
Vol.:(0123456789)

Health Services and Outcomes Research Methodology
https://doi.org/10.1007/s10742-024-00324-7

1 3

CASE STUDY

A machine learning approach for diagnostic and prognostic 
predictions, key risk factors and interactions

Murtaza Nasir1 · Nichalin S. Summerfield2 · Stephanie Carreiro3 · Dan Berlowitz4 · 
Asil Oztekin2

Received: 5 August 2023 / Accepted: 31 January 2024 
© The Author(s) 2024

Abstract
Machine learning (ML) has the potential to revolutionize healthcare, allowing healthcare 
providers to improve patient-care planning, resource planning and utilization. Furthermore, 
identifying key-risk-factors and interaction-effects can help service-providers and decision-
makers to institute better policies and procedures. This study used COVID-19 electronic 
health record (EHR) data to predict five crucial outcomes: positive-test, ventilation, death, 
hospitalization days, and ICU days. Our models achieved high accuracy and precision, with 
AUC values of 91.6%, 99.1%, and 97.5% for the first three outcomes, and MAE of 0.752 
and 0.257 days for the last two outcomes. We also identified interaction effects, such as 
high bicarbonate in arterial blood being associated with longer hospitalization in middle-
aged patients. Our models are embedded in a prototype of an online decision support tool 
that can be used by healthcare providers to make more informed decisions.

Keywords  Healthcare · Machine learning · Business analytics · Decision support systems · 
Health service

1  Introduction

The use of machine learning (ML) for diagnostic and prognostic predictions in healthcare 
is a rapidly growing field. Crucially, the ability to predict adverse events following surgery 
based on patients’ presurgical clinical data, such as electronic health record (EHR) data, 
holds paramount significance. Such predictions empower both physicians and patients to 
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make informed decisions, enhancing the overall decision support process. In recent years, 
the surge in clinical data availability and advancements in computing power have fueled 
remarkable progress in ML techniques, enabling the extraction of valuable insights from 
these rich clinical datasets. In particular, ML algorithms have emerged as key components 
of assisted medical decision-making procedures, offering the potential for accurate diag-
nostic and prognostic predictions by leveraging EHRs.

The core challenge in addressing this task lies in formulating an appropriate function f  
that effectively maps each input data point X to the desired output y , denoted as y = f (X) . 
Notably, clinical datasets present unique complexities due to their vast size and diverse 
data types, encompassing diagnoses, treatments, vital signs, and laboratory values. These 
mixed data types further compound the intricacies of the ML problem, necessitating the 
development of sophisticated algorithms capable of handling such complexities with preci-
sion and accuracy.

In this study, we present a pioneering ML-based framework that leverages patient-level 
EHR data to achieve the following objectives:

1.	 Creating a comprehensive decision support tool that delivers five crucial diagnostic 
and prognostic predictions for various diseases, using COVID-19 as a test-case. These 
predictions encompass the likelihood of infection, ventilation requirements, mortality 
risk, duration of hospitalization, and days of intensive care unit (ICU) care needed, each 
of which were key dimensions for patient treatment for COVID-19.

2.	 Emphasizing the key factors influencing these diagnostic and prognostic outcomes, 
thus shedding light on critical determinants that could impact disease management and 
treatment planning.

3.	 Facilitating a deeper understanding of the intricate relationships among various factors 
and their influence on the disease outcome by identifying potential interaction effects.

December 31, 2019 marked the first official report of the novel coronavirus of 2019, 
or COVID-19, in Wuhan, China. Because of its unprecedented ability to transmit through 
multiple mechanisms (Kucharski et  al. 2020), it rapidly spread globally, leaving govern-
ments and healthcare institutions scrambling to understand the disease and mitigate the 
spread. World Health Organization (WHO) declared COVID-19 a global pandemic in early 
March of 2020. The rapid transmission rates were exacerbated by the fact that 20% of those 
infected become asymptomatic carriers (Mallapaty 2020). The pandemic has had a severe 
impact on the global economy, with the United States gross domestic product (GDP) drop-
ping 32.9% in the 2nd quarter of 2020, the worst drop on record.

The methodology we propose is flexible and generalizable, designed to accommodate 
diverse types of clinical data that can be extracted from EHRs. Our approach is particu-
larly suitable for situations where datasets may contain missing information or require the 
integration of temporal data into a static predictive model. By focusing on the interpret-
ability of model findings, we prioritize the identification of key factors and their interac-
tions, which is crucial in healthcare applications where the rationale behind predictions is 
as important as the predictions themselves.

Our framework’s utility extends beyond the immediate context of COVID-19, offer-
ing potential applications for a broad range of diseases. The interaction maps and charts 
generated by our ML models serve as powerful exploratory tools that can reveal complex 
interdependencies between clinical, demographic, and potentially socioeconomic factors 
within the EHR data. These visualizations can readily suggest hypotheses regarding the 
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mechanisms of disease progression, the impact of comorbidities, or the influence of treat-
ment modalities on patient outcomes.

Additionally, we have demonstrated the application of our framework through a proof-
of-concept decision support tool that provides real-time, data-driven predictions. This tool 
is designed to be integrated seamlessly into clinical workflows, enhancing patient care by 
supporting clinicians with actionable insights derived from ML predictions. In essence, our 
work showcases the potential of ML as a transformative tool for diagnostic and prognos-
tic predictions, embodying the collective efforts toward improved healthcare outcomes and 
fostering opportunities for interdisciplinary research in health services methodology.

The remainder of the paper is structured as follows: Sect. 2 reviews prior literature and 
sets the context for our study by summarizing relevant ML applications in healthcare, par-
ticularly focusing on COVID-19 research. Section  3 details our methodology, including 
dataset and preprocessing steps, variable selection and importance, cross-validation and 
model training, performance metrics, and our novel approach to identifying interaction 
effects. The results of our study are presented in Sect. 4, where we discuss the prediction 
performance of our models, key factors influencing disease outcomes, and the relationships 
among these factors. Section 5 engages in a discussion on the generalizability of our frame-
work to other diseases, its applications in clinical decision-making, and its potential for 
generating new research hypotheses. Finally, Sect. 6 concludes the paper with an overview 
of our contributions to health services and outcomes research methodology and the impli-
cations of our findings for healthcare practice and policy.

2 � Prior literature

Machine learning has been used for medical diagnosis, prognosis and patient behavior pre-
diction extensively over the last decade (Dolatsara et al. 2020; Misiunas et al. 2016; Muel-
ler-Peltzer et al. 2020; Nasir et al. 2019, 2020; Piri 2020; Simsek et al. 2020; Topuz et al. 
2018). However, given that the behavior of the underlying virus and its effects on humans 
are being observed for the first time, research has just started to come out on this topic. 
In addition to traditional medical and sociological research on the disease and its effects, 
ML methods are also being applied in various ways to data about the pandemic. Most of 
this research can be categorized into two categories: (1) predicting the spread of the dis-
ease (broad-level predictions or forecasting) (2) predicting disease detection and prognosis 
(patient-level predictions or diagnosis/prognosis).

Broad-level predictions (i.e., forecasts) are based on methodologies that use time-series 
data of the spread of the virus as well as broad sociological factors to predict the future 
spread of the virus or other future characteristics of the pandemic. These studies do not 
take into account data about individuals. Thus, these capture the broad trends that emerge 
from the complex interactions between the virus and human society, without looking at the 
underlying factors. Patient-level predictions (i.e., diagnosis/prognosis) use more granular 
data at the patient level to predict certain outcomes for each patient. These may have obser-
vations about patients at multiple times, however the key difference is that these models 
are not based on past-values to predict future values. Instead, they take into account factors 
such as sociodemographic, medical and other personal level data to predict the outcomes 
for each person individually.

These areas are still being explored and the literature is limited, however, in Table 1, 
we provide a brief overview of the extant work (Apostolopoulos and Mpesiana 2020; 
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Ardakani et al. 2020; Arora et al. 2020; Lalmuanawma et al. 2020; Li et al. 2020; Ribeiro 
et al. 2020; Shi et al. 2020; Sun et al. 2020; Tuli et al. 2020; Vaid et al. 2020; Yadav et al. 
2020; Yang et al. 2020). Interested readers can also refer to the various review studies that 
list additional similar or overlapping works (Lalmuanawma et al. 2020; Shi et al. 2020). As 
can be seen in Table 1, most existing studies have focused on time-series forecasting to pre-
dict the spread, peak and decline of cases and related factors. Another commonly studied 
topic is x-ray/CT scan-based infection detection using deep-learning models. Some stud-
ies also describe optimization techniques for peripheral problems to improve operational 
performance against COVID-19 (Santini 2021). However, the use of structured clinical and 
socioeconomic data, which in principle should provide useful information about the spread 
of the virus, has not been reported. We posit that the principal reason for this may be the 
lack of availability of reliable patient-level clinical data for COVID-19 cases.

As such, in this work, we use a large EHR dataset that was released by the Veteran 
Affairs’ Veteran Health Administration (VHA) Innovation Ecosystem and U.S. Food and 
Drug Administration’s precisionFDA to study the risk and protective factors of COVID-19 
in the veteran population. The dataset was artificially generated by the VHA using Synthea 
(Walonoski et al. 2018), a synthetic patient EHR generation software that utilizes real dis-
ease models to produce synthetic anonymous EHR datasets. We use the dataset to model 
five patient outcomes: (1) infection likelihood, (2) death likelihood, (3) ventilation require-
ment likelihood, (4) hospitalization days needed, (5) days in ICU needed. For each of these 
outcomes, we use the ML models to identify factors important for this outcome and pro-
vide interaction maps for the factors involved. We also show how various factors affect the 
effects of other factors on the outcome.

3 � Methodology

Figure 1 shows the proposed ML framework that enables (1) a methodology that can be 
used to remove problematic predictors to understand important predictors, (2) a novel 
exploratory methodology to identify potential interactions between the predictors that can 
be used to make informed policy decisions, and (3) a unique ML framework that proposes 
an end-to-end pre-to-post diagnostic testing methodology for COVID-19 that is useful for 
managers for tactical and strategic decision-making as well as for researchers and domain 
experts for novel interaction identification that can be used for generating new hypothe-
ses. In the following sections, we describe the various components of this methodological 
pipeline.

3.1 � Dataset and preprocessing

The dataset used in this work was released by the VHA Innovation Network in partnership 
with precision FDA for a competition to invite researchers to model the data in order to 
further the understanding of the disease (VHA Innovation Ecosystem and precisionFDA 
COVID-19 Risk Factor Modeling Challenge 2020). To protect patient identity, synthetic 
health records were generated using Synthea (Walonoski et  al. 2018), a well-accepted 
method to generate research-ready anonymized data. Numerous studies show this method, 
as well as other synthetic methods, work as well as real data for large population sizes for 
the purposes of predictive analytics (Benaim et al. 2020; Chen et al. 2019; Gebert et al. 
2018; Zhang et al. 2020).
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Use of synthetic datasets in the healthcare ML community is common given the many 
barriers to quality data access (King et  al.; Spasic and Nenadic 2020). In this case, the 
situation is worse given the high potential economic value of such data, thus resulting in 
complete unavailability of clinical or EHR datasets for COVID-19 patients. The VHA gra-
ciously provided this dataset, based on the vast population under their care, and this was 
made possibly only because of this anonymization.

The dataset consisted of 16 files structured in the standard EHR format, which are listed 
below. Data dictionaries for these files can be found on the Synthea Github wiki [34].

The dataset contained medical records for 117,959 patients. These records included 
lab tests, clinical observations, conditions, allergies, patient encounter data and more. It 
is important to note though that differing amounts of data were available for each patient. 
The data, as provided, was structured in the long format, i.e., one column lists the name of 
included variables, while another column lists their corresponding values.

In our study, we processed time-series observations from immunizations, conditions, 
allergies, and encounters tables by converting them into additional features within our pri-
mary analysis table, effectively transforming the dataset into a cross-sectional format. Spe-
cifically, for immunizations and conditions, we counted occurrences and used these counts 
as features, while for allergies and conditions currently affecting the patient at the time of 
COVID-19 testing, we encoded their presence as binary variables. By doing so, we col-
lapsed the longitudinal data into a single row per patient, enabling the application of ML 
algorithms that require a fixed number of features for each instance. This conversion was 
paramount as it allowed us to include temporal clinical events as part of our cross-sectional 
predictive modeling framework, ensuring that each patient’s record reflected their medical 
history up to the point of COVID-19 testing without directly modeling the data as a time 
series.

A consequence of this process was that in case a given patient did not have a certain test 
or encounter in their records, the test would be marked as a missing value in the data. Given 
the large number of possible tests and encounters included in the dataset, this resulted in 

Fig. 1   ML framework for each outcome proposed in this work
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a large number of missing values in the dataset as not every patient has had every test and 
encounter. As such, for this analysis, an ML model that can inherently deal with missing 
values was used to reduce the complexity of the analysis. Additionally, for the prediagnos-
tic prediction model (i.e., predicting infection), patient data up to the day before the patient 
presented themselves for a COVID-19 test was used. For postdiagnostic prediction models 
(i.e., the rest of the models), patient data up to and including but not exceeding the day of 
COVID-19 testing was used.

Data from selected tables shown above was combined into a single table with each 
row corresponding to each patient with their corresponding records and outcomes. After 
preprocessing, the dataset included 492 predictors and five outcome variables. However, 
the dataset had 63% missing values for the input predictors. These missing values only 
occurred in columns constructed from tables that had differing levels of information for 
different patients, i.e., in the observations.csv file, as shown in Table 2. For example, for 
allergies and conditions, a patient could be labelled to have an active allergy or condition if 
an active record of one exists. If no record exists in this case, an assumption of no allergy 
or condition can be made. However, in the case of medical tests, different patients have 
different medical tests on record, and no assumptions about missing tests can be made 
outright.

Since our dataset had 63% missing values, we used a tree-based models, i.e., extreme 
gradient boosting (XGB) Chen et al. (2015) and CART decision trees (DT) to model the 
various outcomes in the data. Furthermore, since support vector machines (SVM) and ran-
dom forest (RF) do not work with missing values, data for these models was preprocessed 
to impute missing values with the median value for each variable.

Details about the outcome variables included in the dataset are provided in Table 3. Var-
iable selection and variable importance criteria are detailed in the next section. A file with 

Table 2   File structure of dataset used

File Description Included 
in Analysis

Created 
missing 
values

allergies.csv Patient allergy data Yes No
conditions.csv Patient conditions or diagnoses Yes No
encounters.csv Patient encounter data Yes No
immunizations.csv Patient immunization data Yes No
patients.csv Patient demographic data Yes No
observations.csv Patient observations including vital signs and lab reports Yes Yes
careplans.csv Patient care plan data, including goals No –
devices.csv Patient-affixed permanent and semi-permanent devices No –
imaging_studies.csv Patient imaging metadata No –
medications.csv Patient medication data No –
organizations.csv Provider organizations including hospitals No –
payer_transitions.csv Payer Transition data (i.e. changes in health insurance) No –
payers.csv Payer organization data No –
procedures.csv Patient procedure data including surgeries No –
providers.csv Clinicians that provide patient care No –
supplies.csv Supplies used in the provision of care No –
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a complete list of the 492 predictors from the raw dataset (Synthea 2020) and their descrip-
tions can be found in "Appendix B".

To ensure that our models provide good predictive performance using factors availa-
ble at decision-time without future leakage, each of the models is trained based on related 
EHR data that is available up to a certain date, as shown in the last column of Table 3. 
For example, for the model prediction infection, the model is only trained and tested using 
EHR data available up to the day before the patient is presented for covid-19 testing.

3.2 � Variable selection and importance

Based on the “splitting” criteria used by tree-based algorithms (refer to Chen, He [35]), 
one way to find the most important variables in such tree-based algorithm is to look at 
which variable was used to create the most splits in the learned model. The top 30 most 
important variables are reported for each outcome in this work.

Given the aforementioned “splitting” criteria used in XGB and other tree-based algo-
rithms, it is important to note that such algorithms use the variables that create the “clean-
est” splits for the outcome between the data at each node. Thus, at each split (i.e. node in 
a tree), the algorithm will randomly choose a subset of variables and within these, it will 
choose the variable that differentiate the data into the outcomes most efficiently. This high-
lights the fact that factors included in ML models highlight associations with the outcome 
only.

Another consequence of the above is that some variables may dominate variable impor-
tance in the learned model because it would be used for almost all splits in the algorithm. 
A very high importance can indicate one of only two things: (1) a very strong predictor (in 
the case of a simple X → Y mapping), or (2) a problematic variable (in the case where it 
is unlikely that X → Y is linked so strongly through a single variable). Given that our out-
comes are highly complicated problems, it is unlikely that these outcomes can be mostly 
explained with a single variable. As an example, before variable selection, following were 
the top variables for each model.

In Table 4, only variables with a variable importance greater than 1% are shown. For 
the Infected model, three variables cumulatively contribute to 93.95% of the splits in the 
model. An XGB model trained on just these three variables has an AUC of 0.9811 and a 
sensitivity and specificity of 99.99% and 96.39% respectively. However, it is unlikely that 
our outcome can be explained to such an extent using just these three variables. Indeed, 
this can be confirmed when this simplified model is tested with the holdout set, where its 
prediction performance (AUC = 0.902, Sensitivity = 69.7%, Specificity = 99.6%) does not 
match the validation performance, an indication that the model does not generalize. The 
same principle is true for all the other models as well, as shown in Table 4.

As such, problematic variables were dropped from the analysis for that outcome since 
they may be exhibiting simultaneity problems with the outcome or causing the model to 
overfit on invalid patterns due to missing data. This was done using an iterative model 
training method:

1.	 Start with the complete dataset
2.	 Train model using dataset
3.	 Observe most important variable
4.	 If importance is very high, remove the variable from the dataset
5.	 Repeat from 2 until the highest importance variable, either:
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a.	 Is below a threshold of 0.35 and the next highest importance variable is lower; or
b.	 Should remain in the dataset based on expert opinion

The precise cutoff for each model was chosen based on the biggest importance score 
drop achieved against the smallest AUC or RMSE drop, which also led to a reasonable 
final AUC. An example of the importance/AUC drop for the death outcome is shown in 
Table 5. The table shows the most important variable as well as performance metrics for 
XGB models iteratively trained using the above method. Note that each row signifies a 
model that was trained without the variables in the rows above it. In the case of this exam-
ple, it can be seen that the model’s AUC does not change significantly down to the last 
rows, with row 11 showing the point chosen for the final model. As an example, the model 
in row 1 uses one variable for 93.9% of its splits, with a handful of other variables used 
for the remaining splits. As such, if a single factor explained COVID-19 death to such an 
extent, it would have been widely known by now.

Given computational constraints (model tuning and training with variable selection), the 
variable selection procedure was performed only with XGB, given XGB is expected to per-
form the best, and at a fraction of the training time of the remaining models.

3.3 � Cross validation and model training

To ensure the validity of ML model, we use a nested cross validation technique as shown 
in Fig. 2. The larger the test set, the more confident we can be in the performance metrics 
reported by the model. If the model’s performance metrics for the test set (referred to as the 
holdout set in this work) are very close to the model’s performance for the training set, it 
indicates that the model is not over- or under-fitting the data and has correctly generalized 
the relationships present in the data.

We chose XGB because in applied ML problems, XGB is currently the best performing 
algorithm across all disciplines as is evidenced by leaderboards across all disciplines as well as 
its dominance in the academic literature in the past couple of years. XGB is resilient to overfit-
ting (Chen et al. 2015) and can also inherently deal with missing values by imputing missing 
values at each split that minimize error at that split (Chen et al. 2015). Decision trees (DT) is 
one of the oldest and simplest learning algorithms, popular for its explainability. It works by 

Table 5   Dominating variable behavior against model accuracy

# Most important variable AUC​ Sensitivity Specificity Importance

1 LDH 0.9972 0.9699 1.0000 0.9386
2 Ferritin 0.9972 0.9699 1.0000 0.9387
3 D-dimer 0.9972 0.9699 1.0000 0.9386
4 Lymph 0.9972 0.9699 1.0000 0.9386
5 Troponin 0.9972 0.9699 1.0000 0.9386
6 INR 0.9973 0.9699 0.9994 0.9134
7 CK 0.9962 0.9667 0.9961 0.7274
8 CRP 0.9961 0.9656 0.9896 0.3947
9 viral-sepsis 0.9952 0.9614 0.9890 0.5867
10 Procalcitonin 0.9930 0.9603 0.9699 0.3072
11 pCO2-art 0.9911 0.9571 0.9677 0.2117



Health Services and Outcomes Research Methodology	

1 3

splitting the data into segments successively, based on some splitting criteria, creating a tree 
structure that terminates based on a stopping criteria (Safavian and Landgrebe 1991). Support 
vector machines (SVM) are a popular kernel based learning algorithm that works on the basis 
of separating the data based on hyper-planes in a higher-dimensional space than the original 
data using the “kernel trick” (Osuna et al. 1997). Finally, random-forest (RF) is a widely-used 
tree-based learning algorithm that uses an ensemble of decision trees that are trained as weak 
learners in order to minimize over-fitting, a problem that individual decision trees are prone to 
(Breiman 2001). These remaining models were chosen to serve as a comparison against XGB. 
These models (DT, SVM and RF) took longer to train (by a factor of 10–1100 compared to 

Fig. 2   Nested cross-validated train pipeline
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XGB) and were therefore not used for our variable selection process. Detailed descriptions of 
these models are not included in this work, given length constraints. However, the interested 
reader can refer to (Boulesteix et al. 2012; Noble 2006; Song and Ying 2015) for more infor-
mation about these models.

Based on preliminary analyses, using more than 30% of the data did not improve perfor-
mance metrics of the ML models. This was ascertained by splitting the data into chunks of 5% 
and repeatedly training the ML models with additional chunks until the performance metrics 
stopped increasing. Therefore, for this work, 35% of the data was used for training and param-
eter tuning with fivefold cross-validation (Fushiki 2011), while the remaining 65% was used 
as the holdout set.

All ML models produce numeric outputs, both for classification or regression problems. 
For binary classification problems, ML models produce a continuous number between a range, 
usually 0–1, to signify a binary outcome, which is produced by comparing the continuous out-
put against a threshold. A general starting point is to use 0.5 as a threshold; however, choosing 
0.5 may lead to lower prediction performance in some metrics. As such, this threshold can be 
selected based on the receiver operator characteristic area under the curve (AUC) graph, to 
choose a point for best balance between accuracy for both classes (i.e., points closest to the top 
left corner of the graph), or to favor accuracy for either class, based on the requirements of a 
given problem. This type of threshold selection is called post-hoc threshold selection. In this 
work, we use post-hoc threshold selection for the classification models. The validity of each 
threshold is confirmed with the hold-out set.

Model parameters were tuned with a grid-search methodology to find the parameters that 
resulted in the best model performance. All tuning was done using fivefold cross-validation. 
Additionally, as can be seen in Table 1, the Death and Ventilation outcomes were severely 
imbalanced in the dataset. In our preliminary experiments, the model performance unfortu-
nately did not improve with any synthetic generation algorithms like SMOTE (Chawla et al. 
2002). The post-hoc threshold selection (Zhao 2008) was sufficient to provide a model that 
had balanced sensitivity vs. specificity, which was confirmed with the cross validation and 
subsequently the holdout sets.

3.4 � Performance metrics

Since we have both classification and regression models in this work, we report the AUC for 
the classification models and the RMSE (root-mean-squared error), R2 and MAPE (mean 
average percentage error) for the regression models. The AUC is chosen for the classifica-
tion models since it shows the models performance at all possible decision thresholds (i.e., all 
sensitivity/specificity pairs), however we also report the best sensitivity/specificity pair. The 
best pair from the holdout set is calculated based on threshold selection from the training set. 
Formulae for each of these measures are given below and Davis and Goadrich (2006) provide 
detailed explanations.

(1)Sensitivity =
True positives

Actual positives

(2)Specificity =
True negatives

Actual negatives
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3.5 � Interaction effects

Using a novel methodology (Nasir et al. 2021), the top 30 variables for each outcome’s 
model are also examined for possible interaction effects with other variables present in 
each respective model based on the best performing ML models, i.e., XGB, for each 
outcome. Since the ML models are non-parametric, it is impossible to directly see how 
the models make predictions (Guo et al. 2021). However, given the models are making 
good predictions based on the relationships they learnt from the training data, these 
relationships can reveal information about the phenomenon described by the data.

To find these relationships, we perform sensitivity analysis for all predictor pairs 
that include the top 30 important variables, which allows us to observe if and how one 
variable impacts the effect of another variable on a given outcome. This is done by 
changing this variable pair’s values while keeping all the other variables fixed at their 
means, while observing the output. Variable pairs that demonstrate an interaction are 
detected using this methodology. Variables that are observed to have a large effect on 
the outcome as well as an effect on the effects of other variables can be deemed to be 
highly important for the outcome. The detailed algorithm for this methodology is pro-
vided below.

1.	 Start with a dataset where a mapping between inputs (X’s) and an output (Y) exists.
2.	 Model this mapping using one or more ML models. We use five XGB models, each 

trained using four alternating folds out of five from the training dataset.
3.	 For each variable pair:

3.1	 Split the input domain into quintiles.
3.2	 With each model:

3.2.1	 Plug in each variable combination to map the variable pair’s behavior.
3.2.2	 Subtract the quintile mean from each quintile (line).
3.2.3	 Sum up the area between the resulting curves to get the effect “size”.

3.3	 With all the models’ resulting effect sizes, calculate the mean, standard deviation 
and coefficient of variation (CV) of the size.

4.	 Filter variable pairs based on mean and CV values, selecting variable pairs with large 
mean and small CV values.

(3)Precision =

True positives

Predicted positives

(4)RMSE =

√
(predicted − observed)2

(5)MAE =

∑n

t=1
��observedt − predictedt

��
n
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4 � Results

4.1 � Prediction performance

All prediction models were tuned and trained using a fivefold cross-validation methodol-
ogy. The cross-validation performance for each outcome along with salient tuning param-
eters chosen for the ML models for said outcome are shown in Tables 6 and 7 respectively. 
Note that, for the infection prediction model (i.e., the prediagnostic model), we use the 
complete dataset to train the model. For the postdiagnostic models (i.e., death, ventilation, 
days hospitalized, and days in ICU), only the 73,843 patients infected with COVID-19 in 
the dataset were used to train the models. Thus, the post-diagnostic prediction tests, as 
suggested by the name, are done for patients who have been diagnosed as infected with 
COVID-19.

XGB performed the best in all cases, getting the highest performance metrics across the 
board. Furthermore, across the outcomes, all models had good performance; however, the 
Days in ICU prediction model is an outlier in terms of performance. This is most likely 
because the model could not find all the necessary information or signals in the data to bet-
ter model the regression outcome for this problem.

Once the best performing model was identified, we confirmed its performance metrics 
by testing it again with the holdout set. In this work, we use a test set that was larger in 

Table 6   Cross-validation performance for different models

Bold indicates the best values for each case

Outcome Model AUC​ Specificity Sensitivity Precision

Infected XGB 0.916 0.784 0.868 0.87
DT 0.8069 0.741 0.794 0.836
RF 0.9051 0.775 0.858 0.864
SVM 0.845 0.733 0.809 0.835

Death XGB 0.991 0.957 0.968 0.997
DT 0.969 0.951 0.967 0.995
RF 0.9855 0.954 0.954 0.987
SVM 0.964 0.955 0.958 0.988

Ventilation XGB 0.975 0.961 0.879 0.989
DT 0.955 0.901 0.886 0.947
RF 0.971 0.958 0.876 0.964
SVM 0.961 0.935 0.871 0.928

Outcome Model RMSE R2 MAE

Days Hospitalized XGB 2.085 0.84 0.75
DT 3.365 0.583 1.568
RF 2.236 0.821 0.932
SVM 3.124 0.817 0.985

Days in ICU XGB 0.984 0.467 0.246
DT 0.993 0.455 0.239
RF 0.989 0.461 0.257
SVM 0.991 0.459 0.258
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size than the dataset used to train the model, as described in Sect. 3.2. This decreases the 
chances of any random sampling effects in the data skewing the performance metrics in 
any direction. The holdout set prediction performance is reported in Table 8 below. As can 
be seen, each model demonstrates very similar prediction performance to the validation 
set. Thus, we can confidently say the models are not over/under-fitting the data and the 

Table 7   Model training hyperparameters

Outcome Model Hyperparameters

Infected XGB nrounds = 50, max_depth = 10, eta = 0.15, gamma = 0
DT cp = .002
RF mtry = 16
SVM sigma = 2.44 × 10–4, C = 8

Death XGB nrounds = 100, max_depth = 8, eta = 0.15, gamma = 0
DT cp = .05
RF mtry = 16
SVM sigma = 1.25 × 10–1, C = 8

Ventilation XGB nrounds = 150, max_depth = 2, eta = 0.15, gamma = 0
DT cp = .02
RF mtry = 64
SVM sigma = 1.56 × 10–2, C = 64

Days Hospitalized XGB nrounds = 50, max_depth = 6, eta = 0.15, gamma = 0
DT cp = .002
RF mtry = 32
SVM sigma = 2.44 × 10–4, C = 32

Days in ICU XGB nrounds = 50, max_depth = 6, eta = 0.15, gamma = 0
DT cp = .05
RF mtry = 16
SVM sigma = 2.44 × 10–4, C = 8

Table 8   Holdout set performance metrics for top-two best performing models

Outcome Model Specificity Sensitivity Precision

Infected XGB 0.785 0.871 0.785
RF 0.764 0.860 0.792

Death XGB 0.968 0.956 0.998
RF 0.957 0.948 0.990

Ventilation XGB 0.879 0.959 0.998
RF 0.881 0.943 0.974

XGB Model RMSE R2 MAE

Days hospitalized XGB 2.107 0.835 0.752
RF 2.215 0.820 0.946

Days in ICU XGB 1.013 0.469 0.257
RF 1.014 0.464 0.256
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underlying relationships modeled by the algorithm can elicit meaningful information about 
the modelled problem.

4.2 � Key factors

Figure 3A–E show the variable distributions as well as their descriptions. For the sake of 
brevity, we have limited the figure to 9 distribution graphs and their accompanying variable 
descriptions for each model; however, full lists of important variables can be furnished to 
interested readers upon request

The graphs for the classification outcomes show the density of each variable at a given 
value, as well as the proportion of outcomes (blue = positive, red = negative) found at that 
value. A blank portion on the graph signifies no observations found at those values. The 
graphs for the regression outcomes show the expected value for the outcome ± its standard 
deviation at any given value of the predictor.

It is interesting to note that for many variables, the outcome behavior does not seem to 
change in the dataset. However, since these are among the most important variables, this 
likely means that these variables provide good data separation in certain non-linear sce-
narios. We further explore these in the next section.

4.3 � Relationships among key factor

Using the sensitivity analysis method described in Sect. 3.4, we obtain interaction relation-
ships for each model, which are shown in Fig. 4. The infection model did not yield any sig-
nificant interactions which likely indicate that different factors independently lead to cer-
tain people getting infected. It should also be noted that for the case of infection, exposure 
to the coronavirus is also an important factor that cannot be captured with this methodol-
ogy using EHR data, despite controlling for location. Therefore, it is not surprising to find 
that the XGB model for infection does not exhibit any interactions between its predictors.

In Fig. 4, the edge thickness denotes the relative amount of change the variables show 
on the other’s effect within the variable pair. Highly connected variables are likely to play 
an important role in the outcome. Variables connected to highly connected variables may 
play a mediating role on the effects of many other variables.

Figure  5 shows two individual interactions for two different outcomes. Figure  4a 
shows that as age increases, the effect of variable “TEST_2885.2” or “protein in serum” 
increases, with lower values of protein in serum associated with a higher likelihood of 
death from complications of COVID-19. Similarly, Fig. 5b shows that the high values of 
“TEST_1960.4” or “bicarbonate in arterial blood” are associated with a longer hospitaliza-
tion for COVID-19, an effect that decreases with increasing age, before increasing again. A 
complete list of observed interactions and their graphs can be provided to interested read-
ers upon request.

5 � Discussion

In this work, we have demonstrated that applying ML to EHR data can provide useful diag-
nostic and prognostic predictions for any given disease. The strength of our method is the 
multidimensional pre- and post-diagnostic outcome prediction framework that can work 
with any available information and is resilient to some missing data. We also devise a novel 
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methodology with the ML models to further shed some light on how various predictors 
affect each other and the outcome by identifying potential interaction effects. This method-
ology is an example of explainable AI and allows us to pry into the blackbox ML model.

Based on the prediction models proposed here, for any given patient before and after 
diagnosis, decision-makers can augment their decision-making processes with the follow-
ing predictions:

3 Weight Body Weight

4 BMI Body Mass Index 

5 LVEF Left ventricular Ejection fraction 

6 Calcium Calcium [Mass/volume] in Serum or Plasma

7 eGFR Estimated Glomerular Filtration Rate 

8 Creat Creatinine

9 Platelets Platelets [#/volume] in Blood by Automated count 

(A)

1 pCO2-art Carbon dioxide [Partial pressure] in Arterial blood 

2 pO2-vent Oxygen/Inspired gas setting [Volume Fraction] Ventilator 

3 PT Prothrombin time (PT) 

4 age age

5 pO2-art Oxygen [Partial pressure] in Arterial blood 

6 Bicarb-art Bicarbonate [Moles/volume] in Arterial blood 

7 Height Body Height 

8 Pulm-Emb Acute pulmonary embolism (disorder) 

9 DVT Acute deep venous thrombosis (disorder) 

(B)

1 PT Prothrombin time (PT) 

2 Procalcitonin Procalcitonin [Mass/volume] in Serum or Plasma 

3 BUN Urea nitrogen [Mass/volume] in Serum or Plasma 

4 Pneumonia Pneumonia (disorder) 

5 age age

6 Cl Chloride [Moles/volume] in Serum or Plasma 

7 Platelets Platelets [#/volume] in Blood by Automated count 

8 Pulm-Emb Acute pulmonary embolism (disorder) 

9 Height Body Height 

(C)

1 age age

2 LDH Lactate dehydrogenase [Enzymatic activity/volume] in 
Serum or Plasma by Lactate to pyruvate reaction 

Fig. 3   Important variables and their distributions
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•	 Before diagnosis and initial testing

•	 What is the likelihood of the patient being infected?

•	 After diagnosis and initial testing

•	 What is the likelihood of the patient to require a ventilator?
•	 What is the likelihood of the patient to die of complications?
•	 How long is the patient likely to require hospitalization?
•	 How long is the patient likely to need ICU care?

Combined, these predictions can provide a comprehensive picture of the level of care 
a given patient will need. Additionally, these predictions can be combined with opti-
mization strategies as described in Azcarate et  al. (2020), Li et  al. (2021) to improve 
resource utilization and patient outcomes. As such, we have implemented an online 
decision support tool, linked in "Appendix B", to enable decision-makers to augment 
their available information with data-driven predictions models, as shown in Fig. 6. One 
key benefit of these models is that complete information is not required, so users need 
to only provide information about tests/conditions or other clinical data that is available. 
However, it is important to note that more information will allow for a more accurate 
prediction, and prediction accuracy will drop sharply for a given outcome if many of the 
important variables identified for said outcome are absent. In our dataset, on average, 

1 MCV MCV [Entitic volume] by Automated count 

2 AST Aspartate aminotransferase [Enzymatic activity/volume] in 
Serum or Plasma 

3 Colon-Secneop Secondary malignant neoplasm of colon 

4 DVT Acute deep venous thrombosis (disorder) 

5 Pulm-Emb Acute pulmonary embolism (disorder) 

6 age age

7 viral-sepsis Sepsis caused by virus (disorder) 

8 Hyperlip Hyperlipidemia 

9 pO2-vent Oxygen/Inspired gas setting [Volume Fraction] Ventilator 

(D)

1 viral-sepsis Sepsis caused by virus (disorder) 

2 CRP C reactive protein [Mass/volume] in Serum or Plasma 

3 Procalcitonin Procalcitonin [Mass/volume] in Serum or Plasma 

4 PT Prothrombin time (PT) 

5 age age

6 Bicarb-art Bicarbonate [Moles/volume] in Arterial blood 

7 pCO2-art Carbon dioxide [Partial pressure] in Arterial blood 

8 pO2-vent Oxygen/Inspired gas setting [Volume Fraction] Ventilator 

9 pO2-art Oxygen [Partial pressure] in Arterial blood 

(E)

Fig. 3   (continued)
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each patient has 37% variables populated with data, which yields the performance met-
rics reported in this paper.

In this work, we also provide interaction maps and charts for all post-diagnostic out-
comes. Understanding these relationships and mechanisms with traditional domain-specific 
research methodologies can lead to new and potentially beneficial avenues for diagnosis 
and treatment.

5.1 � Generalizability of the framework to other diseases

The framework we propose is fundamentally disease-agnostic. The methodology for data 
preprocessing, model training, variable importance assessments, and interaction effect 

Fig. 4   Relationship graphs for each outcome
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analysis does not rely on disease-specific assumptions. Instead, it is designed to handle 
various types of clinical data that can be extracted from EHRs, including diagnoses, vital 
signs, laboratory results, and treatment information. This flexibility is critical in adapting 
the framework to other diseases.

To explain further, the generalization potential to other diseases can be supported by the 
following points:

1.	 Data-Driven Approach: Our ML models are trained on patient-level data, which includes 
a wide array of clinical parameters. This approach ensures that the models learn patterns 
that are predictive of the outcomes of interest, irrespective of the specific disease.

Fig. 5   Select interaction charts; see text for description

Fig. 6   Decision support tool input form and example results
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2.	 Modular Framework for Hypothesis Generation: The framework we have developed is 
modular and disease-agnostic, designed to facilitate the seamless integration of data-
sets for various diseases beyond COVID-19. Its consistent preprocessing and training 
pipelines ensure easy adaptability with minimal adjustments, making it a versatile tool 
for different healthcare contexts. The transferability of predictive patterns, such as the 
significance of laboratory values, vital signs, and comorbidities, underscores the frame-
work’s utility across diverse diseases. Furthermore, our methodology for identifying 
key factors and their interaction effects is applicable irrespective of the disease under 
study. This capability provides critical insights for personalized medicine and targeted 
interventions, as it allows for the extraction of valuable information from the sensitiv-
ity analysis and interaction effect identification, which can be applied to enhance the 
understanding and treatment of other diseases.

3.	 Explainable AI: Our explainable AI approach can be particularly valuable for clinicians 
and researchers in understanding the underlying mechanisms of different diseases. The 
interaction maps generated by our framework can reveal complex relationships between 
clinical variables, offering hypotheses for further investigation.

4.	 Proof-of-Concept Decision Support Tool: The online decision support tool presented in 
this study, while demonstrated with COVID-19 data, can be adapted to other diseases. 
The interface and underlying predictive models can be updated with disease-specific 
datasets to provide real-time predictions for a wide range of health conditions.

5.2 � Application of the framework in clinical decision‑making

The framework can be used by practitioners in several ways to support decision-making.

5.2.1 � Risk stratification

Clinicians can use the framework to identify patients who are at an increased risk of expe-
riencing adverse outcomes, such as severe complications or mortality. This risk stratifica-
tion tool allows healthcare providers to tailor their approach, potentially opting for more 
aggressive treatment or closer monitoring for high-risk individuals.

5.2.2 � Personalized care plans

Predictions generated by our models can inform the development of personalized care 
plans by considering individual patient factors that significantly impact their prognosis. 
This helps ensure that treatment recommendations are tailored to the specific needs and 
risks associated with each patient.

5.2.3 � Decision support tool

We have developed an online decision support tool that integrates our framework, enabling 
clinicians to input patient data and potentially receive instant predictions regarding infec-
tion likelihood, ventilation requirements, mortality risk, hospitalization duration, and ICU 
care duration. This tool is designed to be user-friendly and to provide actionable insights 
that can guide immediate clinical decisions.
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5.2.4 � Understanding interaction effects

The framework not only identifies key factors influencing health outcomes but also elu-
cidates how these factors interact with each other. Understanding these complex rela-
tionships can aid clinicians in recognizing potential synergistic or antagonistic effects 
among patient characteristics, comorbidities, and other clinical parameters. This knowl-
edge can drive more informed and nuanced decision-making. For example, understand-
ing that a particular comorbidity may increase the risk of requiring intensive care for 
COVID-19 patients could prompt a clinician to monitor certain patients more closely or 
adjust their treatment plan accordingly.

5.3 � Potential research hypothesis generation methodology

Researchers from various disciplines can use the framework and its outputs to explore 
hypotheses about disease mechanisms and the impact of various factors on health out-
comes. The interaction maps generated by our ML models serve as a powerful explora-
tory tool that can unveil complex interdependencies between clinical, demographic, and 
possibly socioeconomic factors within the EHR data. These visualizations can readily 
suggest hypotheses regarding the mechanisms of disease progression, the impact of 
comorbidities, or the influence of treatment modalities on patient outcomes.

For example, epidemiologists could leverage these maps to hypothesize how envi-
ronmental factors may synergize with genetic predispositions to affect disease suscep-
tibility or severity. The interaction effects that we identify could prompt biostatisticians 
to consider novel statistical models to account for such complexities in their analyses. 
Health policy researchers might investigate the interplay between healthcare access and 
outcomes, thereby informing policy development and resource allocation strategies. 
Researchers interested in the social determinants of health could explore how different 
demographic factors intersect to influence health outcomes, potentially leading to more 
targeted public health interventions.

Furthermore, the adaptable nature of our decision-support tool offers a platform for 
researchers to test these hypotheses in practical, clinical settings. By inputting specific 
data points, they can observe how changes in one variable could affect the predictions 
for a patient’s outcome, thereby gaining insight into the potential causal pathways.

The framework provides a flexible foundation for various applications, from direct 
clinical support to exploratory research across healthcare and related fields. By adapt-
ing the framework to specific datasets and research questions, users can extract valuable 
insights to inform practice, policy, and further scientific inquiry. A limitation of this 
work is that it is based on synthetic data. However, this limitation was unavoidable since 
EHR or any clinical data for COVID-19 patients is completely unavailable to the wider 
research community (King et al.).
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6 � Conclusions

In conclusion, our study introduces a robust ML-based framework that leverages EHR 
data to deliver comprehensive diagnostic and prognostic predictions across a range of 
health outcomes. Using COVID-19 as a test case, we have demonstrated the frame-
work’s ability to predict infection likelihood, mortality risk, ventilation requirements, 
duration of hospitalization, and ICU care needs.

Key contributions of our work include:

1.	 Multidimensional Outcome Prediction: Our framework provides a multidimensional per-
spective on patient prognostication, enabling healthcare practitioners to make informed 
decisions at various stages of patient care, from initial diagnosis to critical post-diag-
nostic care decisions.

2.	 Identification of Key Factors: Through the application of ML algorithms, we success-
fully identify key factors that influence disease outcomes. These factors provide valuable 
insights into the determinants of disease progression and patient response to treatment.

3.	 Interaction Effect Analysis: A novel aspect of our study is the exploration of interaction 
effects among predictors, offering a deeper understanding of the complex relationships 
that exist within clinical data. This exploration is facilitated by our sensitivity analysis 
methodology, which is a significant step toward explainable AI in healthcare.

4.	 Framework Generalizability: While our study focuses on COVID-19, we emphasize that 
the proposed framework is disease-agnostic and can be adapted for predictive modeling 
in a variety of diseases beyond the current pandemic, showcasing its broad applicability 
and potential for wide-ranging impact in healthcare.

5.	 Practical Decision Support Tool: We present a proof-of-concept decision support tool 
that encapsulates our ML models, allowing for real-time, data-driven predictions to 
augment clinical decision-making processes. This user-friendly tool can be easily incor-
porated into clinical workflows to improve patient care.

6.	 Research and Policy Implications: Our interaction maps and charts provide a resource 
for researchers to generate hypotheses and explore complex disease mechanisms. These 
visualizations can guide further investigation and inform health policy development, 
particularly in understanding the effects of interventions and healthcare services on 
patient outcomes.

The proposed framework is a powerful tool for healthcare practitioners and decision-
makers to augment their decision-making processes with real-time data-driven predictions. 
In the case of this work, we demonstrated our framework with a COVID-19 dataset, that 
included various COVID-19 prognoses such as death, ventilation, days hospitalized, and 
days in ICU. The methodology was applied to a large dataset of EHRs and was shown to 
be effective in predicting all five outcomes. In addition, we also presented a novel meth-
odology to identify potential interaction effects between the predictors, which can provide 
further insights into the factors that influence the outcomes of the disease.

The results of this study suggest that ML can be a valuable tool for predicting the prog-
nostic and diagnostic factors of any disease. Such ML model tools can be used to improve 
patient care by helping clinicians make more informed decisions about treatment. Addi-
tionally, the identified interaction effects can be used to develop targeted interventions that 
can help to reduce the severity of the disease. The methodology presented in this paper 
is generalizable to any disease and can be used with any underlying ML algorithms. This 
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makes it a valuable tool for healthcare providers and researchers who are interested in 
improving the outcomes of disease.

Our research offers a significant advancement in health services and outcomes research 
methodology by employing ML to extract valuable insights from complex clinical datasets. 
The methodology we propose is a powerful tool for enhancing healthcare quality through 
improved decision-making and has the potential to catalyze research across multiple disci-
plines within the healthcare domain.
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