
Abstract We examined the influence of water

velocity, trophic status, and time period on the

phosphorus content of two aquatic macrophytes.

We sampled Berula erecta (Huds.) and Callitriche

obtusangula (Le Gall.) from 17 oligosaprobic

hardwater streams in the Alsatian Rhine flood-

plain of northeastern France. Sampling was con-

ducted on a monthly basis during a 9-month

period from August 1996 to April 1997. For B.

erecta, phosphorus content of shoots and roots

were correlated to water phosphorus content but

not to sediment phosphorus content. The range of

phosphorus shoot content of C. obtusangula was

similar to that of B. erecta. Phosphorus shoot

content of C. obtusangula was not correlated with

water and sediment phosphorus content. In one

stream where both species were present on the

same sampling dates, shoot phosphorus content

decreased when water velocity was high, partic-

ularly for C. obtusangula. Additionally, a signifi-

cant effect of time period was observed for both

species when the water velocities were low. The

effect of water velocity was only significant from

spring (April) to autumn (October) when plant

phosphorus content was highest.

Keywords Aquatic macrophytes Æ Water

trophic status Æ Phosphorus Æ Water velocity

Introduction

Phosphorus is a key element involved in the

eutrophication of waterbodies (Vollenweider,

1971). Eutrophication is a process that typically

results in reduced water clarity and increased

growth of algae or vascular macrophytes, but may

be managed by controlling nutrient sources. As a

result of their phosphorus requirements for

growth (Fogg, 1973), macrophytes can play an

important role in the cycling of phosphorus in

aquatic systems; in particular, exchanges between

sediments, the water column and plant biomass.

Considerable attention has been devoted to

investigating phosphorus dynamics in lacustrine

ecosystems (Löfgren & Boström, 1989; Van Huet,

1990) and microcosm experiments (Pelton et al.,
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1998 stream microcosm) that do not accurately

reflect natural conditions. Previous studies re-

ported that phosphorus is mainly assimilated by

macrophytes from sediments via their roots and

not from the water column via shoots (Bole &

Allan, 1978; Barko & Smart, 1980; Carignan &

Kalff, 1980; Huebert & Gorham, 1983; Gabriel-

son et al., 1984). Phosphorus uptake via shoots

and roots occurs by facilitated diffusion across the

plasmic membrane using transporter proteins

such as H2PO4
–/H+ symporters (Schachtman et al.,

1998; Smith et al., 2003). Limited information is

available on phosphorus uptake by macrophytes

in streams, and the results are conflicting. Hill

(1979) & Peverly (1979, 1985) found no correla-

tion between phosphorus content of water,

phosphorus content of sediment and plant bio-

mass. However, when sediment phosphorus con-

tent is low uptake of water phosphorus by

macrophytes can be observed (Chambers et al.,

1989; Pelton et al., 1998). Similarly, Robach et al.

(1995, 1996) observed a strong correlation be-

tween plant phosphorus content and the annual

mean phosphate concentration of water, but not

between total plant phosphorus and total sedi-

ment phosphorus.

On a whole, these results suggest the relative

contribution of water and sediment to the nutri-

tion of macrophytes in streams is dependant on

various abiotic and biotic factors. Firstly, relative

trophic status of water and sediment (Best &

Mantai, 1979; Rattray et al., 1991) and particu-

larly the amount of soluble reactive phosphorus

(Denny, 1972; Pelton et al., 1998 in stream

microcosms) are important abiotic factors in

macrophyte nutrition. Secondly, plant morphol-

ogy, and particularly the root to shoot ratio, leads

to preferential nutrient sources. For example,

sediment phosphorus can be the main nutrient

source for strong root system plants (Denny,

1972). Finally, ecological factors such as substra-

tum (Clarke & Wharton, 2001), time period

(Moutin et al., 1993; Maine et al., 1999; House &

Denison, 2002) and water velocity (Royle & King,

1991; Carr & Chambers, 1998) can modify phos-

phorus availability and thus plant nutrition.

The rare studies focusing on the role of water

velocity on phosphorus dynamics have been

evaluated in macrophyte communities (Haslam,

1982; Dawson, 1988), algal periphyton develop-

ment (Ghosh & Gaur, 1994), or sediment chem-

istry (Prairie & Kalff, 1988; Chambers et al., 1992;

Chambers & Prepas, 1994). These studies re-

ported a relatively long-term effect of hydrologi-

cal regimes on phosphorus dynamics, with a

positive or negative correlation between dissolved

phosphorus and water discharge, varying in

magnitude and in direction among streams.

However, there is no literature available on the

role of water velocity on phosphorus storage by

macrophytes in lotic ecosystems, according to the

relative contribution of phosphorus content in

water and sediment.

Our objective was to examine the influence of

water velocity, total phosphorus in the water and

sediment (trophic status), and time period on the

phosphorus content of two aquatic macrophytes

within hardwater streams. We report investiga-

tions on phosphorus storage within two common

aquatic macrophytes (Berula erecta (Huds.) Co-

ville, and Callitriche obtusangula Le Gall.) in

hardwater streams with different water velocities.

Both species have a wide trophic amplitude, but

C. obtusangula is thought to prefer pool habitat,

while B. erecta prefers riffle habitats. In addition,

B. erecta exhibits a strong root system and a

strictly submerged growth form and C. obtusan-

gula has few developed roots, and floating

(emergent) and submerged shoots. Morphological

differences between the two species may influ-

ence their modes of nutrition.

Materials and methods

Study sites

We chose 19 sampling sites for B. erecta in 10

streams and 25 sampling sites for C. obtusangula

in 15 streams. All sites were located within oli-

gosaprobic [organic-matter poor streams (Haw-

kes, 1962; Haslam, 1990)] hardwater streams

within a 60 km reach of the Alsatian Rhine

floodplain of north-eastern France (48�05¢–
48�35¢ N, 7�30¢–7�46¢ E). The primary land use in

the study area is agriculture. Physico-chemical

characteristics of the streams are summarized in

Table 1. B. erecta and C. obtusangula occurred
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together at 14 stations in eight streams (all in all

17 streams and 30 stations). Phosphorus concen-

trations in the streams ranged from [P–

PO4
3–] < 5 lg l–1 (oligotrophic) to [P–PO4

3–]

about 50 lg l–1 (meso-eutrophic). Water velocity

among stations ranged from 0.03 m s–1 (stagnant

waters) to 0.64 m s–1. Wet width (5–7 m) and

water depth (0.6–1.5 m) were relatively homoge-

nous among sampling sites, but B. erecta sites

were composed of predominately gravel substrate

and C. obtusangula sites were predominately mud

substrate.

Field and laboratory methods

Sampling took place between August 1996 and

April 1997. At each station, stream water (col-

lected in tubes rinsed with stream water; one

sample per station), roots and shoots of B. erecta

and shoots of C. obtusangula were collected

monthly. In each case, plant samples were com-

posite of several individuals. In addition, every

2 months, core sediments were collected (5 cm

upper layer sediment). Water velocity was

determined with a helix turnstile just upstream of

the collected plants and 10 cm below the surface.

Water temperature, oxygen content and conduc-

tivity were measured in situ with WTW� portable

instruments.

Water samples were stored in the laboratory for

2 and 4 days at 3–4�C until analysis. Plants were

rinsed with tap water to remove attached organ-

isms and sediment. Roots, shoots and sediments

were air dried for 2 weeks. Preliminary tests found

for these macrophytes species among others that

shoots and roots dry weight and phosphorus con-

tent results were similar between air drying for

2 weeks and 60�C oven drying for 3 days (T-tests,

P < 0.05; Eglin & Robach, 1992). Samples were

then crushed in a MM 2000 Retsch ball crusher

and passed through a 2-mm sieve. Subsamples (1 g

sediment, 0.5 g shoot, 0.1 g root) were digested

according to the nitro-perchloric method (AF-

NOR, 1986). Then, all phosphorus forms were

converted into orthophosphates. Orthophos-

phates of water (without digestion), digested plant

and sediment were analyzed by colorimetry after

addition of ammonium molybdate and ascorbic

acid with a microflow auto-analyser (Alliance

Instruments Integral ETC), according to spectro-

metric method (AFNOR, 1986).

Data analysis

To test the impact of water velocity, T-tests were

performed on phosphorus content on plant parts

sampled at stations characterized by low (‘‘L’’:

V £ 0.4 m/s) and high (‘‘H’’: V > 0.4 m/s) water

velocity. We considered all sampling dates and

species separately. Pearson correlations were

performed to examine the relationships of phos-

phorus content among stream water, sediment,

roots and shoots.

To assess the role of water velocity, sampling

date (time period), species, and their interactions

on plant phosphorus content, stations where both

species (B. erecta and C. obtusangula) were

present at different water velocities (low and

high) and dates (seven dates from August to

October 1996 and January to April 1997) were

studied for one stream (Ischert). With results on

this stream, an unreplicated three factor ANOVA

was conducted with water velocity, sampling date

and species as factors, after data normality and

homocedaticity were verified. Unreplicated

ANOVA is recommended (Sokal & Rohlf, 1995;

Quinn & Keough, 2002) in our case because we

do not have blocks’ replications, but we have a lot

of repetitions within treatments (low and high

velocities), allowing us to calculate residual error.

We chose to study many points along streams

instead of blocks’ replications within one point in

order to include stream heterogeneity without

making heavy field sampling. Precedent experi-

ments without replication have shown a rather

good power of ANOVA tests (1 – b > 80%).

Table 1 Chemical characteristics of the streams (from
August 1996 to April 1997)

Parameter N Mean SD

pH 90 7.5 0.6
Conductivity (lS/cm, 20�C) 124 722 116.4
Temperature (�C) 241 10.8 3.4
Oxygen (% of saturation) 167 70.9 23.6
Calcium (mg l–1) 23 64.2 16.3

N = n umber of observations, SD = Standard Deviation.
Calcium content values came from Sanchez-Pérez &
Trémolières (2003)
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First order interactions between the different

factors were tested: macrophyte species · sam-

pling dates (6 degrees of freedom, df), macro-

phyte species · water velocity (1 df), sampling

dates · water velocity (6 df). Second order

interaction (6 df) corresponds to error term be-

cause we had no replication.

All statistical analyses were conducted with

Minitab for Windows (version 13, Minitab Inc.,

USA) and a significance level of P < 0.05 was

used.

Results

B. erecta occurred over a wide range of water

velocities (0.03–0.96 m s–1), water phosphorus

content (0–46 lg l–1) and sediment phosphorus

content (0.2–2.2 mg g–1 dry mass). Shoot phos-

phorus content ranged from 1.1 to 9.4 mg g–1 dry

mass, whereas root phosphorus content of some

plants ranged from 0.6 to 18.7 mg g–1. Sediment

phosphorus content was relatively similar among

sampling stations, except for the station 13 where

it exceeded 1 mg g–1 dry mass, and which was

associated with a high root phosphorus content

(8.5 mg g–1 dry mass). Similarly, C. obtusangula

was found in a wide range of conditions, charac-

terized by a water velocity ranging from 0.03 to

0.67 m s–1, water phosphorus content from close

to 0 to 45.5 lg l–1, and sediment phosphorus

content from 0.2 to 1.4 mg g–1 dry mass. Shoot

phosphorus content was also in the same magni-

tude as B. erecta, from 1.4 to 9.2 mg g–1 dry mass.

Stations were separated in two groups accord-

ing to their water velocity: low (‘‘L’’: V £ 0.4 m/s)

and high (‘‘H’’: V > 0.4 m/s), considering species

separately and all sampling dates for each species.

T-tests performed on phosphorus content of

plant, water and sediment in the two groups of

stations showed no significant difference in water

or sediment phosphorus content (Table 2). For B.

erecta, shoot and root phosphorus content was

also similar in the two groups. On the contrary, C.

obtusangula showed higher shoot phosphorus

content in stations with low water velocity com-

pared to those of high water velocity.

For both species, water, sediment or plant

phosphorus content were not correlated with

water velocity (Table 3). Water phosphorus con-

tent was negatively correlated with sediment

phosphorus content for C. obtusangula sites, but

not B. erecta sites. Water phosphorus content was

positively correlated with shoot and root phos-

phorus content for B. erecta (Table 3). Root

phosphorus content was also positively correlated

to shoot phosphorus content of B. erecta (Ta-

ble 3).

For the stream Ischert where both species co-

occur, shoot phosphorus content was significantly

affected by sampling date and water velocity, ef-

fect of the species was not significant (Table 4),

and interaction between species and dates, spe-

cies and water velocity, dates and water velocity

were significant (Table 4, Figs. 1, 2, 3). Shoot

phosphorus content was high during the growing

season (from August to October, from 5 to

9 mg g–1 DM) and low during the winter (from

January to March, < 4 mg g–1 DM), when water

velocity was low (Figs. 2b, 3b). When water

velocity was high, time period effect almost dis-

appeared (Fig. 3b) and shoot phosphorus con-

tents were about 3.5 mg g–1 DM (Fig. 2b).

Variations between time period were more

important for C. obtusangula than for B. erecta

(Fig. 1a), but shoot phosphorus content of B.

erecta increased earlier than the one of C. obtus-

angula at the end of the winter (Fig. 2a).

In this stream, shoot phosphorus content was

significantly higher at low velocity for both spe-

cies (Table 4), but differences of shoot phospho-

rus content between the two water velocities were

more pronounced for C. obtusangula than for B.

erecta (differences of 2.8 and 1.1 mg g–1 DM, for

C. obtusangula and B. erecta, respectively,

Figs. 1b, 3a).

Discussion

Our results on total phosphorus content of the

different compartments (water, sediment, shoots

and roots) fall well within the large range of val-

ues observed from laboratory conditions (Best

et al., 1996) and lakes (De Groot & Golterman,

1990; Svendsen et al., 1993), rivers (Clarke &

Wharton, 2001) and streams (Robach et al., 1995)

experiments.
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C. obtusangula showed no correlation between

shoot content and water content, or between

shoot content and sediment content, suggesting

that this species does not have any preferential

strategy, or that sediment or water phosphorus is

in excess of plant needs. However, For B. erecta,

we found a positive correlation between plant

(shoot and root) and water phosphorus content,

but none between plant and sediment phosphorus

content. This result may suggest that phosphorus

can be absorbed by shoots from water and

translocated to roots. The occurrence of phos-

phorus absorption by shoots is confirmed by

previous work in the same and others Alsatian

floodplain hardwater streams (Robach et al.,

1995; Robach et al., 1996). In addition, translo-

cation from shoots to roots has been observed

during indoor experiments using 32P incubation

(De Marte & Hartman, 1974; Bole & Allan, 1978;

Welsh & Denny, 1979; Rattray et al., 1991; Eu-

gelink, 1998).

Table 2 Mean (standard deviation) water velocity, total phosphorus (P) content of water, sediment, shoots and roots (only
for B. erecta) in the low water velocity and in the high water velocity sampling stations, for B. erecta and C. obtusangula

Low velocity High velocity P value

B. erecta
Velocity (m s–1) 0.17 (0.10) 0.50 (0.12) 0.000
Water P (lg l–1) 11.13 (10.06) 9.83 (8.19) 0.384
Sediment P (mg g–1) 0.53 (0.23) 0.61 (0.40) 0.226
Shoot P (mg g–1) 3.23 (1.46) 3.60 (1.08) 0.079
Root P (mg g–1) 4.13 (2.91) 4.16 (2.13) 0.955
C. obtusangula
Velocity (m s–1) 0.17 (0.11) 0.47 (0.08) 0.000
Water P (lg l–1) 14.34 (11.74) 11.74 (9.05) 0.163
Sediment P (mg g–1) 0.58 (0.26) 0.63 (0.30) 0.483
Shoot P (mg g–1) 4.28 (1.76) 3.61 (1.24) 0.010

P values correspond to T-tests results

Table 3 Matrix of Pearson correlation analysis between water velocity, total phosphorus (P) content of the water, sediment,
shoots and roots (only for B. erecta) of B. erecta and C. obtusangula

Water P (lg l–1) Shoot P (mg g–1) Root P (mg g–1) Sediment P (mg g–1)

B. erecta
Shoot P (mg g–1) 0.445***
Root P (mg g–1) 0.400*** 0.787***
Sediment P (mg g–1) –0.133 –0.092 0.057
Velocity (m s–1) –0.020 0.134 0.019 –0.132
C. obtusangula
Shoot P (mg g–1) 0.036
Sediment P (mg g–1) –0.260* 0.130
Velocity (m s–1) –0.052 –0.064 0.128

*(0.05 < P < 0.01)

***(P < 0.001)

Table 4 Unreplicated three factor ANOVA results
(species, sampling dates and water velocity) at two
sampling stations of one stream (Ischert low water
velocity stations L, and high water velocity stations H)
and on the shoot total phosphorus content of C.
obtusangula and B. erecta

Source of variation df MS F P

Species 1 0.0291 0.07 0.807
Dates 6 5.0841 11.40 0.005
Water velocity 1 26.0068 58.30 0.000
Species · dates 6 2.2462 5.04 0.035
Species · water velocity 1 2.9660 6.65 0.042
Dates · water velocity 6 5.7615 12.92 0.003
Error 6 0.4461
Total 27
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Our results suggest that aquatic macrophytes

can potentially use two sources of available

phosphorus: water and sediment, and that the

strategy can change among species and with

nutrient supply in each compartment. This pro-

cess implies that phosphorus can be translocated

from shoots to roots or from roots to shoots,

which has been showed in laboratory studies (De

Marte & Hartman, 1974; Eugelink, 1998). If shoot

absorption is debated, root uptake of phosphorus

is common accepted as the mode of nutrition

(Patriquin, 1972; Bole & Allan, 1978; Best &

Mantai, 1979; Barko & Smart, 1981; Barko et al.,

1988). Even macrophytes with limited root sys-

tems have been shown to uptake phosphorus via

roots (Barko & James, 1998). However, the sed-

iment compartment appears as a source of nutri-

ent supply to rooted plants mainly when nutrients

are not sufficiently available in the water (Bole &

Allan, 1978; Barko & Smart, 1981). This is con-

firmed in our study at station 13 for B. erecta. The

sediment phosphorus content is high and the

water phosphorus content is low. Plant tissues

(roots and shoots) from station 13 present a high

phosphorus content compared to the other sta-

tions, then phosphorus might have been absorbed

by roots and translocated to shoots.

In the stream Ischert, shoot phosphorus stor-

age was significantly lower in the high water

velocity stations, whatever the species. Limited

information is available on the influence of water

velocity on phosphorus uptake by macrophytes.

Water velocity may cause a decrease in phos-

phorus uptake by impeding nutrient adsorption

(Boeger, 1992) or it may increase phosphorus

uptake by increasing the amount of available ions

in the water or sediment (Jarvie et al., 2002). Our

results are consistent with the first assertion. In

addition, the same phenomenon has been found

for algae in streams as the growth of algae in
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ANOVA performed on the Ischert stream (low water
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response to increased nutrient levels decreases

with current velocity (Ghosh & Gaur, 1994).

By comparing the two macrophytes species in

the stream Ischert, we found that C. obtusangula

was more sensitive than B. erecta to the variation

of water velocity. Indeed, the shoot phosphorus

content of C. obtusangula was higher in low

velocity stations and lower in high velocity sta-

tions, although B. erecta showed no marked dif-

ferences. These differences could be explained by

their morphology and ecology. C. obtusangula

stores phosphorus more efficiently in its shoots in

low velocity than in high velocity conditions. This

species is weakly rooted and prefers pool habitat

due to low velocities that are optimal for nutrient

storage and biomass development. In contrast, B.

erecta is strongly rooted, colonizes riffles, and

stores more phosphorus under high water velocity

conditions. Moreover, as Boeger (1992) observed,

the water velocity effect may be mediated by the

substratum. Then this effect could be different

according to sampling sites where our species

occurred, as B. erecta grows preferentially on

coarse substrate (gravel) at high velocities, by

contrast with C. obtusangula, which grows on fi-

ner sediments (sand, mud) at low velocities.

The temporal pattern of shoot phosphorus

observed in this study is in accordance with cur-

rent concepts on aquatic macrophyte nutrition

(review in Reddy et al., 1999). Phosphorus uptake

increases in spring, up to a maximum during the

peak growing season (summer and autumn) and

decreases in winter. However, the time period

had an effect on plant phosphorus content only

when the water velocity was low. This last result

indicates that the relative importance of different

factors involved in phosphorus storage by plant

can change, and that it is inaccurate to view

phosphorus storage as the product of only a single

variable, but should be seen as result multiple

factors.
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