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Abstract
Growing healthcare costs have been accompanied by increased policymakers’ interest in 
the efficiency of healthcare systems. Network formation by hospitals as a vehicle for con-
solidation and achieving economies of scale has emerged as an important topic of conversa-
tion among academics and practitioners. Within networks, consolidation of particular spe-
cialties or entire campuses is expected and encouraged to take place. This paper describes 
the main findings of an effort to build gravity-type models to describe patient choices in 
inpatient and daycare hospital facilities. It analyzes the distance decay effects as a function 
of car travel times and great-circle distance, and it offers a method for inclusion of univer-
sity hospitals. Additionally, it reviews the impact of driving and transit accessibility on 
hospital attraction and reviews the differences in distance decay for patient age groups and 
hospitalization types. In the described application, the best models achieve a Mean Abso-
lute Percentage Error of around 10% in non-metropolitan areas, and 14.5% across different 
region types. Results in metropolitan areas suggest that latent factors unrelated to proxim-
ity and size have a significant role in determining hospital choices. Furthermore, the effects 
of relative driving and transit accessibility are found to be small or non-existent.

Keywords Hospital admissions estimation · Gravity model · Healthcare planning · Huff 
Model

1 Introduction

1.1  Context

Whether private or public, healthcare service providers have an interest in planning facili-
ties that are well-dimensioned to the demand for their services. A growing trend in sys-
tems with private healthcare providers is to encourage or induce the formation of hospital 
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networks. Collaboration in networks could have various advantages. Some of those are the 
facilitation of collaborations that consolidate particular activities in order to achieve econo-
mies of scale and improve quality through specialisation, the dissemination of best prac-
tices, or increased capital investment strength Reames et al. (2019). Merging facilities is a 
commonly discussed topic in networks, raising the relevance of hospital location planning 
methodologies.

Planning capacity and evaluating the current use of capacity is challenging. Often, spe-
cific facilities are dimensioned based on the area that they are designed to service. In most 
systems with free choice of healthcare service providers, however, hospitals can compete 
for patients in areas without clearly circumscribed borders. Through the development of 
a reputation for operational efficiency, higher quality, better patient experience, superior 
pricing, or other competitive advantages, hospitals can attract patients away from compet-
ing facilities, even beyond their local operating area Noether (1988); Beukers et al. (2014). 
Thus, an approach where dimensioning is done by matching local expected demand with 
facilities does not sufficiently recognize the agency of hospitals, and their potential to grow.

In order to account for hospital agency, planning and evaluation models should inte-
grate expected patient decision-making as driven by facility characteristics. Depending on 
the type of planning decision, models should aim to integrate those factors that are rel-
evant within the timeframe in which the consequences of the decision play out. Facility 
location decisions will in most cases have an impact for decades. It is therefore meaning-
ful to understand the transience of the factors used to evaluate particular locations. We 
can distinguish between describing patient choices for facilities as fully as possible, and 
describing patient choices in the context of those factors that are sufficiently stable over 
time to assume they are predominantly static over the economic life of the decision. At 
one extreme end, a model could be fitted that only includes distance decay, presuming that 
new hospital facilities start from an entirely level playing field. Accordingly, each hospital 
is equally competitive regardless of current size, accredited services, reputation, pricing, 
or other factors. Such an entirely geographical approach assumes full flexibility in other 
dimensions, aligning with a view of assumed regression to the norm of other relevant fac-
tors within the project lifetime. From a hospital director’s point of view, this type of model 
would inform on an optimal location assuming that all current competitive advantages and 
disadvantages are fleeting. Presumably though, such a bare-bones model will yield hospi-
tals of various expected sizes. Since size itself is expected to affect attraction of a facility, 
either directly or as a proxy, an iterative process could be imagined in which resulting size 
differences are included in subsequent analysis rounds. On the other extreme end, a highly 
descriptive model could include many different factors that influence patients’ hospital 
choices. This model type would suffer from something like an inertia bias. Factors taken 
up in the model, such as the accredited services or number of affiliated specialists, might 
be volatile and subject to evolution over the economic life of location decisions. It could 
thus be argued that, in planning exercises, regression to the mean of these factors should be 
assumed, or that they should be left out of applied models, provided that their absence does 
not significantly bias the remaining model. Different project lifetimes or expectations con-
cerning the change in input variable values can thus affect the variable set that should be 
included, or studying outcomes with different variables sets can align with different tempo-
ral perspectives on the project.

In this manner, though an important overlap exists between explaining behaviour and 
planning according to expected behaviour, the objectives could affect the applied model 
itself. In descriptive cases, most gravity-type models do not include many variables, often 
due to data availability constraints (De  Beule et  al. 2014). In general, size is the only 



454 Health Services and Outcomes Research Methodology (2023) 23:452–467

1 3

variable aside from location-derived factors that is included, yielding a simple model such 
as described below (Bucklin 1971). The market share MSij of hospital j in block i is equal 
to the fraction of the utility of j perceived in block i out of the utility perceived of all alter-
native j in block i. The utility is related to a transformation of size Sj , and decays over dis-
tance Dij . Aij represents this decayed utility for a hospital facility j.

If additional variables are added, they could take several forms. First, factors could have a 
symmetrical effect, in the sense that a value is related to a particular facility, and does not 
affect utility differently at diverse angles around the facility. Suitable examples are size, 
general reputation, or whether the facility was recently renovated. Asymmetrical factors 
could also be introduced. These are factors that can take different values for each combina-
tion of facility and region, for instance, boundary friction due to language borders, or refer-
ence rates by local general practitioners.

1.2  Relevant literature

Several model types have been used to estimate hospital admission rates in healthcare con-
texts, often depending on the type of objective or perspective taken. Broadly speaking, two 
types of perspectives are common. First, approaches that consider equal access from the 
patient’s point of view a primary objective. Second, approaches that consider dimensioning 
from the hospital’s viewpoint. In order to evaluate spatial accessibility and equity of acces-
sibility, model types such as Floating Catchment Area (FCA) models (Zhang et al. 2021) 
and Kernel Density models (Spencer and Angeles 2007), cumulative opportunity models, 
nearest distance methods, such as Thiessen Polygons, and Huff-type models (Zhang et al. 
2015) are common. Other models focus on patient choice rather than access. Fabbri and 
Robone (2010), for instance, analyze in and outflows from areas in the context of hospital 
and region characteristics. Others, such as Congdon (2000, 2001), describe the entirety of 
patient flows.

Fabbri and Robone (2010) focus on evaluating scale effects in the healthcare landscape, 
as opposed to other spatial factors in the distribution of healthcare resources. They use a 
Poisson Pseudo Maximum Likelihood approach to estimate the parameters, and find that 
technology availability and completeness, measured as the Theil index of the spread of 
technology within an area, yield the largest effects on patient inflows. The study reviews 
several diagnostic groups, and rather than modelling all admissions, it models the flows 
of patients that do not visit a facility in their Local Health Authority or area. They find 
that small and large area sizes are favourable determinants of the ability to attract inflows. 
Since their approach focuses on cross-border effects, it yields insight into drivers of hospi-
tal attraction, though it does not provide a model for general admissions estimation.

FCA methods generally calculate supply-to-demand metrics for particular areas. In 
a first step, a quantification of a supply node’s resources, such as the number of beds, is 
divided by the demand nodes’ need for resources, quantified with population numbers or 
pathology prevalence within the catchment area of the supply node. In a second step, the 
ratios per facility are summed up for all facilities within range for a demand node, which 
represents the resource accessibility of the demand node. Thus, it captures a measure of 
supply node utilization in the first step, and captures the supply options for a demand node 

MSij =
S
�

j
D−�

ij

∑J

j
Aij



455Health Services and Outcomes Research Methodology (2023) 23:452–467 

1 3

in the second step. Some variants define the catchment area in more nuanced ways, with 
step functions over distance, or continuous decay functions reducing the weight of a sup-
ply node over a proximity metric. Some variants of these models add a third step in order 
to address demand overestimation problems. Demand overestimation problems for supply 
nodes occur since demand for a supply node in the first step is not affected by the presence 
of alternatives for the relevant demand nodes. In other words, it does not take into account 
the competitive interactions between, or realized choices for, facilities. Recently, adapta-
tions of Floating Catchment Area models have been used to predict hospital admission pat-
terns (Delamater et al. 2019; Bauer et al. 2020; Wang 2018).

Gravity-type models appear under various names in the literature, such as gravity mod-
els, Huff models, Multiplicative Competitive Interaction models, with minor differences 
in meaning. Huff showed the applicability of gravity models to trade areas, pioneering the 
use of such models in competitive location planning challenges (Huff 1964). Subsequently, 
many authors contributed to the further improvement of gravity-based methodologies and 
estimation methods. Nakanishi and Cooper linearized versions of gravity models, thereby 
increasing potential use of estimation procedures and estimator properties (Nakanishi and 
Cooper 1982). They refer to this type of model as a Multiplicative Competitive Interaction 
model. The essence of these types of models is that supply nodes exert an attraction over 
demand commensurate with their utility value, but that attraction decays over distance. The 
market share of a supply node is then the proportion of utility out of all the supply alterna-
tives for a demand area, each supply alternative’s utility decayed according to its distance 
to the demand node. Various parameters can be used to quantify utility, though in prac-
tice, size is often used as the sole attraction variable due to data unavailability. Perception 
of utility is usually assumed to be homogeneous in a particular area, though some work 
has distinguished subgroups within areas and included their idiosyncrasies in one holistic 
model, such as Mao and Nekorchuk (2013). Advantages of gravity models are that they 
are intuitive, that they adopt widely use discrete choice utility theory, and they do not suf-
fer from demand overestimation as two-step FCA-models do when applied to admissions 
estimation. An important disadvantage is that a lot of data is required, including data on 
competing nodes that is often not available.

The manner in which decay of utility occurs has been widely researched. In recent dec-
ades, exponential functions, log-logistic functions, or log-normal functions are used most 
commonly, as they are often shown to outcompete the power function (De  Beule et  al. 
2014; de Mello-Sampayo 2014), which was the initial function type used by Huff and other 
early authors. Due to different reporting standards, it is hard to distill a prediction accuracy 
benchmark from the available literature for hospital facilities. In a study by Teow et  al. 
(2018), the MAE (Mean Absolute Error) was found to be 24% of the mean of hospital 
admissions. Delamater et al. reported achieving a hospital visit prediction accuracy of 74%, 
meaning that the the choice of hospital for 74% of patients was predicted correctly. Bauer 
et al., using an FCA-model, reported that for about 30% of hospitals, the error of the pre-
dicted hospital admissions rate was lower than 15%. In retail context, a MAPE aggregated 
on destination level of 22.34% are reported by De Beule et al. (2014). In De Beule et al.’s 
replication of Orpana and Lampinen (2003), a MAPE of 26.78% is found.

Mao and Nekorchuk (2013) have integrated multiple travel modes into their FCA-model 
for hospital facility accessibility measurement. They divided the population into regions 
in proportion to those who use particular transport modes according to regional surveys. 
Similarly, Zhou et al. (2020), measured accessibility of healthcare facilities with different 
transportation modes. No admission rate prediction models in hospital facility context have 
made use of multiple transportation mode data as far as the authors could ascertain.
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Only a subset of the literature in hospital facility planning is interested in estimating the 
number of admissions in a competitive context. At the root of this are diverging research 
objectives. First, measuring accessibility does not require it, nor do related models unam-
biguously suggest expected patient admissions. Second, hospitals in some healthcare sys-
tems do not compete for patients. Rather, policymakers plan which area a hospital serves. 
It therefore makes sense that not all of the literature and models in the domain report 
admissions estimation accuracy. For the limited number that does, the reported accuracy is 
measured in various ways, and hard to directly compare with each other. Our work focuses 
on providing models that improve on the accuracy of currently reported models in the con-
text of competitive hospital systems. Accordingly, the accuracy of our models is analysed 
and reported varying three different components of the model. Concretely, distance decay 
specifications, the impact of different transportation modes, and different patient popula-
tions, i.e. daycare and inpatient admissions in different age groups, are compared.

1.3  Objectives

The central objective of this research is to improve the methods at the disposal of policy-
makers and hospital administrators to optimize hospital facility location decisions. Improv-
ing accuracy of models is a primary component of that. This research reviews improve-
ments by examining three aspects of location planning with gravity models. First, this 
paper intends to improve the accuracy of admission estimates of hospital facilities by iden-
tifying the best modeling methods to capture geographical impedance. Second, this paper 
looks into the effects of accessibility by car and public transport on the choice of patients 
for particular hospitals. Third, the differences in geographical impedance for inpatient and 
daycare hospitalizations are compared, as well as differences between age groups.

2  Methodology

One of the primary points of investigation in this work is how proximity is best modelled 
in gravity models in the hospital context. Different proximity proxy variables are reviewed: 
network car travel time, great-circle distance, and a combination of both. Additionally, it 
is reviewed whether accessibility by public transport can create a competitive advantage 
for a hospital facility. All mass transit modes available in the considered region are taken 
into account. Differences in model estimates between inpatient and daycare facilities are 
reported, as well as between age groups.

2.1  Model description

2.1.1  Geographical impedance

A function is defined that represents the reduction of the utility of a hospital perceived by a 
patient, or geographical impendance, as proximity decreases. Proximity is a latent concept 
in the mind of an individual, conjectured to be a function of physical distance, travel time, 
experience, and other geographical characteristics that might inhibit or improve perceived 
access or closeness to a location. In this study, proximity to a hospital facility is calculated 
for the centerpoint of each sector, which is a granular spatial subdivision that generally cor-
responds in size to a small neighbourhood in urban or suburban environments.
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Several approaches to modelling geographical impedance have been suggested in grav-
ity-type models. Most prominently power functions, exponential functions, and log-logistic 
functions. Exponential and log-logistic functions have often been found to produce the best 
goodness of fit (De Beule et al. 2014; de Mello-Sampayo 2014). The models in this paper 
use an exponential function, prefering its parsimony and potential to be linearized over the 
log-logistic function. Additionally, different proxies for proximity are tested. First, great-
circle distance Dij , second, network travel times by car based on maximum allowed seg-
ment speeds CTTij , and third, a combination of the two DTij , Table 1. Network travel times 
are calculated using the open source r5 engine (Byrd 2021). Any origin-destination com-
bination for which no route is found is replaced by the expected car travel time assuming 
an average speed in terms of great-circle distance covered. Since transit coverage is incom-
plete to a significant degree and it is not expected to be the dominant transport mode, it is 
not used as a factor of proximity. Nonetheless, above or below-average transit accessibility 
is included as an asymetrical attraction factor, described in more detail in the subsection on 
attractors.

A distinction is made between university hospitals and general hospitals. A multipli-
cative attraction variable UNIj is added to the model which takes the value 1 for general 
hospitals and 2 for university hospitals. In conjunction, a separate distance decay param-
eter DU is applied to university hospital facilities rather than the decay parameter DF for 
the decay factor for regular facilities. University hospitals have an audience that only par-
tially overlaps with that of general hospitals. For highly specialized care, patients are often 
referred to university hospitals. For more common procedures or pathologies, it is possible 
that patients are rather discouraged from visiting university hospitals. It is hypothesized 
that this behaviour could be modelled with a lower attraction for university hospitals gener-
ally, but combined with a lower distance decay of that utility. Ideally, if patients who could 
only have been treated in university hospitals could be empirically identified, a model 
would distinguish that subgroup of patients.

Introducing the distinction for university hospital facilities leads to the following model, 
with Vij as the volume of patients from block i that choose hospital j, and Pi the number of 
patients that require care in block i. Aij is the utility of alternative j perceived in block i.

whereVij = Volume of patients from block i that choose hospital j

Vij =
S
�

j
UNI

�

j
× (isUni × e−Dij×DU + (1 − isUni) × e−Dij×DF)

∑J

j
Aij

× Pi

Table 1  Proxies of proximity used in the models

Variable Name Decription

Dij (Great-circle) distance Great-circle distance in kilometers between the centerpoint of block i 
and hospital facility j.

TTCij Travel time car Travel time in minutes between the centerpoint of block i and facility j.
DTij Distance and time Sum of standardized variables Dij and TTCij
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2.1.2  Accessibility

Aside from size in terms of accredited beds Sj , the basic attractor included in the model, 
two variables are introduced that are a measure of accessibility: relative car access speed 
DRij and relative public transport access speed TRij . Both are measured by taking the aver-
age speed of travel on the network over the great-circle distance, divided by the mean of 
that metric for the relevant block i. The great-circle distance is used because it provides the 
shortest theoretical route across the planet’s surface between the origin and destination as a 
reference. These metrics are hypothesized to capture relative utility of accessibility by car 
and public transport modes.

2.2  Model estimation

In order to estimate the model, it is first linearized. A linearization of the standard Multipli-
cative Competitive Interaction Model is given by Nakanishi and Cooper (1982). An adap-
tation of this procedure is followed to linearize the MCI-model with exponential distance 
decay. Size Sj is the only attraction factor used in the following linearization for brevity. 
Other attraction factors are treated analogously.

Take logarithm.

Sum over j and divide by n = number of j’s.

The three last members can be simplified. They are respectively: the mean of Dij over j, the 
mean of a constant logVj , and the mean of a constant log(

∑J

j
S
�

j
exp(−Dij × DF)) . Addi-

tionally, for the members where a logarithm remains, the summation can be moved into the 
logarithm, yielding a multiplication.

With geometric mean x̃ =
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The last member can be replaced based on equation (2), finally yielding

The model, which is linear in the parameters, is then optimized using Non-Linear Least 
Squares (NLLS). The optimization is done in Python using the Scipy package.

2.3  Application context

The application in this paper is based on market share data of hospitals in Belgium. The 
data spans all Belgian hospitals for the year of 2018. The number of beds per campus and 
admissions per hospital are made available by the Federal Public Service for public health 
(Volksgezondheid 2021). Travel times are calculated with the R5 engine using OpenStreet-
Map data for the road network and open GTFS data dated 02-02-2021 for public transpor-
tation Transitfeeds (2021). The geographic area covered by the models is most of Flan-
ders, Belgium, with the exception of the Brussels region and Antwerp. The former is not 
included due to expected language border effects. The latter is not included due to a data 
quality issue. The market share data is available on the hospital level, and not on the cam-
pus level. In response, for campuses that belong to multi-campus hospitals, expected cam-
pus market shares are derived from the consolidated hospital market shares. Regardless of 
location, a market share weighted according to the number of beds is allocated to the cam-
pus. The Antwerp region is dominated by one large multi-campus hospital, and is excluded 
because of this data quality issue. In Flanders, 8 082 blocks are within scope, and 73 hos-
pital campuses. In total, 690 869 inpatient stays are included, and 902 197 daycare stays. 
Combinations of hospitals campus j and block i are excluded if their great-circle distance is 
larger than 50 kilometers. This is done to limit redundant computation for combinations of 
hospitals and locations where the empirical market shares are generally negligible.

3  Results

In this section, the results of the different models are discussed. First, variations on model-
ling proximity are described. Second, parameter values for different patient subgroups are 
elaborated on. Third, the overall accuracy of the model is reviewed.

3.1  Proximity modelling

3.1.1  Geographical impedance

In this section, the different ways of modelling geographical impedance are reviewed. 
Table 2 shows the performance of the model using different metrics for proximity. In all 
regions, the minimized Least Squares Error (LSE) is lowest when the great-circle distance 
Dij is used as decay factor. Car travel time TTCij always yields the highest LSE, while the 

(5)log Ṽij = 𝛽 log S̃j − DijDF + logVi − log(
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combination scores in between the two DTij , with an exception for East-Flanders. The 
Mean Absolute Percentage Error does not follow this pattern entirely. Where the great-
circle distance model MAPE is worse than one of the others, the difference is minor. Note 
that the model is not minimized on the MAPE error metric.

3.1.2  Accessibility attractors

The findings in the previous section indicate that the great-circle distance is the best metric 
for proximity in this context. Nonetheless, it is hypothesized that above-par accessibility 
improves the likelihood that a patient will choose a hospital facility. Accordingly, metrics 
of accessibility are included as multiplicative factors that determine perceived relative util-
ity. Two factors are added: relative car accessibility DRij and relative transit accessibility 
TRij . Table 3 shows the efficacy of models that include accessibility metrics. The optimized 
exponents � and � of the accessibility metrics are close to zero in most cases. The transit 
accessibility exponent � is zero in West-Flanders and the transit accessibility exponent is 
low, but positive. In East-Flanders, Limburg, and Flanders as a whole, both accessibility 
metrics yield mildly positive exponents.

Table 2  Error metrics for basic models with various proximity quantifications. *Models without university-
related factors, since the regions do not have university hospitals

Region

Flanders West-Flanders* Limburg* East-Flanders

Great-circle distance LSE 588 911 112 968 53 970 207 427
MAPE 14.66% 10.27% 10.59% 16.34%

Travel time LSE 662 201 120 516 59 182 263 724
MAPE 14.51% 18.23% 10.23% 29.85%

Combination LSE 619 141 118 007 55 949 204 093
MAPE 15.04% 11.38% 10.27% 23.29%

Table 3  Fitted exponents of relative car and transit accessibility and related accuracy metrics for Flanders 
and subregions

Region

Flanders West-Flanders* Limburg* East-Flanders

Base LSE 588 911 112 968 53 066 207 427
MAPE 14.66% 10.27% 10.59% 16.34%

Model with 
accessibility 
attractors

LSE � 571 164 0.3569 112 914 0.1310 53 683 0.1786 191 213 0.6884
MAPE � 14.39% 0.3700 9.59% 0 10.41% 0.2381 17.76% 0.1083
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3.2  Subgroup comparisons

3.2.1  Age groups

In accordance with Jia et al. (2019), an increased distance decay effect is found in older age 
groups. The exponent of the size attractor � similarly increases along with size as shown in 
Table 4. For the youngest age group, children up to the age of 15, this might be related to 
the absence of dedicated pediatric facilities in some hospitals.

3.2.2  Hospital types

In this section, differences in results between inpatient and daycare hospital types are 
examined. It is reviewed whether the fitted parameter that captures the degree of distance 
decay is higher for daycare hospitalizations. Table 5 does not indicate that a consistent dif-
ference exists in the distance decay parameter for inpatient and daycare hospitalizations. 
Though the fitted parameter is lower for daycare in Flanders as a whole, 0.1346 versus 
0.1515 for inpatient care, this does not hold up for the subregions. In West-Flanders, fitted 
distance decay is lower for daycare hospitalizations than for inpatient hospitalizations.

Table 4  Fitted distance decay 
and size parameters for model 
in Flanders per age group for 
inpatient hospitalization

Age group

< 15 15-64 ≥ 65

MAPE 24.23% 15.42% 17.25%
� 0.77689 1.06253 1.22145
DV 0.14616 0.15471 0.17339

Table 5  Fitted distance decay parameters and MAPE for inpatient and daycare patient admissions

Region

Flanders West-Flanders* Limburg* East-Flanders

Inpatient Daycare Inpatient Daycare Inpatient Daycare Inpatient Daycare

MAPE 14.39% 15.12% 9.59% 8.60% 10.41% 14.14% 17.76% 24.99%
DV 0.1346 0.1515 0.1544 0.1459 0.1619 0.1597 0.1287 0.1291

Table 6  Fitted inpatient 
admission model parameters 
and MAPE for Flanders and 
subregions

Label Region

Flanders West-Flanders* Limburg* East-Flanders

DV 0.1346 0.1544 0.16192 0.1286
DU 0.092 N/A N/A 0.0799
� 0.8278 N/A N/A 0.7325
� 0.3700 0 0.2381 0.1083
� 0.3569 0.1310 0.1786 0.6884
MAPE 14.39% 9.59% 10.41% 17.76%
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3.3  Model accuracy

Table 6 shows the results of the best-fitting model for the different subregions of Flanders. 
The model fits the data better in rural areas, or areas where no competing hospitals are in 
close proximity to one another. The range of MAPE values is between 9.59% and 17.76%. 
For the entirety of Flanders excluding Antwerp and Brussels, the MAPE is 14.39%. The 
models for daycare admissions perform similarly, with the best performance in West-Flan-
ders with a MAPE of 9.28% and the worst in East-Flanders with a MAPE of 24.99%. Using 
the great-circle distance as a distance decay parameter systematically outperforms the use 
of travel time, or combinations of both.

4  Discussion

4.1  Modelling proximity and accessibility

The proxy of proximity that performs best is the great-circle distance. Several hypotheses 
could help explain this result. First, car travel time might not be an important factor in 
the perception of proximity to facilities for patients. Perhaps, due to infrequent exposure, 
patients do not even have a clear image of the relative travel times between options, but 
they do have a geographical sense of where a facility is positioned in space. Especially in 
cases where heavy traffic inverts the ranking of two destinations when considering distance 
versus travel time, it could require repeated exposure by a person to establish this aspect of 
proximity in his or her perception. While consumers might have a clear perception of travel 
times to destinations such as retail locations due to the frequency of their visits, the same 
might not be true for hospital facilities. It could also be that accessiblity is less important 
to patients, and that distance measures function as a proxy for general exposure to facilities 
themselves, rather than their accessibility.

Selective perception theory provides a framework for these types of explanations (Tay-
lor et al. 2006). Selective perception theory proposes that not all information that people 
are exposed to is processed and retained equally. Selective perception is characterized as 
a four-part process of selective exposure, attention, comprehension, and retention. Pre-
selection due to a lack of repeated exposure might be more strongly related to great-circle 
distance than to car travel times, since exposure in the broad sense comes through various 
channels, such as local news, word-of-mouth, or through doctors’ references.

Lastly, it might be the proximity of the referring doctor to hospital facilities that is most 
crucial. It is not self-evident which of variables considered in this research would be the 
best proxy for that type of proximity.

The models in which accessibility attractors are included do not provide strong evidence 
that either relative car or transit accessibility improve the likelihood that a patient will visit 
a particular facility. Since an active effort is made to connect all hospitals by public trans-
port, a lower treshold of connection might be reached by most hospitals, removing any 
competitive advantages. This seems quite unlikely, however. Since relative accessibility is 
measured on the sector-level, it is improbable that each competing hospital could provide 
similar public transport accessibility to each sector. Alternatively, it is possible that prox-
imity, as measured by the great-circle distance, is a proxy that works well to capture transit 
accessibility, so that relative transit accessibility does not provide any additional explana-
tory power. Lastly, the quantification of transit accessibility might interfere with other 
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biases of the model. Relative driving accessibility (Fig. 1) and transit accessibility (Fig. 2) 
are usually highest from and between urban centers. Given this correlation, the specifica-
tion of the model implies generally that a hospital’s perceived utility is higher for patients 
living in an urban area than for those living in rural areas. Given the expected underestima-
tion of the distance decay parameter and that hospitals are primarily located in urban areas, 
it would be expected that absolute hospital patient numbers are mostly overestimated in 
surrounding urban cores, which implies an inverse relationship to the one expected by the 
accessibility quantification. A better quantification of relative accessibility would be the 
relative accessibility as compared to the mean of the accessibilities of other facilities for 
the sector, rather than the general mean. 

4.2  Subgroups

In line with results by Jia et al. Jia et al. (2019), distance decay is found to be positively 
correlated with age. Older patients tend to travel less far to be hospitalized. This might 
be explained by a couple of reasons. First, older patients might attach a higher cost to 
travel, either because of increased perceived discomfort or fewer or different transportation 
modes at their disposal. Alternatively, a higher proportion of patients might be hospitalized 
through the emergency department, perhaps brought in by ambulance, with little choice or 
time to choose a hospital. For the youngest age group, children younger than 15, the lower 

Fig. 1  Relative driving accessibility of campus in Lokeren. Accessibility is correlated with origin urbaniza-
tion, which might interfere with biases of the model
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distance decay might be due to the absence of dedicated pediatric wards at a subset of 
facilities, causing them to travel further than they would otherwise.

It was hypothesized that distance decay would be lower for inpatient hospitalizations 
than for daycare hospitalizations. Inpatient hospitalizations are expected to be more severe 
than daycare hospitalizations. Additionally, inpatient hospitalizations are longer, so the 
transportation costs should be relatively less important. Nonetheless, the fitted parameters 
do not show a consistent relationship between the type of hospitalization and distance 
decay.

4.3  Accuracy

The overall accuracy of the models is high, ranging from around 10% in rural areas to 17% 
in urban environments. This compares well to other work. Few other studies have reported 
error metrics that allow a direct comparison, though Teow et  al. (2018) have reported a 
Mean Absolute Error of 24% of the mean of hospital admissions and Bauer et al. (2020) 
have reported achieving a percentage error of 15% or better for about 30% of the scoped 
hospitals. In retail models, which admittedly work at a more granular scale, De Beule et al. 
(2014) reported a MAPE of 22.34%. In this study, using the great-circle distance as the 
decay factor systematically yields better results than using car travel time, or combinations 
of car travel time and great-circle distance. In addition, models that include public trans-
port accessibility metrics do not systematically perform better than those that do not. It 

Fig. 2  Relative transit accessibility of campus in Lokeren. Accessibility is correlated with origin urbaniza-
tion, which might interfere with biases of the model
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is further observed that admission prediction accuracies are generally better in the 15–64 
age group, and that prediction accuracy is not systematically higher in daycare or inpatient 
hospitalization types.

5  Conclusion

Variants of a linearized gravity model with an exponential decay function is proposed in 
this paper. The models show that achieving an admissions estimation accuracy of up to 
9.59% on average is possible using the proposed gravity models. Using the great-circle as 
distance decay factor systematically outperforms the use of travel time or combinations of 
travel time and great-circle distance. It is also found that including public transport acces-
sibility in the models did not improve their accuracy.

6  Summary and future work

This paper describes the main findings of an effort to build gravity-type models to describe 
patient choices in inpatient and daycare hospital facilities. It analyzes the distance decay 
effects as a function of car travel times and great-circle distance, and it offers a method for 
inclusion of university hospitals. Additionally, it reviews the impact of driving and transit 
accessibility on hospital attraction and reviews the differences in distance decay for patient 
age groups and hospitalization types.

An issue with using size in the model is the introduction of an endogenous element. 
Size in terms of beds is evidently a proxy for attraction-inducing factors, as well as a con-
sequence of the number of admissions that were processed historically. When building a 
new hospital campus, the projected number of beds might not fairly capture the effect of 
the factors that size is a proxy for, as it presumably does for established campuses. For 
instance, size could be a proxy for exposure through word-of-mouth. More treatments 
mean more opportunities to be exposed to a treated person in your network. For a new 
hospital campus, this effect cannot be captured since size is, at the time of the analysis, an 
unrealized number and not yet a strong proxy for the number of treatments performed. A 
2-Stage Least Squares (2SLS) (Terza et al. 2008) estimation approach might address this 
issue. Additionally, a model that makes recursive use of the size parameter might yield 
insight into the determinism of the location factor in hospital success.

A common issue in gravity models is a lack of complete data for all involved destina-
tions. In this project as well, attractor variables were left out of the models due to unavail-
ability for particular hospitals. A model with dummies might be able to handle the una-
vailability of data for a subset of hospitals, while using as much of the available data as 
possible.
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