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Abstract Eutrophication is an increasing global

threat to freshwater ecosystems. East Africa’s Lake

Victoria has suffered from severe eutrophication in the

past decades which is partly responsible for the

dramatic decline in haplochromine cichlid species

diversity. However, some zooplanktivorous and detri-

tivorous haplochromine species recovered and shifted

their diet towards macro invertebrates and fish. We

used four formalin preserved cichlid species caught

over the past 35 years to investigate whether stable iso-

topes of these fish are reflecting the dietary changes,

habitat differences and if these isotopes can be used as

indicators of eutrophication. We found that d15N

signatures mainly reflected dietary shifts to larger

prey in all four haplochromine species. Shifts in d13C

signatures likely represented habitat differences and

dietary changes. In addition, a shift to remarkably

heavy d13C signatures in 2011 was found for all four

species which might infer increased primary produc-

tion and thus eutrophication although more research

is needed to confirm this hypothesis. The observed

temporal changes confirm previous findings that

preserved specimens can be used to trace historical

changes in fish ecology and the aquatic environment.

This highlights the need for continued sampling as

this information could be of essence for reconstruct-

ing and predicting the effects of environmental

changes.Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner,

K. M. Sefc & T. Takahashi / Advances in Cichlid Research II:
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Introduction

Eutrophication of freshwater ecosystems is increas-

ingly common and is a major threat to biodiversity and

to aquatic resource use by local human populations

(Smith & Schindler, 2009). Most eutrophication

assessment methods identified increased primary

production as the immediate biological response to

nutrient enrichment (Ferreira et al., 2011); and con-

sequently, primary productivity has been recom-

mended to be a sensitive and accurate indicator of

eutrophication (Paerl et al., 2003; Andersen et al.,

2006) with some exception Garmendia et al. (2013)

and Smith (2007). Increased primary productivity and

nutrient enrichment generally result in the preferential

removal and depletion of lighter 12C leading to heavier

d13C signatures in aquatic food chains (Schelske &

Hodell, 1991). Increased nitrogen pollution from

runoff is reflected by heavier d15N signatures while a

high N demand by primary producers can favour

N-fixing cyanobacteria and consequently lighter d15N

signatures (Peterson & Fry, 1987). Therefore, both

carbon and nitrogen stable isotopes are sensitive to

nutrient enrichment and increased primary productiv-

ity (Schelske & Hodell, 1991; Cabana & Rasmussen,

1996; Vander Zanden et al., 2005; Gu et al., 2006), and

thus might be useful indicators of eutrophication.

Besides being used as indicators of primary

productivity and of changes in basal signatures in

food webs, stable isotopes are commonly used to

function as estimators of trophic position and carbon

flow in aquatic food webs (Peterson & Fry, 1987; Post,

2002). The d15N signatures of consumers are typically

enriched with 3–4% with each trophic level while the

d13C signatures are similar or only slightly enriched

(d13C\ 1%) (Peterson & Fry, 1987; Vander Zanden

& Rasmussen, 2001). Stable isotopes can also provide

information on the habitat of aquatic species. In

general, limnetic phytoplankton photosynthesis

results in lighter d13C signatures compared to heavier

d13C signatures produced by benthic algae photosyn-

thesizing within a boundary layer (France, 1995;

Hecky & Hesslein, 1995). This phenomenon makes it

possible to infer whether the prey of primary con-

sumers has a benthic, littoral or limnetic origin (Hecky

& Hesslein, 1995; Vander Zanden & Rasmussen,

1999). Stable isotopes of primary consumers are also

related to the habitat gradient, with light d13C and

heavy d15N signatures in profundal habitats and vice

versa in littoral habitats (Vander Zanden & Ras-

mussen, 1999).

Lake Victoria has suffered from severe eutrophi-

cation in the past decades, and the shallow, inshore

habitats especially have high algal biomasses and a

high carbon demand by photosynthesis (Ramlal et al.,

2001; Hecky et al., 2010). Based on paleolimnological

analyses, changes in lower food web organisms began

as early as the 1940s but accelerated dramatically

through the 1960s and 1970s (Verschuren et al., 2002;

Hecky et al., 2010). From the 1980s onwards, several

studies have shown increased nitrogen and phosphorus

loadings in the lake coinciding with decreased water

transparency and oxygen levels (Mugidde, 1993;

Hecky et al., 1994, 2010; Seehausen et al., 1997a;

Verschuren et al., 2002). The eutrophication is thought

to be caused by agricultural malpractices, urbanization

and deforestation, although recent studies have sug-

gested that climatic variability and wind stress played

a crucial role as well (Kolding et al., 2008; Hecky

et al., 2010; van Rijssel, 2014). Most of the studies

reporting eutrophication focussed on the northern part

of the lake (Hecky, 1993; Mugidde, 1993; Mugidde

et al., 2003) and because of the lack of regular and

consistent measurements of biological productivity,

paleolimnological analysis was used to provide more

continuous analysis of historical changes in the

ecosystem.

For the Mwanza Gulf, located in the southern part

of the lake, even less data on productivity are available

(Akiyama et al., 1977; Shayo et al., 2011; Cornelissen

et al., 2014), although other environmental variables

such as dissolved oxygen levels and Secchi depth data

have been measured on a fairly regular basis in the last

four decades (van Rijssel, 2014). In addition, the Lake

Victoria biodiversity crisis has been well documented

for the Mwanza Gulf from the 1970s onwards (Witte

et al., 2007). In the 1980s, the introduced Nile perch,

Lates niloticus, population boomed. The Nile perch is

thought to have contributed to the eutrophication of

Lake Victoria as well by accelerating and subsidizing

productivity of the ecosystem through high turnover of

fish biomass and consequently more rapid recycling of
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nutrients (Kolding et al., 2008). Together with the

eutrophication, the Nile perch boom caused a major

decline of cichlid species (Witte et al., 1992; See-

hausen et al., 1997a; Goudswaard et al., 2008).

However, during the 1990s, some cichlid species,

especially zooplanktivores and detritivores, recovered

(Seehausen et al., 1997b; Witte et al., 2007; Kishe-

Machumu et al., 2015) and shifted their diet towards

macroinvertebrates and fish (Van Oijen & Witte, 1996

Katunzi et al., 2003; Kishe-Machumu et al., 2008; van

Rijssel et al., 2015). With the use of formalin-

preserved cichlid specimens collected over the past

35 years, we demonstrated that the recovered species

showed morphological adaptive responses to the

environmental changes (Witte et al., 2008; Van der

Meer et al., 2012; Van Rijssel & Witte, 2013; van

Rijssel et al., 2015).

Here, we use these unique cichlid museum speci-

mens selected at triennial time intervals from 1978

onwards, to test how the environmental and ecological

changes might be reflected in the C and N stable iso-

topes of these fish and if they can be used as indicators

of eutrophication. In addition, we investigated

whether habitat and seasonal changes were reflected

in these isotopes as not all fish were caught at the exact

same location and period on the research transect.

For this study, we used two closely related

zooplanktivorous species (abbreviations of species in

parentheses) Haplochromis (Yssichromis) pyrrho-

cephalusWitte & Witte-Maas 1987(pyr), H.(Y.) la-

parogramma Greenwood & Gee 1969 (lap), the

zooplankti/insectivorous species H. tanaos van Oijen

1996 (tan) and the mollusci/detritivorous species

Platytaeniodus degeniBoulenger 1906(deg). Dietary

gut content analyses revealed that the species pyr and

lap shifted their diet towards large macroinvertebrates

such as aquatic insects, shrimps and molluscs as well

as to fish during the 1990s, but reverted their diet

(partly) back to zooplankton in the 2000s which is

their original diet (Katunzi et al., 2003; Kishe-

Machumu, 2012; van Rijssel et al., 2015). These two

species also extended their habitat to shallower waters

(Seehausen et al., 1997b; Kishe-Machumu et al.,

2015). The species tan and deg both showed the most

pronounced diet changes towards macroinvertebrates

and fish during the 2000s and have extended their

habitat to deeper waters (Van Oijen & Witte, 1996;

Seehausen et al., 1997b; Kishe-Machumu et al., 2015;

van Rijssel et al., 2015).

There are no substantial changes over time in the

sedimentary d15N of the lake based on results from

three sediment cores from various locations in north-

ern Lake Victoria (R. E. Hecky, unpubl. data).

Therefore, we expect the dietary changes to be

reflected in the d15N signatures of the cichlids as

was found by Kishe-Machumu et al. (this issue).

However, the response of d15N in fish muscle could be

more complex as shifts in basal signature in phyto-

plankton will be additive to possible shifts in diet to

prey which might be lighter or heavier in d15N.

The eutrophication of the lake coincided with

increased primary productivity, altered species com-

position and higher abundance of phytoplankton in the

northern part (Hecky, 1993; Verschuren et al., 2002)

as well as in the southern part of the lake (Cornelissen

et al., 2014). The shift from diatoms to cyanobacterial

phytoplankton dominance was accompanied with an

increase of 2% in the (Suess corrected) d13C of

organic matter in sediment cores (Hecky et al., 2010).

This probably occurred as the higher biomass of

filamentous and colonial cyanobacteria raised the

demand for CO2 relative to availability in this soft

water lake (Ramlal et al., 2001) and also may have

decreased isotopic fractionation by boundary layer

effects in the larger filamentous and colonial

cyanobacteria (Hecky & Hesslein, 1995). Therefore,

we expect d13C signatures may have shifted towards

heavier values in these cichlids even without shifts in

their diets, especially in inshore habitats. In any case,

we hypothesized that changes in the environment and

in the fish’s trophic level may be evident in the

isotopic composition of the historical collection of

haplochromine fishes from the Mwanza Gulf.

Methods

Fish collection

Most fish were collected from a research transect in the

northern part of the Mwanza Gulf (6–14 m) on the

southern coast of Lake Victoria. Fish were caught with

a bottom trawler during the period 1978-2011. The

species pyr and lap and were mainly caught above

mud at station G (12–14 m) of the transect. Selected

pyr specimens from 1987 were from Luanso Bay

(Goldschmidt et al., 1993), a shallow bay (3–4 m) 10

kilometres south of the transect, as no pyr specimens
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caught on the transect in 1987 were preserved. The

species tan and deg were mainly caught at sand/mud

bottoms (Butimba and Kissenda Bay) at the opposite

ends of the transect (Fig. 1). Fish were preserved in

4% formaldehyde (buffered with borax) and after

shipment to Leiden, The Netherlands transferred to

70% ethanol and stored at theNaturalis Biodiversity

Center. Species determination and distinction

occurred for each individual in the field. F. Witte

was responsible for the species re-determination for

Fig. 1 Map of Lake Victoria with the sampled research transect in the Mwanza Gulf. Sampling stations are indicated with diagonal

lines, contour lines are isobaths indicating depth in metres
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every preserved individual. A total of 273 male

specimens (eight fish per year per species on average)

was selected from the years 1978, 1981, 1984, 1987,

1991, 1993, 1999, 2001/02, 2006 and 2011 which is a

selection from the same specimens used by van Rijssel

& Witte (2013) and van Rijssel et al. (2015) (Table S1

in Electronic Supplementary Material).

Stable isotope analysis

From each fish, the right side of the epaxial muscle

located dorsal of the lateral line was dissected after

removal of the skin. These muscle tissue samples were

freeze dried for 72 h and ground into fine powder. A

subsample of 1.25 mg was placed into tin cups and

shipped to the UC Davis Stable Isotope Facility for

analysis. Stable isotope analysis of 13C and 15N was

carried out with a PDZ Europa ANCA-GSL elemental

analyzer interfaced to a PDZ Europa 20–20 continu-

ous flow isotope ratio mass spectrometer (IRMS). The

d13C and d15N values were expressed relative to

international reference standards V-PDB (Vienna Pee

Dee Belemnite) and air, respectively. The difference

(d) in isotopic ratio between the sample and standards

was calculated as follows:

d13C or d15N ¼ Rsample�Rstandard

� �
= Rstandardð Þ

� 1000

where R = 13CO2/12CO2 for d13C or R = 15N2/14N2

for d15N and values are expressed as %.

Glutamic acid, nylon and bovine liver which were

similar in composition as the samples being used were

used as standards. These standards were previously

calibrated against NIST Standard Reference Materials

such as IAEA-N1, IAEA-N2, IAEA-N3, USGS-40

and USGS-41.

Due to deforestation and fossil fuel burning which

is naturally depleted in d13C, atmospheric CO2 levels

have been increasing while d13C of CO2 has declined,

especially over the past 35 years (Francey et al.,

1999). This decrease in d13C of atmospheric CO2 due

to anthropogenic perturbations is known as the Suess

effect (Keeling, 1979) and is most severe as the

present day is approached (Verburg, 2007). As

atmospheric and aquatic CO2 equilibrate rapidly in

the upper mixed layer of lakes and oceans, it was

necessary to apply a Suess correction in order to

compare d13C signatures of fish collected over the last

35 years according to the following formula:

7:7738118 � 10�16 � Y6 � 1:2222044 � 10�11

� Y5 þ 7:1612441 � 10�8 � Y4

� 2:1017147 � 10�4 � Y3 þ 3:3316112 � 10�1

� Y2 � 273:715025 � Y þ 91703:261;

with Y as year since 1700, as recommended by

Verburg (2007). The Suess correction was subtracted

from d13C values of the years 1981–2011 with the

smallest correction for 1981 (-0.07%) and the largest

correction for 2011 (-1.09%).

Kishe-Machumu et al. (this issue) showed that

formalin/ethanol preservation had a small but consis-

tent effect on the stable isotopes of Lake Victoria

cichlids. The preservation depleted d13C with 0.66%
and d15N values increased on average with 0.34%,

which is consistent with directional shifts induced by

formalin and ethanol preservation of fish reported in

previous studies (Arrington & Winemiller, 2002;

Sarakinos et al., 2002; Kelly et al., 2006; Gonzalez-

Bergonzoni et al., 2015). So far, studies on long-term

preservation effects of fish stable isotopes showed that

these are independent of time (Kaehler & Pakhomov,

2001; Ogawa et al., 2001; Ponsard & Amlou, 1999;

Sarakinos et al., 2002; Sweeting et al., 2004) which we

assume is also the case for the cichlids used in this

study. Although all fish of our study have been

preserved, the same way over time and preservation

effects are expected not to influence our results, we

corrected the d13C and d15N values for preservation

effects with ?0.66% and -0.34%, respectively (as

reported by Kishe-Machumu et al., this issue) to

approach more accurate stable isotope signatures.

Lipids are also known to influence d13C analyses by

fractionation which results in differences between

d13C values of lipids and other tissue like protein in a

single organism (Deniro & Epstein, 1977; Mccon-

naughey & Mcroy, 1979; Sweeting et al., 2006). Lipid

content of tissue can be estimated by its C:N ratio

(Mcconnaughey & Mcroy, 1979) after which a

mathematical normalization technique can be applied

to correct d13C values for lipid content. By plotting

d13C values of each sample against its C:N ratio, we

found a minor (slope = -0.02), but significant

(P\ 0.001) effect of lipids in our dataset with lower

lipid contents in more recent years (Fig. S1). We
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corrected the dataset for lipid content using the

formula:

d13Cnormalized ¼ d13Cuntreated � 3:32 þ 0:99 � C : N

which is proposed by Post et al. (2007) to use for

aquatic organisms where d13Cnormalized is the d13C

value normalized for lipid content and is comparable

with d13C after chemical lipid extraction. Fish samples

without any lipids have a C:N ratio close to 3.0

(Kiljunen et al., 2006; Post et al., 2007). The average

lipid content (C:N ratio) per sample in our study was

fairly low (3.4, which is equal to 4.3% lipid), and it

would therefore not be necessary to account for lipids

(Post et al., 2007). Nonetheless, we corrected the

samples for lipid content in order to adjust for the

minor but significant trend found between d13C and

the lipid content.

In addition to generating stable isotope values from

preserved cichlid specimens, we used stable isotope

values of particulate organic matter (POM) to test how

intra-lake variation in POM would influence our

results. These POM stable isotope data were collected

on a transect from Mwanza to Port Bell, Lake Victoria

(see Fig. 2 in Hecky et al., 2010 for sampling transect).

Every 20 km, surface water samples were taken from

the trans-lake ferry MV Bukoba in October 1995.

Additionally, water samples were taken from location

V96-5MC in the middle of the lake, from Bugaia

Island in the northern part of the lake in July 1995 and

April 1996 (Campbell et al., 2003a; Hecky et al., 2010)

and from offshore sites XL1, XL4, XL6-9 in May 1995

(Mugidde et al., 2003). Stable isotope signatures were

derived from these samples using the methods of

Hecky & Hesslein (1995) at the Freshwater Institute

Laboratory (Winnipeg, Canada) and were also Suess

corrected (Verburg, 2007).

Statistical analysis

We divided stable isotopes signatures into three

different time periods according to van Rijssel et al.

(2015). The pristine period (1978–1984), which is

considered as the period before severe environmental

changes; the perturbed period (1987–2002), which is

considered as the period of severe environmental

changes and changes in diet of the haplochromine

cichlids; the recovery period (2006–2011), in which

environmental changes seem less severe and some

haplochromine species (partially) returned to their

original diet.

To test our hypotheses on heavier d13C and d15N

signatures over time, we applied circular statistics

using Oriana 4.0 to quantify directional food web

changes following Schmidt et al. (2007). We calcu-

lated the direction (angle of change) and length

(magnitude of change) of both d13C and d15N com-

bined per species over time (both for the three periods

as for individual years). The directional change was

calculated by considering the d13C and d15N values as

x, y coordinates where delta y (15N) was divided by

delta x (13C). These values were then converted into
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(b)(a)Fig. 2 Arrow histograms of

the angle of isotopic change

between a the pristine and

perturbed period, b the

perturbed and recovery

period for all four cichlid

species. Arrows represent

the direction and magnitude

of isotopic change. The

straight dashed line

represents the mean vector

of change; the curved

dashed line on the rim

represents the 95%

confidence interval around

the mean vector of change
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angles using the ATAN function in Excel. The

direction (mean angle, l) and the length (r) of the

mean vector of all the species of the same period were

calculated where (r) provides a unit of concentration

of turning angles, r values close to 0 indicate that the

directions are uniformly distributed, r values close to 1

indicate all angles are concentrated in the same

direction. Angular standard deviation is given as

measure of angular variance. We constructed arrow

diagrams to visualize the direction and magnitude of

each food web component. We used both Rayleigh’s

test as Rao’s spacing test to assess whether the

direction of the angles was uniformly distributed (null

hypothesis).

Differences in stable isotopes per year were also

tested with a One-way ANOVA. To test if standard

length (SL) influences the stable isotopes of the fish, a

Pearson correlation test was used after testing for

normality with a Shapiro–Wilks test. In three out of

four species (lap, pyr & tan), only five significant

correlations between d13C and SL were found within

years. There were no significant correlations between

d15N and SL within years. Because there was no

consistent trend and the correlations occurred in both

positive and negative direction within a species, we

decided not to correct for SL (Table S2).

To test if the number of different catch locations per

year influenced the variation in stable isotopes, we

correlated this number with the standard deviation

(SD) of the stable isotopes per year (Table S3). We

applied the same method to test for seasonal effects by

correlating the number of catch dates with the SD of

the stable isotopes.

Slope differences between stable isotope data of

POM and preserved cichlid species were tested with

an ANCOVA. All these statistical tests were per-

formed with SPSS 20.

Results

Common isotopic responses per period

The direction of change in stable isotope signatures

between the pristine and perturbed period differed

between the four species (Fig. 2a; Table 1). The d13C

signatures of the two zooplanktivores pyr and lap

changed unexpectedly towards lighter values while

d15N signatures increased as expected. The d13C

signatures of species tan and deg increased to heavier

values and where d15N signatures increased for deg,

they unexpectedly decreased for tan (Fig. 2a). Arrow

diagrams show that in the recovery period, stable iso-

tope signatures of 3 out of 4 species (pyr, lap and deg)

changed into the expected similar direction (Fig. 2b).

This is supported by Raleigh’s and Rao’s spacing test

which both indicate almost significant patterns of

consistent change (0.10[P[ 0.05; Table 1) and a

relatively high r (0.78). The d13C signatures of pyr, lap

and deg increased while those of tan remained similar.

The d15N signatures remained similar for pyr and lap

while they increased for tan and deg (Fig. 2b).

Common isotopic responses per sampling year

All four species showed significant changes through

time in d13C (ANOVA, P\ 0.001) and d15N

(ANOVA, P\ 0.01; Figs. 3, 4; see Table S4 for

F-statistics, degrees of freedom and P values). From

1978–1981, the three zooplanktivorous species shifted

towards lighter d13C values and heavier d15N values

while the species deg shifted in the opposite direction

(Figs. 3a, 4a, b, c). From 1981 to 1984, pyr, lap and

deg all shifted back towards heavier isotopic d13C

signatures, while d15N values remained similar

(l = 0.86; Rayleigh’s test P = 0.10; Table 2, Fig-

s. 3b,4a, b, d). From 1984 to 1987, these three species

all showed a striking drop in d15N signatures while

d13C values of lap and deg remained similar and those

of pyr shifted towards heavier values (l = 0.82;

Rayleigh’s test P = 0.13; Table 2; Figs. 3c, 4a, b, d).

It must be noted that specimens of pyr caught in 1987

came from the Luanso Bay, a shallow bay (3–4 m) 10

kilometres south of the transect which might be the

cause of the relatively heavy d13C values. In the

periods 1987–1991, 1991–1993, 1993–1999 stable iso-

tope signature of the two zooplanktivores pyr and lap

both shifted towards lighter d13C values and heavier

d15N values (Table 2; Figs. 3d, e, f, 4a, b) while from

1999 to 2002 a major shift towards heavier d13C and

lighter d15N values occurred (l = 1.0; Rayleigh’s test

P = 0.14; Table 2; Figs. 3g, 4a, b). While the isotopic

signatures of these two zooplanktivores continued to

shift towards heavier d13C values from 2002 to 2006,

d15N values of tan increased and d13C values of deg

shifted towards lighter values (Figs. 3h, 4). From 2006

to 2011, the isotopic signatures of all four species

made a major shift towards remarkably heavy d13C
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values, while d15N values decreased for pyr, lap and

tan during this period (l = 0.95; Rayleigh’s test

P = 0.02; Table 2, Figs. 3h, 4).

Effect of catch location

Fish from multiple catch locations showed a higher

catch within year variation in d13C compared to fish

caught in years with fewer catch locations (four

different species combined, Spearman correlation,

r = 0.422, P = 0.014). Since each catch location had

a different depth, this means that fish caught in years

with multiple catch locations were also caught from

different depths. All four species showed positive

(mostly non-significant) correlations between the

number of catch locations per year and the SD of

d13C. There was one significant correlation for lap

(r = 0.851, P = 0.002) and an almost significant

correlation for deg (r = 0.732, P = 0.061) between

the number of catch locations per year and the SD of

d13C (Table 3).

The relation between the number of catch locations

and the amount of within year variation in d15N was

less clear and showed no significant correlations

(Table 3).

The d13C and d15N values of POM exhibit an

inverse relationship (Fig. 5, Pearson correlation,

r = -0.50, P = 0.002) indicating intra-lake varia-

tion. This relationship shows that for every 1%
increase in d13C (from offshore to inshore), the d15N

decreases by 0.71% in POM. The species pyr, lap and

tan seem to exhibit a similar trend with negative slopes

of -0.40, -0.21 and -0.30, respectively (Figs. 4a–c).

An ANCOVA on the slopes of these species and that

of POM showed that the slope of lap differed

significantly (P = 0.004) from POM but both slopes

of pyr and tan did not (Table S5). The species deg

showed a positive slope (0.41, Fig. 4d) which differed

significantly from the slope of POM (P\ 0.001;

Table S5).

Effect of catch date

There was a significant positive correlation between

the number of catch dates and the SD of d13C per year

for deg (r = 0.77, P = 0.043) and an almost signif-

icant positive correlation for lap (r = 0.574,

P = 0.083). There were no significant correlations

between the SD of d15N and the number of catch dates

per year (Table 3).

Discussion

Stable isotope changes through time

This study shows how dietary shifts are reflected in the

stable isotopes of formalin-preserved Lake Victoria

cichlids. The increase of d15N values through time of

all four species concurs with the reported shift in diet

to larger prey for all four species. However, the

hypothesized increase of d13C did not occur until the

2000s, while we expected it to increase at the onset of

eutrophication in 1987, the start of the perturbed

period.

Diet-related stable isotope changes

Although the species shifted their diet already in 1987

(van Rijssel et al., 2015), there was no increase but a

decrease in d15N values in that year. Stomach and gut

content analysis revealed that the diet of the zoo-

planktivores consisted for a large part of detritivorous

shrimps and detritus (van Rijssel et al., 2015), which

explains the low d15N values. Campbell et al. (2003b)

reported that Caridina (shrimps) had substantially

Table 1 Circular statistics on changes in stable isotopes between the pristine (1978–1984), perturbed (1987–2002) and recovery

period (2006–2011)

Period N Mean vector Circular SD Raleigh’s test Rao’s spacing test

Direction (l) Length (r) Z P U P

1978–1984 to 1987–2002 4 4.9 0.41 76.8 0.66 0.55 98.3 0.50–0.90

1987–2002 to 2006–2011 4 55.2 0.78 40.2 2.4 0.08 170.7 0.05–0.10

Direction length values (r) close to 1 indicate a common isotopic change in direction
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lower d15N and d13C than zooplankton in Napoleon

Gulf in northern Lake Victoria which is in agreement

with our results. Though stomach and gut contents

were not analysed for deg in that year, based on their

low d15N values and the dramatic increase of shrimps

in the Mwanza Gulf during that time (Goudswaard

et al., 2006; van Rijssel et al., 2015), it is likely that

this species had shifted to a similar diet to that of the

zooplanktivores.

Based on stomach and gut content analysis, the

species tan shifted its diet in 1993 from zooplankton

and insects to mainly insects and fish (Van Oijen &

Witte, 1996). Although higher d15N values might be

expected with a shift to larger prey, tan already
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Fig. 3 Arrow histograms of the angle of isotopic change

between individual years for all four cichlid fish species. Arrows
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interval around the mean vector of change. Note that only in a, h,
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Fig. 4 The Suess corrected

d13C and d15N

stable isotopes of the four

cichlid species a H.

laparogramma, b H.

pyrrhocephalus, c H. tanaos
and d P. degeni per year.

Linear regression lines, their

slopes, R-squared and

P values are depicted for

each species as a whole for

comparison with particulate

organic matter (POM) data,

see discussion

Table 2 Circular statistics

on changes in

stable isotopes between the

individual years

Direction length values

(r) close to 1 indicate a

common isotopic change in

direction

Significant values are

depicted in bold

n.a. Indicates that a result

could not be calculated due

to low sample size

Period N Mean vector Circular SD Raleigh’s test Rao’s spacing test

Direction (l) Length (r) Z P U P

1978–1981 4 290.5 0.58 60.3 1.32 0.29 158.1 0.10–0.50

1981–1984 3 83.9 0.86 31.0 2.24 0.10 n.a. n.a.

1984–1987 3 195.2 0.82 36.0 2.02 0.13 n.a. n.a.

1987–1991 2 330.6 0.94 20.1 1.77 0.19 n.a. n.a.

1991–1993 2 340.3 1.00 2.1 2.00 0.14 n.a. n.a.

1993–1999 2 286.8 0.88 29.0 1.55 0.24 n.a. n.a.

1999–2002 2 113.9 1.00 3.1 1.99 0.14 n.a. n.a.

2002–2006 4 24.7 0.35 83.1 0.49 0.64 75.5 0.50–0.90

2006–2011 4 111.6 0.95 18.7 3.60 0.02 218.1 <0.05

Table 3 Pearson

correlations per species

between the number of

catch locations, catch dates

per year and the SD of d13C,

d15N

* Indicates Spearman

correlation

Significant values are

depicted in bold

Species Number of catch locations/dates n d13C d15N

r P r P

H. laparogramma Locations 10 0.851 0.002 0.597 0.068

Dates 10 0.574 0.083 0.524 0.12

H. pyrrhocephalus Locations* 10 0.055 0.879 -0.624 0.054

Dates 10 -0.129 0.723 0.203 0.573

H. tanaos Locations 6 0.147 0.781 0.514 0.297

Dates 6 0.297 0.568 -0.037 0.945

P. degeni Locations 7 0.732 0.061 0.285 0.536

Dates 7 0.770 0.043 0.605 0.15
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included quite a high percentage of insects in their diet

(8% chironomids, 5% Chaoborus larvae and 24%

other insects) before the environmental changes.

Moreover, the aquatic insects and especially the

decapod crustacean Caridina in Lake Victoria gener-

ally have lower d15N values than zooplankton,

although there are exceptions among the insects

(Campbell et al., 2003b; Ojwang et al., 2004), which

might explain the lack of d15N increase in 1993

(Fig. 4; Table S4). In 2006, tan included even more

fish in their diet than in 1993 (van Rijssel et al., 2015)

which is reflected in the increase of d15N values as

well (Figs. 3, 4; Table S4). More consumption of

aquatic insects might also explain the lower d15N

values of pyr compared to the closely related species

lap from before the environmental changes. Haplo-

chromis laparogramma was almost exclusively feed-

ing on zooplankton during that time and pyr already

included some chironomid larvae and insects next to

their main prey zooplankton (Kishe-Machumu, 2012;

van Rijssel et al., 2015) which might have lowered

their d15N values.

For one species (lap), we were able to perform a

Pearson correlation test on the dietary contents with

the stable isotopes from the same fish (data from van

Rijssel et al., 2015). However, none of the averaged

volume percentages of the different food types (zoo-

plankton, phytoplankton, detritus, insects, shrimps or

fish) gave a significant correlation with d13C or d15N in

the fish through time (Table S6). The lack of

correlation can be caused by three factors: (1) these

fish seem to be quite opportunistic regarding their food

types. The studied species shifted their diet from

mainly small prey (zooplankton/detritus) to a highly

diverse diet containing multiple food types such as

insects, fish, shrimps, detritus and phytoplankton at the

time that large macroinvertebrate numbers increased

in their environment (van Rijssel et al., 2015). These

lower food web organisms show a high variability in

their stable isotope signatures (Campbell et al., 2003b)

which might be reflected in the stable isotopes of the

fish; (2) the stomach and gut contents only reflect what

the fish has been eating that day (or night) and do not

always have to reflect fish’s diet on the long term; (3)

climatic variability seems to be affecting the mixing

depths of the Mwanza Gulf (van Rijssel, 2014) which

have an effect on the d13C of particulate organic matter

(POM) and fish and therefore interfere with stable iso-

tope–food relationships. These three factors make

direct dietary-stable isotope correlations hard to detect

in these species.

Geographical variation

A higher number of catch locations resulted in a higher

d13C variation. Unfortunately, the dataset we used did

not allow us to detect a general trend in offshore and

inshore isotopes (heavier d13C and lighter d15N values

inshore versus lighter d13C and heavier d15N offshore)

as has been found by Hecky et al. (2010) and Mbabazi

et al. (2010) in Lake Victoria and Lake Kyoga,

respectively. However, these studies reported intra-

lake variation on a large scale (from 1 to 150 km

offshore) while our studied transect only covered

5 km. Our results show that the slopes between d13C

and d15N in three out of four species have a similar

direction compared to the slope of POM (with the

slopes of pyr and tan showing no significant difference

with that of POM). However, the slopes of these three

species are less steep than that of POM, and so

geographical variation can only partly explain the

shifts in stable isotope signatures if we assume that the

relationship for POM lake-wide applies to Mwanza

Gulf. The positive slope of deg is in the opposite

direction of the slope of POM so variation in deg

isotopes can only be explained by a shift to isotopi-

cally heavier prey as both d13C and d15 N increase

together from earlier to later years. The species pyr

and lap did not extend their habitat to deeper water (as

would be expected from the POM data and from the

lighter d13C signatures in these species through the

1980s and 1990s) but rather they occupied shallower
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Fig. 5 Stable isotopes of particulate organic matter (POM)

collected from inshore and offshore stations along a transect

from Mwanza in the south to Port Bell in the north of Lake

Victoria in October 1995 and from location V96-5MC in the

middle of the lake, from Bugaia Island in the northern part of the

lake and from several offshore sites in 1995/1996 (see Campbell

et al., 2003a; Mugidde et al., 2003; Hecky et al., 2010)
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water (Seehausen et al., 1997b; Kishe-Machumu et al.,

2015). However, stomach and gut content analysis

revealed a higher intake of chironomids, detritus and

molluscs during the late 1980s and 1990s of both

species (Katunzi et al., 2003; Kishe-Machumu 2012;

van Rijssel et al., 2015), indicating a more benthic

feeding behaviour during this period. In contrast, the

species tan did extend its habitat from shallow bays to

deeper open sublittoral areas. It is still unclear why

some species have shifted from shallow to deeper

waters while other species showed shifts in the

opposite direction. Several causes of these habitat

shifts have been suggested and most probably, a

combination of these causalities has resulted in the

habitat shifts. (1) A shift to the littoral habitat could be

a response to heavy predation by Nile perch in the

sublittoral zone; (2) the same shift could be a response

to lower oxygen levels and reduced water trans-

parency caused by increased eutrophication; (3) the

shift from the littoral to the sublittoral habitat might be

explained by competitive release and the opportunity

to invade previously unoccupied spatial niches and; 4)

ecological and morphological adaptive responses

might have facilitated the habitat extension to deeper

waters (Seehausen et al., 1997b; van der Meer et al.,

2012; van Rijssel, 2014; Kishe-Machumu et al., 2015).

Although our dataset does not allow us to make

within year comparisons, we suggest that geographical

variation in d13C isotopes might be present on a small

scale like our research transect in cichlids. Specimens

from the two closely related zooplanktivorous species

pyr and lap from 1978 were caught all along the

transect while fish of these species from 1981 were

caught only at the deepest station of the transect, G

(Table S1). Stomach and gut content analysis revealed

these fish mainly fed on zooplankton and that there

was no within species difference in volume percent-

ages of this prey type before 1987 (van Rijssel et al.,

2015).This is why we consider the shift towards lighter

d13C values of the two zooplanktivorous species in

1981 compared to 1978 (Figs. 3a, 4a, b) more likely to

be the result of geographical variation than a change in

diet over time. The observed trend for lighter d13C

values in deeper offshore water has been reported on a

larger scale by Hecky et al. (2010). They attributed

these lighter offshore d13C values to a lower offshore

algal (cyanobacteria) productivity and biomass com-

pared to inshore. Although our research transect is

only 5 km wide, the stable isotope data suggest that a

similar relation might apply on a smaller scale to the

Mwanza Gulf as well. This theory is supported by the

findings of Kishe-Machumu et al. (this issue) who

found heavier d13C values at the shallow station J

compared to deeper stations in the Mwanza Gulf for

two haplochromine cichlid species (including H.

pyrrhocephalus).

This geographical variation in stable isotopes sug-

gests also that the zooplanktivorous open water

species used in this study have a limited dispersal

between stations along the transect. It is known that

many cichlid species are restricted by bottom types,

depths or parts of the water column but a virtual lack of

horizontal migration that would be required to explain

our data have not been reported for these open water

species (Witte, 1981; Witte et al., 2007). On the other

hand, these fish have extended their habitat to

shallower depths in the past decades indicating that

there must be some horizontal migration but probably

less than previously thought (Seehausen et al., 1997b;

Kishe-Machumu et al., 2015).

Seasonal variation

Primary producers are known to have within year

temporal variation in both d13C and d15N stable iso-

topes (Cabana & Rasmussen, 1996; Post, 2002).

Enriched (heavy) d13C and decreased d15N values of

primary producers and primary consumers have been

reported during periods of stratification in temperate

lakes, but to our knowledge not in tropical lakes (Quay

et al., 1986; Zohary et al., 1994; Hodell & Schelske

1998; Caroni et al., 2012). In addition, larger con-

sumers such as fish have long tissue turnover rates

(months to years, Hesslein et al., 1993) and thus are

their isotopic signatures representative of their diet for

longer periods of time (Post, 2002). This means that if

there are small seasonal differences in the lower food

web, they will be hard to detect, especially with the

dataset used in this study where we were limited to

museum material. The heavy d13C and light d15N

values of 2011 found for lap, pyr and tan could, in

theory, be considered as being a seasonal effect as

these fish were all caught during the warmer wet

season when vertical stratification of the water column

is more likely than in the cool dry season and this may

lead to different availability of food resources. In

contrast, comparison of these isotopic signatures from

2011 with stable isotope values from fish caught

186 Hydrobiologia (2017) 791:175–191

123



during the wet season in the year 1999 shows that the

latter actually had lighter d13C and higher d15N values,

opposite from what one would expect if there is a

strong seasonal effect. This leads us to believe that,

based on our data, stable isotope signatures are a

reflection of the fish’s diet and habitat rather than any

possible seasonal effect. In addition, so far, no

seasonal variation in the diet of Lake Victoria cichlids

has been reported (Katunzi et al., 2003; Van Oijen &

Witte, 1996; Kishe-Machumu, 2012; Kishe-Machumu

et al., 2008; van Rijssel et al., 2015). Studies on

seasonal variation of stable isotope signatures in Lake

Victoria cichlids would provide definitive conclusions

on this matter.

Signs of increased primary productivity?

Unexpectedly, the d13C values in the studied zoo-

planktivorous species shifted to lighter values during

the 1990s (the perturbed period) where heavier values

were expected due to increased demand for CO2 and

reduced isotopic fractionation resulting from the

increased phytoplankton biomass (Hecky & Hesslein,

1995; Hecky et al., 2010). However, during the 2000s

and especially in 2011, there is a remarkable shift

towards heavier d13C in all four species. We hypoth-

esize that this might be the result of increased primary

productivity by phytoplankton and evidence for con-

tinued eutrophication of the lake. Recently, Cornelis-

sen et al. (2014) found that phytoplankton productivity

has increased in the Mwanza Gulf compared to the

1970s (Akiyama et al., 1977). The increase of primary

productivity and a basal change of phytoplankton

stable isotope signatures could be reflected in the d13C

values of the fish when phytoplankton is (unintention-

ally) absorbed or ingested by the fish (or their prey), as

has been found for several other fish species (espe-

cially during times of algal blooms, Christoffersen,

1996; Smith et al., 2008). In case of the zooplanktiv-

orous species (which again include mainly zooplank-

ton in 2006 and 2011, van Rijssel et al., 2015), the

preyed upon zooplankton (mainly copepods) which

should then feed upon cyanobacteria such as Micro-

cystis and Anabaena and diatoms like Nitzschia which

have replaced the original phytoplankton (mainly

Aulacoseira[Melosira]) in the entire lake (Ochumba &

Kibaara, 1989; Hecky, 1993; Kling et al., 2001;

Verschuren et al., 2002) including the Mwanza Gulf

(Sekadende et al., 2005; Cornelissen et al., 2014).

However, grazing experiments indicated that Lake

Victoria’s crustacean zooplankton (mainly cyclopoid

copepods) do not control the cyanobacteria-dominated

phytoplankton biomass (Branstrator et al., 1998;

Lehman & Branstrator, 1993). In addition, other

studies found cyanobacteria (Microcystis) to be toxic,

nutritionally inadequate and able to suppress feeding

in copepods (Demott & Moxter, 1991; Demott et al.,

1991; Fulton & Paerl, 1987). On the other hand, there

is a growing amount of evidence that copepods can

grow and reproduce while feeding on toxic cyanobac-

teria (Koski et al., 2002; Reinikainen et al., 2002;

Nascimento et al., 2008). In fact, several copepod

species are known to (rapidly) adapt to increased

cyanobacteria exposure enabling these zooplankters to

feed upon the phytoplankton (Karjalainen et al., 2006;

Colin & Dam, 2007; Mariani et al., 2013). Therefore,

it is not improbable that the cyclopoid zooplankton (or

cichlids) of the Mwanza Gulf partly feed upon the

increased phytoplankton biomass that may have

resulted in heavier d13C values in our fish. A recent

stable isotope study on zooplankton caught in the

Mwanza Gulf in the wet season of 2011 (same location

and period as our fish) showed the same heavy d13C

stable isotope values as for our fish (Cornelissen

2015), which supports the above-mentioned theory.

Zooplankton grazing experiments on phytoplankton in

the Mwanza Gulf would be needed to draw definitive

conclusions.

Conclusion

With the use of a unique long-term formalin preserved

sampling dataset, our study shows that stable isotope

changes are reflecting dietary and habitat changes of

four haplochromine species. In contrast, there does not

seem to be a seasonal effect on the stable isotopes.

Besides ecological changes, we suggest that the

stable isotopes of these fish might be reflecting

variation in primary production and varying degrees

of eutrophication over the last several decades. This

would imply that these haplochromines could serve as

indicators of eutrophication.

The temporal variability of stable isotopes in these

fishes confirms previous findings that museum spec-

imens can be used to trace historical changes in fish

ecology and the aquatic environment. This highlights

the need for continued sampling of fish and as well as
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other aquatic organisms important to fish feeding to

reconstruct and predict environmental changes in

aquatic ecosystems.
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