinez et al., 2018), but also

in studies of effects of vertical mixing on algal

production (e.g., Ross et al., 2011; Diehl et al., 2015).

These standardized results, hereafter named produc-

tion efficiencies, were plotted against the calculated

optical depth (OD). A summary of the relevant

characteristics of the water column in the different

experiments is given in Table 1.

A statistical evaluation of the results of production

efficiency was made by regression analysis of the ln-

transformed data versus optical depth for each of the

four experimental series, using the statistical package

SPSS Statistics 25 (https://www.ibm.com/analytics/

spss-statistics-software).

Results

The production efficiency during the four periods were

all significantly related to optical depth (Fig. 1) with

the probability of no relationship being\ 0.001 for all

four series (Table 2). The coefficient of determination

for the series from April 2013 differed from the three

other series by showing considerably lower value

(R2 = 0.219), with the latter in turn showed almost

identical values (R2 between 0.734 and 0.748). The

intercept value (ln(a) in Table 2) differed between the

four series, as shown by non-overlapping standard

errors. The slope of the regression lines (b) were

almost identical for the three later series, ranging from

0.374 to 0.376, whereas the series from April 2013

diverged through a value of 0.144 (Table 2). The

probability of zero slope was\ 0.001 for all four

series (Table 2).

Discussion

The scientific reports on effects of intermittent

illumination for the productivity of microalgae are

important for an explanation of my results. Many

studies have shown that a cyclic change between light

and dark environments improve algal productivity.

Thus, Chen et al. (2013) drastically improved algal

biomass productivity by circulation between a fully

illuminated shallow pond and a fully darkened tank.

Other studies show similar positive effects of inter-

mittent periods of light and dark, although algal

production has been measured in different ways, e.g.,

oxygen production (Vejrazka et al., 2013), biomass

change (e.g., Vejrazka et al., 2011; Xue et al., 2011;

Chen et al., 2013), cell numbers (e.g., Sforza et al.,

2012) and specific growth rate (doublings hour-1,

Janssen et al., 2001). Most studies are based on

monocultured phytoplankton and the optimal fre-

quency therefore differs between different studies

(e.g., Janssen et al., 2001; Vejrazka et al. 2011, 2013;

Xue et al., 2011). Although my results are based on

measurements of CO2 assimilation, they should be

comparable to measurements of changes in biomass

and cell numbers as well as oxygen production, since

they all are based on the photosynthetic harvesting of

photons. My results showed that the standardized

production efficiency was strongly related to the

optical depth as best described by an exponential

function (Fig. 1). Since the calculated efficiency is

expressed per units of chlorophyll a, changed effi-

ciency due to change in chlorophyll content is

compensated for in the formula. One potential expla-

nation for increased efficiency with increased OD

could be that an increase in optical depth will

gradually make the optical environment like that of a

light/dark cycle, which, according to many studies

(see above), have shown positive effects on algal

productivity. Sforza et al. (2012) measured microalgal

productivity normalized to light intensity in photo-

bioreactors, both with continuous and intermittent
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Table 1 Optical characteristics of the water column in the different experiments

Experiment E0 E1.5 E4.5 k (m-1) Euphotic depth (m) Chlorophyll a (mg m-3)

April-13

No humus 184 100.8 44.5 0.903 5.1 6.1

Medium humus 80 28.1 10.1 1.761 2.6 7.8

High humus 50 13.5 4.6 2.397 1.9 7.8

April-14

No humus 241 107.3 41.8 1.277 3.6 4.1

Medium humus 177 61.6 22.0 1.785 2.6 2.7

High humus 251 65.0 22.2 2.515 1.8 2.8

October-14

No humus 145 84.1 38.9 0.806 5.7 5.8

Medium humus 181 73.1 27.4 1.467 3.1 4.6

High humus 187 56.5 19.6 2.116 2.2 4.0

April-16

No humus 188 88.3 35.3 1.176 2.8 10.8

Medium humus 110 43.8 16.3 1.496 3.1 11.8

High humus 117 44.3 16.2 1.602 2.9 11.8

E0 (in lmol photons m-2 s-1) is the intercept of the exponential regression equation describing the vertical profile of photon flux

versus depth, E1.5 and E4.5 is the average photon flux (lmol photons m-2 s-1) during dynamic incubations rotating between the

surface and 1.5 respectively 4.5 m depth, and k is the slope of the regression line. The euphotic depth is given as the depth where 1%

of the surface photon flux remains. The chl. a value is the average for the whole water column
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Fig. 1 Standardized production efficiency (mg C mg chl. a-1

mol photons-1) from dynamic (rotating) incubations, measured

in four different experimental series, April 2013 (A), April 2014
(B), October 2014 (C) and April 2016 (D). Results plotted

versus the actual optical depth, k 9 m,where k is the attenuation

coefficient and m is the mixing (rotation) depth, being 1.5 or

4.5 m. The best fit exponential regression line is shown in each

graph. Corresponding regression parameters and results of

statistical regression analyses are given in Table 2. Note the

different scales on the Y-axis
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light, and found a critical level of 150 lmol photons

m-2 s-1 above which the productivity was drastically

decreased. A photon flux of 120 lmol photons m-2

s-1 supported optimal productivity, both with contin-

uous light, with 1200 lmol photons m-2 s-1 and a

frequency of 10 Hz or with 350 lmol photons m-2

s-1 and a frequency of 35 Hz. Lower frequencies with

these high intensities and the same photon flux

supported lower productivity. Thus, the same average

photon flux in an optically variable environment might

support different productivity, due to differences in

variability of the photon flux. My experimental design

caused a gradual and cyclic change in photon flux

between maximum (surface) and minimum (mixing

depth), and by humus additions a range in optical

depth of 1.3 to 11.5, was generated. Phytoplankton in

my experiments experienced average photon fluxes

ranging from 16.2 to 107.3 lmol photons m-2 s-1 (see

E1.5 and E4.5 in Table 1), i.e., much lower than the

critical level of Sforza et al. (2012), as referred above,

although the vertical rotation would cause a short and

repeated exposure to sub-surface levels of up to

251 lmol photons m-2 s-1 (see E0 in Table 1). In

contrast to the findings by Sforza et al. (2012) of a high

and constant productivity per unit of photon flux, my

results indicate a positive relationship between stan-

dardized production efficiency and optical depth, i.e.,

a strong increase in the efficiency of harvesting

photon-flux energy with decreased available light.

However, the considerably weaker relationship for the

series from April 2013, where the phytoplankton

community was adapted to the different humus

additions before the actual measurements of primary

production (see methods) points on the importance of

response time of phytoplankton for changes in photon

flux. Ferris & Christian (1991) compiled data from the

literature showing that adaptations to high photon flux

are usually immediate or occur within minutes

whereas adaptations to low photon flux appear to be

slower, although the literature data do not give a

straightforward picture of these effects. Resistance to

adapt might also be important for the results during

variable photon flux. In my experiments with dynamic

incubations a complete vertical revolution took

between 1.1 and 25.0 min for deep mixing (4.5 m),

and between 0.4 and 8.3 min for shallow mixing

(1.5 m), and the continuous and gradual changes in

optical environment in my experiments, defined both

by quantity (photon flux) and quality (spectral com-

position) differed from a sudden change in photon flux

alone. However, since my results cover only relatively

high optical depths, corresponding to waters with

considerable content of humus substances and the

PAR attenuation coefficient also spans a rather wide

range with high values (k = 0.8–2.5), we cannot yet

generalize these results to environments with attenu-

ation coefficients far below 1.0 and a narrow span of

attenuation coefficients, characteristic of clearwater

lakes and offshore marine environments. In the coastal

Bothnian Sea, from where the present experimental

plankton community was collected, the recorded range

in attenuation coefficients between June and Decem-

ber 2013 was 0.300–1.425 (Båmstedt & Wikner,

2016). Unpublished own data from a moored Aan-

deraa Sea Guard instrument at 2 m depth also showed

large hourly variations in turbidity and CDOM

(Chromatic Dissolved Organic Matter), indicating

mixing between water parcels with different optical

characteristics. For estuaries, lakes, and rivers where

episodic intrusion of brownified water are common,

the present results should thus be of high relevance by

showing that the phytoplankton community might

Table 2 Regression analysis of the relationship between standardized primary production efficiency (Y) and optical depth (X), given

by the equation ln(Y) = ln(a) ? b*X, where the Y is given as mg C mg chl. a-1 mol photons-1

Time N ln(a) b P(b) R2 F-ratio P(regr)

April-13 90 - 1.135 ± 0.174 0.144 ± 0.029 \ 0.001 0.219 24.716 \ 0.001

April-14 176 0.023 ± 0.110 0.374 ± 0.017 \ 0.001 0.748 463.998 \ 0.001

October-14 89 - 1.901 ± 0.081 0.376 ± 0.016 \ 0.001 0.734 569.983 \ 0.001

April-16 107 - 0.680 ± 0.114 0.376 ± 0.022 \ 0.001 0.734 289.587 \ 0.001

N is the number of measurements, ln(a) is the intercept ± standard error, b is the slope ± standard error, R2 is the coefficient of

determination for the regression line and (P(b)) and (P(regr)) are the probability of zero regression slope respectively no relationship

between standardized production efficiency and optical depth
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compensate for decreased photon flux by increased

production efficiency.
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