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Abstract M-AMBI is a multimetric index for

assessing the ecological quality status of marine and

transitional waters. It is based on benthic macroinver-

tebrates and integrates AMBI, a biotic index based on

species sensitivity/tolerance, with diversity and rich-

ness, making it compliant with the European Water

Framework Directive. The success of AMBI paved the

way for the introduction of M-AMBI, which was

subsequently incorporated into the regulations of

several European countries. The M-AMBI algorithm

integrates the metrics by means of factor analysis

(FA). In this paper, we first reproduced the algorithm

using the open source R software. This enabled us to

point out that FA is not functional to M-AMBI, and its

omission does not appreciably change the results. We

then enhanced the applicability of the index, making it

independent of the number of samples. In this way,

M-AMBI is closely approximated by the simple mean

of the normalised metrics with no need for multivar-

iate techniques. Finally, we further simplified the

approach, presenting a bivariate version that is still

highly correlated with M-AMBI, in which the consti-

tutive metrics are reduced to a diversity measure and a

species sensitivity index. The properties of this

bivariate version include simplicity, transparency,

robustness, and openness.
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Introduction

The European Water Framework Directive 2000/60/

EC (hereafter WFD; European Community, 2000)

aims to protect and improve the quality of European

water bodies. Since its introduction, the WFD has

encouraged the development of new tools to evaluate

ecological quality status on the basis of given biolog-

ical quality elements (Hatton-Ellis, 2008). Biological

elements to be monitored in coastal and transitional

waters include benthic macroinvertebrates in terms of

their diversity, abundance and the presence of distur-

bance-sensitive taxa.

M-AMBI (‘Multivariate AMBI’, Bald et al., 2005;

Muxika et al., 2007) is a multimetric index, based on

the macrozoobenthic community, designed to be

compliant with WFD requirements. It adopts a mul-

tivariate (trivariate) approach, integrating the response

Handling editor: Pierluigi Viaroli

Electronic supplementary material The online version of
this article (doi:10.1007/s10750-013-1565-y) contains
supplementary material, which is available to authorized users.

M. Sigovini (&) � E. Keppel � D. Tagliapietra

CNR—National Research Council of Italy, ISMAR—

Marine Sciences Institute, Arsenale-Tesa 104, Castello

2737/F, 30122 Venice, Italy

e-mail: marco.sigovini@ve.ismar.cnr.it

123

Hydrobiologia (2013) 717:41–50

DOI 10.1007/s10750-013-1565-y

http://dx.doi.org/10.1007/s10750-013-1565-y


of three selected metrics, i.e. species richness, the

Shannon diversity index (Shannon & Weaver, 1949)

and the biotic index AMBI (Borja et al., 2000). AZTI

Marine Biotic Index (AMBI) relies on the calculation of

the biotic coefficient (BC), which is based in turn on the

proportion of disturbance-sensitive taxa and is

expressed on a continuous scale ranging from 0 (best

status) to 6 (worst status). The AMBI approach follows

a model (Glémarec & Hily, 1981; Grall & Glémarec,

1997) which categorises benthic invertebrates into five

ecological groups (EGs), depending on their dominance

along a gradient of organic enrichment and oxygen

depletion. This conceptual model builds on the classical

work of Pearson & Rosenberg (1978), which forms the

basis of a number of other biotic indices (e.g. Simboura

& Zenetos, 2002; Grall & Glémarec, 2003; Rosenberg

et al., 2004; Dauvin & Ruellet, 2007). For an overview

of the subject, see Tagliapietra et al. (2012).

The success of AMBI paved the way for the

introduction of M-AMBI, which has been officially

incorporated into the regulations of several European

countries in the context of WFD implementation

(Bulgaria, France, Germany, Italy, Romania, Slovenia

and Spain; Carletti & Heiskanen, 2009). The BAT

index (‘Benthic Assessment Tool’; Teixeira et al.,

2009), which is officially adopted in Portugal, relies on

the same approach, with the Margalef index (Marga-

lef, 1958) replacing richness among the constituent

metrics. There have also been preliminary attempts to

apply M-AMBI to the assessment of benthic commu-

nity conditions as an indicator of sea-floor integrity in

the context of the European Marine Strategy Frame-

work Directive (2008/56/EC, European Community,

2008) (Borja et al., 2011). Recently, M-AMBI has also

been applied further afield (Borja et al., 2008a;

Bakalem et al., 2009; Costa-Dias et al., 2010; Borja

& Tunberg, 2011).

The adoption of the index has also been favoured by

a user-friendly software tool developed by AZTI-

Tecnalia for calculating AMBI and M-AMBI. The

calculation performed by the software is based on a list

of macroinvertebrate taxa, mostly at the rank of

species, which is revised from time to time and is now

composed of about 6,500 entries (including syn-

onyms; updated March 2012). The software is freely

available from http://ambi.azti.es/ (currently version

5.0; Borja et al., 2012b). However, the software code,

based on a MATLAB routine, is not open source. We

maintain that the user should be able to fully

understand and control the calculation procedures.

Therefore, we reproduced and checked each step of

the algorithm using the open source R software. In this

way, we were able to deal with the method’s

assumptions and constraints and propose amendments.

Materials and methods

M-AMBI integrates the biotic index AMBI with

Shannon diversity and richness. The three metrics

were originally selected by factor analysis (FA; see for

example Thurstone, 1947; Mulaik, 1972; Harman,

1976; Hair et al., 1998). This multivariate statistical

approach is mainly designed to explain the variance in

the observed variables, and at the same time to reduce

the dimensionality of the dataset using a smaller

number of underlying variables (‘latent factors’).

However, after the selection of the metrics, this

technique was retained within the M-AMBI algorithm

(Muxika et al., 2007). The following steps were

identified on the basis of published details (Muxika

et al., 2007; Borja et al., 2012b) and reproduced with

open source R software:

(1) For each sample in the dataset, the species

richness (number of species, S), diversity (Shan-

non index, H0) and AMBI-BC are calculated.

Diversity is calculated from numerical abun-

dances, with logarithm set to base 2 (Shannon &

Weaver, 1949). BC is calculated on the basis of

the list of taxa with the assigned EGs supplied by

AZTI-Tecnalia (http://ambi.azti.es/), with a null

weighting given to the species that are not listed.

(2) Minimum and maximum reference values for the

three metrics are added to the dataset as fictitious

samples. Typically, minimum reference values

(‘Bad reference conditions’) are represented by

the metrics’ theoretical minima (S = 0, H0 = 0,

BC = 6) whereas maximum values (‘High ref-

erence conditions’) correspond to the highest

values in the dataset (or the lowest in the case of

BC). However, alternative reference values can

be set (as occurs in the implementation of the

WFD at the national level).

(3) Each metric is standardised by subtracting its

mean and dividing by its standard deviation.

(4) Factor analysis is performed by means of an

eigendecomposition (in practice, a PCA) of the
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matrix of standardised metrics. In FA, the

loadings are the eigenvectors rescaled by the

square root of the eigenvalues (Revelle, 2012).

All three factors are retained and a Varimax

orthogonal rotation (Kaiser, 1958) is applied to

the loadings. Borja et al. (2012b) indicate a

generic regression-based method for estimating

factor scores. However, we exactly reproduced

the M-AMBI results obtained by the AZTI-

Tecnalia software simply by multiplying the

matrix of standardised metrics by the (rotated)

loadings matrix (Grice, 2001).

(5) The factor scores are orthogonally projected on

to the line identified by the reference samples and

normalised to the range 0–1 (by dividing by the

square root of 2), with 0 corresponding to the

fictitious ‘Bad’ sample and 1 corresponding to

the ‘High’ one. The Euclidean distance between

0 and the score projection corresponds to the

‘ecological quality ratio’ (EQR) for that sample

(European Community, 2000).

In addition to M-AMBI, we introduced two alter-

native algorithms. The first (hereafter identified as

M-AMBI*) excludes point 4, i.e. the FA. The three

standardised metrics are therefore projected directly

on to the axis identified by the reference values. The

second algorithm (M-AMBI*(n)), in addition to drop-

ping point 4, replaces metric standardisation (point 3)

with minimum–maximum normalisation, i.e. the

minimum is subtracted from each value and the result

is divided by the total range, using ‘High’ and ‘Bad’

reference values as extrema. The latter approach was

also applied to just two of the three metrics, combining

the ‘sensitivity metric’ BC with either S or H0 as a

‘diversity metric’.

M-AMBI and the alternative algorithms were

calculated, and the Pearson correlation analysed, with

reference to three datasets. The first is the famous

Ekofisk dataset (Gray et al., 1990), which is available

as an example in the PRIMER software for community

analysis (Clarke & Gorley, 2006). It is based on a

survey of the Ekofisk field (Norway) carried out in

1987. Each of 39 samples was sampled by a Day grab

(0.1 m2, three replicates) and sieved through a 1 mm

mesh, yielding 13,883 individuals and 173 taxa (139

of which were identified to the rank of species). The

second dataset (hereafter ‘Venice’, Tagliapietra et al.,

1998, 2000) is representative of benthic assemblages

from a coastal transitional ecosystem. The samplings

were performed in the Lagoon of Venice (Italy) in

1991 as part of a wider framework of studies under the

patronage of UNESCO, known as ‘Sistema Lagunare

Veneziano’ (Lasserre & Marzollo, 2000). 42 stations

were sampled in Palude della Rosa, on the landward

side of Venice Lagoon. Samples were collected by

means of a Van Veen grab (0.1 m2) and sieved through

a 1 mm mesh, yielding 34,732 individuals and 62 taxa

(48 of which were identified to the rank of species).

A third dataset was artificially created, character-

ized by statistically independent metrics. Samples

were generated independently of each other, with no

gradient taken into account. The dataset comprises 50

samples, as recommended by Borja et al. (2008b).

Species abundances follow a Poisson lognormal dis-

tribution (Grøtan & Engen, 2008), which occurs when

sampling randomly from an assemblage with lognor-

mal distribution (Bulmer, 1974), a widely recognised

model in community ecology. The Poisson lognormal

distribution is described by the parameters l and r2,

which correspond to the mean and standard deviation

(among species) of the log abundances. For each

sample, l and r2 were in turn randomly generated from

a normal distribution (with parameters estimated on the

basis of the two real datasets). The resulting matrix

includes 120 ‘fictitious species’. Finally, the EG (1–5)

for each of the simulated species was randomly

generated to ensure the independence of AMBI.

The analyses were performed using the R software

environment for statistical computing, v. 2.15.0 (R

Development Core Team, 2012), available as free

software under the GNU General Public License.

Results

The mean values and total range of M-AMBI and the

constituent metrics for the three datasets are shown in

Table 1. The Ekofisk dataset is characterized by the

lowest density (from 640 to 3,540 individuals m-2),

the highest richness and diversity, the lowest BC

(corresponding to the ‘best’ condition) and the highest

M-AMBI. The dataset includes 14 taxa which are not

assigned to any EG. In the Venice dataset, the density

has a higher mean and a wider range (from 310

to 24,230 individuals m-2), whereas richness and

H0 have lower minima and maxima. The BC and
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M-AMBI values are also shifted towards more

stressed conditions (six taxa were not assigned to

any EG). The simulated dataset is approximately

characterized by intermediate values. Overall,

M-AMBI ranges between 0.34 and 1.00.

The correlation among the metrics, M-AMBI and

derived indices is shown in Table 2. In the Ekofisk

dataset, S and H0 are directly correlated (r = 0.51), BC

and H0 are inversely correlated (r = -0.90), and BC

and S are uncorrelated (r = -0.27). In the Venice

dataset too, S and H0, as well as BC and H0, are

correlated (r = 0.69 and r = -0.62 respectively),

with BC and S uncorrelated (r = -0.30). The simu-

lated dataset shows no correlation among the three

constituent metrics of M-AMBI. In the real datasets,

M-AMBI generally shows good agreement with the

three metrics, and particularly with H0, with values up

to r = 0.97 in the Ekofisk dataset. For simulated data,

the correlation between M-AMBI and its metrics is

lower, with a minimum value recorded between

M-AMBI and BC (r = -0.45).

The correlation coefficient between M-AMBI and

both the simplified versions of the index (M-AMBI*

and M-AMBI*(n)) approximates to one for each of the

three single datasets (Table 2), as well as for the whole

set of samples. This means that the algorithms are

basically equivalent. The mean absolute difference

between the results of M-AMBI and M-AMBI* ranges

from 0.006 to 0.008 depending on the dataset. The

maximum absolute difference is about 0.02 in all

datasets. The results of the M-AMBI*(n) algorithm

show still smaller deviation, with maximum absolute

difference ranging between 0.011 and 0.002. A

comparison of the results of the original M-AMBI

algorithm and M-AMBI*(n) is shown in Fig. 1a.

The correlation between M-AMBI and the index

based on just S and BC (‘S-AMBI’) (Table 2) is

highest for the Ekofisk and Venice datasets (r = 0.99

and r = 0.97, respectively), where the metrics are

mutually correlated, but is still high for the simulated

data (r = 0.85). Taking into account the whole set of

samples, the correlation is 0.95. An XY plot between

the indices is presented in Fig. 1b. The correlation

between M-AMBI and the index integrating H0 and

BC (‘H0-AMBI’) gives slightly lower results.

Discussion

The authors of M-AMBI explicitly state that the

algorithm is based on FA (Muxika et al., 2007). The

purpose of FA was originally to identify a latent

structure within a set of observed variables and to

reduce the dimensionality of the data. It was devel-

oped in the framework of social sciences and

psychology studies (Spearman, 1904; Thurstone,

1931), but it subsequently found application in other

contexts, such as quality assessment studies (e.g. Vega

et al., 1998; Borja et al., 2004; Riba et al., 2004;

Chainho et al., 2007). The FA has been the subject of

extensive debate (see for example Armstrong, 1967;

Stewart, 1981; Preacher & MacCallum, 2003; Henson

& Roberts, 2006). Criticism has focused on the quality

and meaningfulness of the results, as they are affected

by the criteria used to choose the model, decide how

many factors to retain, and select the rotation method,

as well as by the tendency to not respect the

assumption that measured variables are linearly

related to latent variables (Preacher & MacCallum,

2003). FA was applied in the selection of the M-AMBI

metrics by Muxika et al. (2007), but was also retained

in the algorithm for the ordinary computation of the

index. When M-AMBI is calculated, no factor is

discarded after PCA is performed, and the Varimax

rotation is applied to the original space. Since both of

these transformations simply rotate the axes of the

three-dimensional space, they have no effect at all on

the cloud of points representing the samples, nor on

the scalar product which orthogonally projects them

on to the ‘High’–‘Bad’ line. The actual role of FA in

Table 1 Mean values (and total range) of total abundance (N), richness (S), Shannon index (H0), AMBI benthic coefficient (BC) and

M-AMBI for considered datasets

Dataset N S H0 BC M-AMBI

Ekofisk 356 (192 7 1,062) 54 (36 7 65) 4.62 (2.29 7 5.23) 2.27 (1.81 7 4.94) 0.86 (0.43 7 0.99)

Venice 827 (31 7 2,423) 15 (5 7 38) 2.03 (0.80 7 4.17) 3.46 (2.58 7 4.29) 0.54 (0.34 7 1.00)

Simulated 216 (15 7 3,517) 32 (13 7 55) 4.00 (1.38 7 5.10) 2.99 (1.43 7 4.34) 0.67 (0.46 7 0.85)
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M-AMBI can be assessed by comparing the results

obtained by the original algorithm with the ones

obtained by the M-AMBI* algorithm proposed in this

study. The correlation approximates to one, showing

no substantial difference when FA is excluded. The

residual differences (with maximum values of about

2%) are not related to the PCA itself or to the Varimax

rotation. Rather, they are due to the fact that, after

PCA, the eigenvectors are rescaled by the square root

of the eigenvalues, which is a typical step in FA

(Revelle, 2012). We consider that this step does not

justify the presence of FA in the index.

We suggest that FA in M-AMBI (as well as in the

BAT index) is a vestigial component of the index

development process and should be omitted. It is in

fact a design feature that is no longer functional to the

index calculation. According to the lex parsimoniae,

better known as Ockham’s Razor, the model with the

least number of assumptions should be preferred,

which will result in increased robustness.

One limitation of M-AMBI is that the results

depend on the whole set of samples considered, and

the addition of new data always leads to different

results (Bald et al., 2005; Ruellet & Dauvin, 2008).

However, the deviations are very small (Borja et al.,

2008b). These differences have generally been inter-

preted as a drawback of FA; indeed, in the present

case, in which all factors are retained and the

dimensionality is thus not reduced, and assuming that

the minimum and maximum reference values do not

change, any differences should more precisely be

ascribed to metric standardisation and eigenvector

rescaling. To minimise this instability, Borja et al.

(2008b) suggested using a sampling dataset of at least

50 samples, a condition which cannot always be

fulfilled. When new samples are added to a dataset,

discriminant analysis (DA) has been proposed for

predicting which class they are most likely to fall into.

This method avoids changing the classification of the

original samples; however, it attributes the new cases

Table 2 Pearson correlation coefficients among richness (S), Shannon index (H0), AMBI benthic coefficient (BC), M-AMBI and

derived indices for considered datasets

Dataset S H0 BC M-AMBI M-AMBI* M-AMBI*(n) S-AMBI(n)

Ekofisk H0 0.512

BC -0.265a -0.898

M-AMBI 0.660 0.968 -0.887

M-AMBI* 0.709 0.955 -0.856 0.998

M-AMBI*(n) 0.627 0.972 -0.907 0.999 0.994

S-AMBI(n) 0.679 0.928 -0.888 0.990 0.990 0.990

H-AMBI(n) 0.385b 0.968 -0.980 0.947 0.923 0.960 0.930

Venice H0 0.693

BC -0.303a -0.620

M-AMBI 0.811 0.938 -0.746

M-AMBI* 0.805 0.928 -0.763 0.999

M-AMBI*(n) 0.818 0.935 -0.740 1.000 0.999

S-AMBI(n) 0.842 0.816 -0.768 0.966 0.972 0.968

H-AMBI(n) 0.578 0.924 -0.873 0.946 0.949 0.942 0.882

Simulated H0 0.264a

BC -0.049a 0.177a

M-AMBI 0.763 0.596 -0.448c

M-AMBI* 0.721 0.577 -0.510 0.997

M-AMBI*(n) 0.765 0.600 -0.441c 1.000 0.997

S-AMBI(n) 0.778 0.086a -0.666 0.851 0.860 0.849

H-AMBI(n) 0.248a 0.663 -0.619 0.816 0.848 0.814 0.575

All coefficients have P value B0.001, except when otherwise indicated
a P [ 0.05, b 0.01 \ P B 0.05, c 0.001 \ P B 0.01
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to discrete classes (Bald et al., 2005; Muxika et al.,

2007). Excluding FA, as in M-AMBI*, also removes

eigenvector rescaling. With M-AMBI*(n), which

involves substituting standardisation with minimum–

maximum normalisation, the results become indepen-

dent of other samples, so no minimum number of

samples has to be enforced, and samples can freely be

added to (or removed from) the dataset. Unlike BC,

which ranges from 0 to 6, richness and diversity range

from 0 to ?, and no theoretical maxima with which to

normalise the two variables can be directly identified.

Therefore, for M-AMBI*(n), we propose to normalise

the metrics by means of reference values, such as the

‘High’ and ‘Bad’ values used in M-AMBI, which should

not change when samples are added or removed.

Demonstrating that M-AMBI*(n) is mathematically

identical to the simple mean of the three normalised

metrics, with equal weight given to each one, is fairly

straightforward. This is the simplest way to integrate

metrics into a multimetric index. M-AMBI closely

approximates this value: M-AMBI & M-AMBI*(n) =

(S(n) ? H0(n) ? AMBI-BC(n))/3. Borja et al. (2008b),

recalling the results of an ECOSTAT meeting for the

implementation of the WFD, indicate a range of 0.05

EQR units as an acceptable deviation in the event of new

samples being added to the dataset. In the analysed

datasets, the deviations resulting from the proposed

simplified algorithms M-AMBI* and M-AMBI*(n) lie

within this recommended range.

As well as formal considerations, there is another

point that deserves attention. The software made

available by AZTI-Tecnalia for the calculation of

AMBI and M-AMBI (Borja et al., 2012b) is ‘freeware’,

in the sense that it can be freely downloaded after

registration, but is not ‘free and open source software’,

since the source code is not available nor can it be

unrestrictedly modified. In practice, the calculations

performed by the software are hidden. Reproducibility

is a main tenet of the scientific method (Stodden, 2011).

The authors themselves advise the use of other statistical

software for the calculation of the indices (Borja et al.,

2008b). We performed all the analyses using the free

software R (v. 2.15.0). The script we developed for the

calculation of all the versions of M-AMBI is presented

in the online resource 1. By reproducing the algorithm,

we were able to evaluate the role of subjacent mathe-

matical structures and propose a simplified version. In

our opinion, open code and full transparency of the

procedures would help to understand the methods and to

interpret the results, allowing greater control, promoting

methodological debate and, in the final analysis, con-

tributing to the improvement of the methods. In this

sense, it is desirable that the list of taxa with assigned

EGs for the calculation of AMBI, which is now

integrated into the AZTI-Tecnalia software (http://

ambi.azti.es/), become fully accessible.

M-AMBI has been used to assess benthic quality

status in different locations and habitats (a broad list of

published works is reported in Borja et al., 2012a). The

index inherits some of the limitations of its constituent

Fig. 1 Relationship between results of M-AMBI and simplified

versions M-AMBI*(n) (a) or S-AMBI(n) (mean of normalised

richness and AMBI-BC) (b) calculated for three datasets. Line

with slope = 1 superimposed
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metrics. In coastal transitional ecosystems such as

lagoons and estuaries, which are naturally character-

ized by high saprobity, low salinity and strong

composite gradients (Tagliapietra et al., 2009, 2012),

both AMBI and species richness and diversity can

reflect natural stress (Muxika et al., 2005; Teixeira

et al., 2008; Munari & Mistri, 2010). Specifically, as

AMBI is derived from the Pearson & Rosenberg

model (1978), there are some problems with detecting

impacts that are not related to organic pollution such

as physical impacts (Borja & Muxika, 2005) and with

sites characterized by high hydrodynamics (Muxika

et al., 2005). We consider that the behaviour of an

index is more interpretable when the component

metrics are mutually correlated as little as possible.

In the real datasets, however, the three constituent

metrics, S, H0 and AMBI-BC, proved to be correlated.

The mutual independence of the metrics in the

simulated dataset served to remove the effects of

collinearity. In this case too, the M-AMBI results were

closely approximated by M-AMBI* and M-AMBI*(n).

On the other hand, this is not common in nature, where

opportunistic species are usually characterized by high

abundances and are associated with low evenness and

diversity (Pearson & Rosenberg, 1978). Nevertheless,

when these deviations from classical models occur,

they deserve particular attention as they could indicate

either inconsistent EG assignment or the presence of

drivers other than organic pollution.

Two of the three metrics, species richness and

shannon diversity, are closely related aspects of biolog-

ical diversity, with the latter accounting for the number

of species and the way individuals are distributed among

species, i.e. species evenness. Accordingly, M-AMBI

attributes more weight to the number of species than to

the biotic index. It should also be noted that the number

of species and related metrics, such as diversity indices,

are dependent on sample size, in accordance with habitat

specific species-area relationships. Therefore, compar-

ison among datasets is meaningful only if they are

characterized by the same sampling area. Reducing

M-AMBI to a two-metric index highlights the contri-

bution of the ‘sensitivity’ and ‘diversity’ components

without substantially altering the results. Thus, we

performed a bivariate M-AMBI*(n) on AMBI and either

S (‘S-AMBI’) or H0 (‘H-AMBI’). In the Ekofisk and

Venice datasets, both S-AMBI(n) and H-AMBI(n) are

well correlated with M-AMBI, and there is still a good

agreement in the simulated dataset, in which the

constituent metrics are mutually uncorrelated. The

M-AMBI and S-AMBI(n) results are compared in

Fig. 1b. To be compliant with the WFD, which is highly

prescriptive in its terminology, diversity should probably

be preferred to species richness, as the former is

explicitly requested (European Community, 2000).

When averaging two metrics, results and individual

contributions can easily be plotted as in Fig. 2. The role

of the two metrics in the overall score can be visually

distinguished,enhancing thepossibility of interpretation.

Moreover, the rationale behind the procedure can be

understood more easily. The R script in the online

resource 1 allows for the calculation of bivariate ‘M-

AMBI-like indices’ such as S-AMBI as well. As for BAT

compared to M-AMBI (Teixeira et al., 2009), the same

method of integration can be applied to different metrics.

Conclusion

M-AMBI is one of the most frequently applied benthic

indices in Europe for coastal and transitional waters. A

user-friendly free software is provided by the authors for

direct calculation of the index. However, the exact

program code is not accessible and the user is precluded

from fully understanding and controlling the algorithm. A

central role has customarily been attributed to the use of

FA to integrate the three metrics. However, we argue that

Fig. 2 Results of S-AMBI(n) index based on richness (S) and

AMBI-BC (both metrics are normalised). Value of index is

represented by orthogonal projection of samples on line segment

(identified by min and max reference samples and set to one)
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FA in M-AMBI should be discarded, since the index does

not benefit from it in any way. Moreover, by substituting

standardisation of metrics with their min–max normal-

isation, the index is transformed into the simple mean of

the three equally weighted normalised metrics, therefore,

becoming independent of the number of samples. In the

analysed datasets, the simplified versions of M-AMBI

proposed in this paper produced results that closely

approximated those of the original algorithm, with

differences in EQR that fell within the accepted range

of 0.05. However, we cannot exclude that larger differ-

ences would be obtained in other cases, particularly when

dealing with a considerably higher number of samples or

when the ’High’ reference values are markedly lower

than the maximum values of the metrics. Nevertheless, as

the differences are not systematically negative or

positive, it is very likely that the introduction of the

proposed algorithms would have no meaningful effect on

prior index calibrations or on comparisons with previous

results. This approach would be a step towards simpli-

fication, stability, robustness, transparency, openness and

falsifiability. Furthermore, we introduce a bivariate

alternative to M-AMBI combining a diversity (or

richness) index and a species sensitivity index, in this

case AMBI. The reduction of redundancy is achieved

with only a small deviation from the parent index. The

latter solution is a distillation of the M-AMBI approach,

further increasing generalisation, simplification and

ecological interpretability, while at the same time

remaining fully compliant with the WFD requirements.
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Muxika, I., Á. Borja & W. Bonne, 2005. The suitability of the

marine biotic index (AMBI) to new impact sources along

European coasts. Ecological Indicators 5: 19–31.
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