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Abstract
Simulation studies were performed to investigate for which conditions of sample size of 
patients (n) and number of repeated measurements (k) (e.g., raters) the optimal (i.e., bal-
ance between precise and efficient) estimations of intraclass correlation coefficients (ICCs) 
and standard error of measurements (SEMs) can be achieved. Subsequently, we developed 
an online application that shows the implications for decisions about sample sizes in reli-
ability studies. We simulated scores for repeated measurements of patients, based on dif-
ferent conditions of n, k, the correlation between scores on repeated measurements (r), the 
variance between patients’ test scores (v), and the presence of systematic differences within 
k. The performance of the reliability parameters (based on one-way and two-way effects 
models) was determined by the calculation of bias, mean squared error (MSE), and cover-
age and width of the confidence intervals (CI). We showed that the gain in precision (i.e., 
largest change in MSE) of the ICC and SEM parameters diminishes at larger values of 
n or k. Next, we showed that the correlation and the presence of systematic differences 
have most influence on the MSE values, the coverage and the CI width. This influence dif-
fered between the models. As measurements can be expensive and burdensome for patients 
and professionals, we recommend to use an efficient design, in terms of the sample size 
and number of repeated measurements to come to precise ICC and SEM estimates. Utiliz-
ing the results, a user-friendly online application is developed to decide upon the optimal 
design, as ‘one size fits all’ doesn’t hold.
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1  Background

In clinical trials conclusions are drawn based on outcome measurement scores. These 
scores are measured with measurement instruments, such as clinician-reported outcome 
measures, imaging modalities, laboratory tests, performance-based tests, or patient-
reported outcome measures (PROMs) (Walton et al. 2015). The validity (or reliability) of 
trial conclusions depend, among other things, on the quality of the outcome measurement 
instruments. High quality measurement instruments are valid, reliable, and responsive to 
measure the outcome of interest in the specific patient population.

Reliability and measurement error are two related but distinct measurement properties 
that can be investigated within the same study design (using the same data). Measurement 
error refers to how close the results of the repeated measurements are. It refers to the abso-
lute deviation of the scores, or the amount of error, of repeated measurements in stable 
patients (de Vet et al. 2006), and is expressed in the unit of measurement such as the stand-
ard error of measurement (SEM) (de Vet et al. 2006; Streiner and Norman 2008). Reliabil-
ity relates the measurement error to the variation of the population. Therefore, reliability 
refers to whether and to what extent an instrument is able to distinguish between patients 
(de Vet et al. 2006). For continuous scores, reliability is expressed as an intraclass correla-
tion coefficient (ICC), a relative parameter.

In a study on reliability, we are interested in the influence of specific sources of varia-
tion such as rater, occasion or equipment, on the score (Mokkink et al. 2022). This specific 
source of variation of interest (e.g., rater) is varied across the repeated measurements in 
stable patients. For example, we are interested in the influence of different raters (i.e., the 
source of variation that is varied across the repeated measurements) on one occasion (inter-
rater reliability), or in the influence of different occasions (i.e., the source of variation that 
is varied across the repeated measurements) by one rater on the score of stable patients 
(i.e., intra-rater reliability); or in the influence of the occasion on the score when stable 
patients rate themselves on different occasions with a self-administered questionnaire (i.e., 
test–retest reliability). In the remainder of this paper, the term ‘repeated measurements’ 
refers to repeated measurements in stable patients, ‘different raters’ will be used as exam-
ple of the source of variation of interest, and the term ‘patients’ will be used to refer to the 
‘subjects of interest’.

Multiple statistical models can be used to estimate ICCs and SEM. Often used models 
are the one-way random effects model, the two-way random effects model for agreement 
and the two-way mixed effects model for consistency (see Table 1 and “Appendix 1” for 
model specifications of ICCs and SEMs). Three-way effects models are outside the scope 
of this paper. The research question together with the corresponding design of the study 
determine the appropriate statistical model to analyze the data (Mokkink et al. 2022).

Table 1  Overview of one-way and two-way effects models

a Full details are available in “Appendix 1”

Multi level  modela ICC SEM

One-way effects model xij = β0 + a0i + eij σ2
j/(σ2

j + σ2
ε) √σ2

ε

Two-way random effects model for agreement xij = β0 + a0i + c0j + eij σ2
j/(σ2

j + σ2
k + σ2

ε) √σ2
r + σ2

ε

Two-way mixed effects model for consistency xij = β0 + a0i + c1 + eij σ2
j/(σ2

j + σ2
ε) √σ2

ε
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1.1  Sample size recommendations for studies on reliability and measurement error

In the literature two different approaches are used for calculations of required sample sizes, 
i.e., an analytical approach (hypothesis testing) and simulation studies. Most previous studies 
used an analytical approach for a one-way random effects model (Bland 2004; Donner and 
Eliasziw 1987; Giraudeau and Mary 2001; Walter et al. 1998). In an analytical approach, a 
null hypothesis is formulated  (Ho is ρ = ρ0), and it is tested whether the observed ICC (i.e., 
ρ) is similar to a predefined true ρ0, against the  H1 that is ρ > ρ0 (Donner and Eliasziw 1987; 
Giraudeau and Mary 2001; Walter et  al. 1998). In this approach, the expected ICC value 
should be chosen, which is difficult and questionable (Giraudeau and Mary 2001). Further-
more, to use the sample size recommendations derived with an analytical approach, a com-
plete understanding of complex formulas is required. Moreover, currently existing formulas 
are limited to one-way effects models, and appropriate formulas for two-way effects models 
are lacking. Recommendations based on a one-way effects model, are generally conserva-
tive for situations where a two-way effects model is used (5, 7), because in a two-way model 
the patient variation is estimated with more precision by disentangling variance from other 
sources from the scores. Accordingly, efficiency can be gained when sample size recommen-
dations are based on the (chosen) design and appropriate model used for the analysis.

Moreover, most studies focused on sample size recommendation to assess reliability, and 
only few focused on measurement error. Bland (2004) and Lu et al. (2016) provide sample 
size recommendations for studies on measurement error using limits of agreement. The SEM 
calculated from the limits of agreement is similar to the SEM derived from a two-way mixed 
model for consistency, which ignores the systematic difference of the source of variation that 
was varied across the measurements (e.g., the raters) (de Vet et al. 2011). While these studies 
provide useful recommendations for studying measurement errors with a consistency model, 
they may not apply to other statistical models, such as measurement error with an agreement 
model.

Another approach to obtain recommendations for sample size is based on simulation stud-
ies (Saito et al. 2006; Zou 2012). Simulation studies can show the effects of specific conditions 
of study designs (such as more raters or more patients) on the estimation of the parameters 
(i.e., ICC and SEM) in terms of precision and bias. In these studies the choice of conditions is 
crucial, as the results cannot be generalized beyond the investigated conditions.

In the current study, we focus on the compromise between precision of the ICC and SEM 
estimations and feasibility in a study to obtain the most efficient recommendations for sample 
size and repeated measurements using simulation studies. We performed a series of simulation 
studies based on realistic but artificial data to investigate the precision of various reliability 
and measurement error parameters under different conditions within different study designs. 
We aim to study the most efficient combination of sample size of patients (n) and number of 
repeated measurements (k) (e.g., raters), given the study design at hand. In a freely available 
online application (i.e., the Sample size decision assistant) we utilize our study findings in 
order to assist researchers in designing a reliability study, available at https:// irise ekhout. shiny 
apps. io/ ICCpo wer/.

https://iriseekhout.shinyapps.io/ICCpower/
https://iriseekhout.shinyapps.io/ICCpower/
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2  Methods

2.1  Simulation studies

Artificial data samples were simulated under various conditions. These conditions were 
seen in various realistic data sets (Dikmans et  al. 2017; Mosmuller et  al. 2016; Mulder 
et al. 2018). Samples were generated with different conditions of the sample size of patients 
(n), number of repeated measurements (k), correlations between the scores on the repeated 
measurements (r), and variances between patients’ test scores (v).

The investigated conditions for n and k represent feasible and realistic conditions in 
clinical studies (see Table 2 for the chosen conditions). The correlation r is equivalent to 
the ICC when no systematic difference between the measurements occur. The conditions 
r = 0.6, 0.7 and 0.8 were used, because the consensus-based cut-off point for sufficient reli-
ability is at an ICC value of 0.7 (Nunnally and Bernstein 1994). An ICC value of 0.6 refers 
to insufficient reliability and an ICC value of 0.8 is well above the cut-off point. The vari-
ance between patients’ test scores (v) indicates to what extent the test scores vary between 
patients, i.e., it refers to the range of distribution of the scores. The variance between 
patients’ test scores (v) was simulated as 1, 10 and 100; specified as small, medium and 
large, respectively. Consequently, a vector with a mean of 0 has different ranges between 
these conditions; v = 1 ranges from − 3 to 3; v = 10 ranges from − 9.5 to 9.5; and v = 100 
ranges from − 30 to 30. The simulated data were sampled from a multivariate normal dis-
tribution with a mean of 0 and the covariance matrix (i.e., r multiplied by v).

To investigate the impact of different statistical models (i.e., one-way or two-way effects 
models), we introduced systematic differences between the repeated measurements. This 
way we gradually moved from a one-way design to a two-way design. To incorporate a sys-
tematic difference, the scores of one (or two) of the raters was systematically changed by 
increasing the average score of this rater with 1 standard deviation in score in the respec-
tive variance conditions of 1, 10 and 100 (i.e., standard deviation is 1, 3, or 10 points). 
In the conditions with 4 or more repeated measurements, we additionally investigated the 
effect of two deviating repeated measures by increasing the average scores for the first two 
raters with the same amounts (i.e., 1, 3, and 10 points).

Table 2  Overview of conditions and their values that will differ in the simulation studies

Condition Value

Sample size of patients (n) 10, 20, 30, 40, 50, 100, 200
Number of repeated measurements (k) 2, 3, 4, 5, 6
Correlation of scores on repeated measurements (r) 0.6, 0.7, 0.8
Variance between patients’ test scores (v) 1, 10, 100
Type of statistical model ICC one-way random effects model, 

ICC two-way random effects 
model, ICC two-way mixed 
effects model

Systematic difference of 1 standard deviation No systematic difference or one 
systematically different rater 
(when k = 2–6); two system-
atically different raters (when 
k = 4–6)
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The combinations of these conditions, i.e., sample size (n), number of raters (k), vari-
ance between patients’ test scores (v) and correlation (r), resulted in a total of 360 combi-
nation of conditions when no systematic difference was incorporated; 360 combinations 
when one rater systematically differed (condition k 2–6); and in a total of 216 combina-
tions of conditions when two raters systematically differed (i.e., for k = 4–6). For each com-
bination of conditions 1000 samples were generated using the R package MASS in R sta-
tistical software (Venables and Ripley 2002).

2.1.1  Reference values

Additionally, we simulated population data of 100,000 people for each combination of cor-
relation (r; i.e., 0.6–0.8), variance (v; 1, 10 and 100) and number of repeated measurements 
(k; 2–6) to obtain reference values. We choose 100,000 as this size is sufficient enough 
to eliminate sampling error effect, while the models would still converge. Also in these 
populations, we incorporated systematic differences between repeated measurements as 
described above, i.e., scores of either one rater (when k = 2–6) or two raters (when k = 4–6) 
were systematically changed.

2.1.2  Estimation of the reliability parameters

Using the Agree package in R (Eekhout 2022; Eekhout and Mokkink 2022) for each of the 
2 × 360 × 1000 and 216 × 1000 simulated samples we computed: the three types of ICC’s 
[i.e., based on (1) one-way random effects model, (2) two-way random effects model for 
agreement, and (3) two-way mixed effects model for consistency]; 95% confidence inter-
vals (CI) of each ICC, and the corresponding three types of SEM (see “Appendix 1” for 
model specifications and for R syntaxes). The same parameters were calculated on the pop-
ulation data.

2.1.3  Evaluation of the performance parameters for the estimations

The performance of the reliability parameters was evaluated by the calculation of the bias, 
the mean squared error (MSE), and the coverage of the confidence intervals (Burton et al. 
2006). First, sample bias was defined in each of the 1000 samples per condition as the dif-
ference between the sample estimates for each parameter (i.e., ICCs and SEMs) and the 
reference value for each parameter for that condition (i.e., based on the population data). 
Next, these 1000 sample biases (per combination of conditions) were averaged, which 
results in the bias for each condition (Burton et al. 2006; Eekhout et al. 2015). The bias 
is expressed in the ‘metric’ of the parameter (i.e., ICC or SEM). A negative bias means an 
underestimation of the true ICC (i.e., the population ICC). Squaring each sample bias (per 
condition) and averaging these squared sample biases over the 1000 samples give the MSE 
per combination of conditions (Burton et al. 2006; Eekhout et al. 2015). The MSE provides 
a measure of the overall precision of the estimated parameters (Burton et  al. 2006), and 
the square root of the MSE value transforms the MSE back into the same ‘metric’ of the 
parameter (i.e., ICC or SEM) (Burton et  al. 2006). The smallest possible MSE value is 
zero, meaning that the mean of the estimated parameter in all samples for the specific con-
dition has the same value as the population parameter. Additionally, we expressed the MSE 
results in terms of the width of the confidence interval per condition, as the width of the CI 
is often used in analytical approaches for sample size calculations for reliability studies as a 
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measure of precision. The width was computed from the MSE as follows: width = 2 * (1.96 
* √(MSE)). The SEM, and thus also the bias, and the width of its confidence interval, 
is expressed in the unit of measurement. As this unit of measurement changes due to the 
variance (v) condition in our study, the magnitude of bias and MSE also increase with this 
variance condition by definition. For that reasons we will only evaluate the v = 1 condition 
for the SEM.

The coverage of the confidence interval of the estimated ICCs was calculated as a 
percentage of the number of times the population value lies within the estimated 95% 
confidence interval of the ICC parameters for the 1000 samples in each combination of 
conditions (Burton et  al. 2006). By definition, the coverage should be 95% for the 95% 
confidence interval (Burton et al. 2006).

2.2  Deciding on the sample size of number of patients and repeated measurements 
in future studies: the online Sample size decision assistant

In an online application (i.e., the Sample size decision assistant), the results of the sim-
ulation study are used to inform the choice on sample size (of patients) and number of 
repeated measurements (e.g., raters). Recommendations for the choice on sample size and 
number of repeated measurements are based on three different procedures, i.e., the width 
of the CI, the lower limit of the CI, and the MSE ratio.

The CI width procedure can be used when designing the study, i.e., before the start of 
the data collection, to determine the precision of the estimations of both reliability param-
eters (ICC and SEM) in the target design. This procedure uses the results of these simula-
tions studies. In the CI width procedure a pre-specified width of the confidence interval 
(e.g., 0.3) is set to determine what conditions of sample size and repeated measurements 
can achieve that specific CI width under the selected design conditions. This way, various 
designs can be considered to decide on the most efficient target design. This chosen target 
design is the design as described in the study protocol.

The CI lower limit procedure is based on an analytical approach (Zou 2012), and can be 
used to do recommendations for  ICCone-way only. It can be used when designing the study, 
i.e., before the start of the data collection, to determine the precision of the estimations 
of the reliability parameter in the target design. The CI lower limit procedure is a known 
method in the literature and uses a formula for the confidence intervals presented in Zou 
(2012) to estimate the sample size required given the assumed  ICCone-way, lower limit of 
the  ICCone-way and the number of raters that will be involved. The advantage of this method 
is that it can be used beyond the specified conditions that are used in our simulation stud-
ies. However, as this method is based on the  ICCone-way, results cannot be generalized to 
the other types of ICCs. We used this formula-based method during our analyses to com-
pare the results and recommendations based on CI width procedure and the MSE ratio 
procedure.

The MSE ratio procedure can be used when the data collection has started and there is 
a need to change or reconsider the target design of the study, e.g., the patient recruitment 
is slow or one of the raters drops out. The MSE ratio procedure uses the results of these 
simulations studies and focus on the precision of the estimations; it can be used to do rec-
ommendations for ICC and SEM. The MSE ratio can be calculated as  MSEtarget/MSEadapted 
(Eekhout et al. 2015). These conditions differ on one variable, either the sample size (n) 
or the number of repeated measurements (k). The MSE ratio procedure can be used in 
two ways: (1) it informs how much the precision of the adapted design (i.e., a new design, 
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such as the data collected so far) deviates from the precision of an target design chosen at 
the start of the study (i.e., as described in the protocol of the study). Or (2) it represent the 
proportional increase of the sample size (n) or number of repeated measurements (k) in the 
adapted design that is required to achieve the same level of precision as in the target design.

3  Results

In this result section, the effect of study design conditions on the estimation of the ICC 
and SEM are shown, in terms of bias and MSE (for ICC and SEM), the coverage of the CI 
of ICC, and the influence of various conditions on the width of the 95% CI of ICCs and 
SEMs, averaged over various conditions. For tailored results and recommendations about 
the sample size and number of repeated measurements for specific conditions, we devel-
oped an online application (https:// irise ekhout. shiny apps. io/ ICCpo wer/) that shows the 
implications for decisions. Subsequently, we describe the online application, and how to 
use this to come to tailored recommendations in future studies.

3.1  Bias and MSE values in ICC estimations

Results for bias showed a slight underestimation of the estimated ICCs, especially with 
small sample sizes. Overall the bias was so small that it was negligible, i.e., maximum bias 
for the ICCs found in any of the conditions was − 0.05 (in case of a sample size of 10 with 
only 2 raters of which 1 deviated in an ICC one-way random effects model with a v of 1 
and r of 0.7).

In Fig. 1 we plotted the MSE of the ICC estimates for the number of raters per the con-
ditions of sample size (shown in different colors), shown for the situation that one rater 
systematically deviates and for each of the three statistical models separately. Here, we 
see that the steepness of the curve declines most between k = 2 and k = 3, especially for a 
sample size up to n = 50. So the gain in precision (i.e., the largest change in MSE) is high-
est going from 2 to 3 raters. Moreover, we see the distance between the curves decreases 
when n increases, especially in the curves up to n = 40. So the gain in precision is relatively 
smaller above n = 40. In other words, the gain in precision diminishes at larger values of 
n and k. The MSE values for condition n = 40 and k = 4 is very similarly compared to the 
condition n = 50 and k = 3. As this pattern was seen for all conditions of r, and v, we aver-
aged over these conditions in Fig. 1.

The presence of a systematic difference between raters increased the MSE values for 
 ICCone-way, but not for  ICCagreement, and  ICCconsistency (see online tool). This means that the 
required sample size for the one-way effects models increases when a systematic differ-
ence between raters occurs, while the required sample sizes for the two-way effects models 
remains the same.

Next, we noticed an influence of the correlation between scores on repeated measure-
ments (r) on the MSE values for all types of ICCs, specifically when no rater deviated 
(Fig. 2 shows the MSE per correlation condition for  ICCagreement). That is, increasing cor-
relation (i.e., 0.8 instead of 0.6) leads to decreasing MSE values. When one rater deviates, 
r continues to affect the MSE for  ICCconsistency to the same extent, but to a lesser extent for 
 ICCagreement and  ICCone-way (“Appendix 2”).

https://iriseekhout.shinyapps.io/ICCpower/


248 Health Services and Outcomes Research Methodology (2023) 23:241–265

1 3

3.2  Bias and MSE in SEM estimations

Overall the bias for the SEM was very small and thus negligible. All results for bias can be 
found in the online application.

In Fig. 3 we plotted the MSE values of the  SEMagreement estimations for the number of 
raters per condition of sample size (shown in different colors), for one rater with a system-
atic difference and for each of the three conditions of r. Similar as we saw above for the 
MSE curves for ICCs, the steepness of the curves declines most between k = 2 and k = 3, 

Fig. 2  MSE values of  ICCagreement estimations plotted against k per condition r (no rater systematically devi-
ated; averaged over all conditions of v)

Fig. 1  MSE values of ICC estimations with different sample sizes, plotted against k per type of ICC model 
(one rater systematically deviates; averaged over all conditions of r and v)
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especially for a sample size up to n = 50. Moreover, we see the distance between the curves 
decreases when n increases, especially in the curves up to n = 40. The MSE values for con-
dition n = 30 and k = 4 for any of the three conditions r is very similarly compared to the 
condition n = 50 and k = 3 when r = 0.6, or n = 40 and k = 3 when r is higher.

So, we can conclude that the influence of the correlation r on the MSE value for SEM 
estimations is similar to the influence of r on the MSE values for ICC estimations.

In both  SEMone-way and  SEMagreement models all measurement error is taken into account 
(see “Appendix 1”), so the resulting SEM estimates are equal between these models (Mok-
kink et al. 2022). The MSE values for  SEMconsistency are nearly the same if no rater deviates 
or when one rater deviates. When no rater deviates, the MSE values for the  SEMone-way 
and  SEMagreement are only slightly lower compared to the  SEMconsistency (data available in 
the online application). However, aberrant from the MSE results for the ICC estimations 
(see Fig. 1), the MSE values for the  SEMone-way and  SEMagreement increase when one of the 
raters systematically deviates (see Fig. 4).

3.3  Coverage of the confidence intervals of ICCs

With no systematic difference between raters the coverage of the 95% confidence intervals 
around the ICC estimation was as expected, i.e., around the 0.95 for all three types of ICCs. 
As there were no differences found for the simulation study conditions (i.e., r, v, n and k) 
the results for coverage are only separated per type of ICC (Fig. 5, left panel).

The coverage of the  ICCconsistency is very similar when one or two raters deviate, com-
pared to the situation when no rater deviates. However, when one of the raters deviates the 
lowest coverage of the 95% confidence intervals around the  ICCone-way estimation decreases 
(i.e., under-coverage) and the highest coverage increases (i.e., over-coverage) (Fig.  5, 
middle panel). While this change in coverage disappears again when two raters deviate 
(Fig.  5, right panel). Note that in this latter scenario always more than three raters are 
involved. Furthermore, the  ICCagreement showed an over-coverage when one or two raters 

Fig. 3  MSE values of  SEMagreement estimations with different sample sizes, plotted against k per condition r 
(one rater systematic differs; v = 1)
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systematically deviated from the other raters, as the lowest value and the highest value for 
the coverage of the 95% confidence intervals around the  ICCagreement both increase (Fig. 5 
middle and right panel). A coverage of 1 means that the ICC of the population always fell 
within the 95% confidence intervals of the ICC estimation. This was due to the fact that the 
width of the confidence intervals around these estimations were very large, i.e., confidence 
interval width around 1.

Fig. 4  MSE values of SEM estimations for different sample sizes, plotted against k per type of SEM model 
(one rater systematically deviates; v = 1; averaged over all conditions)

Fig. 5  Lowest and highest coverage of the 95% confidence intervals around the ICC estimations over all 
conditions of n, k, r and v (left and middle panel k = 2–6, right panel k = 4–6)
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3.4  Influence of various conditions on the width of the 95% confidence intervals 
of ICCs

When no rater deviates, the 95% CI width around the ICC is the same for the different 
variances (v) and the different ICC methods (one-way, agreement or consistency). How-
ever, the correlation r does impact the width of the 95% CI: an increase of r leads to a 
decrease of the width (i.e., smaller confidence intervals) (Fig. 6). This means that when we 
expect the ICC to be 0.7 (i.e., we assume the measurements will be correlated with 0.7) the 
required sample size will be larger to obtain an ICC with the same precision than when we 
expect the ICC to be 0.8.

When one rater deviates, the width of the 95% CI does not change for the  ICCconsistency, 
but it does increase for  ICCagreement, and even more for  ICCone-way (see Fig. 7).

The 95% CI width around the ICC estimation for specific conditions can be used to 
determine what the optimal trade-off is for the sample size of patients and the number of 
repeated measures in these situations. In Fig. 6 (where we show results averaged over the 
three effects models) we can see that in the situation that no rater deviates, and v = 1, and 
we wish to estimate an ICC for three raters (k = 3), we need between 40 and 50 patients to 
obtain a CI width around the point estimation of 0.3 when r = 0.6 (i.e., + /– 0.15) (Fig. 6, 
left panel). If r is 0.7, then 30 patients is enough to reach the same precision (Fig. 6, mid-
dle panel), while if r = 0.8 20 patients is sufficient (Fig. 6, right panel). When one of the 
raters deviates, the chosen ICC method impacts the 95% CI width, in addition to the r 
(Fig. 7). To come to a 95% CI width of 0.3 around the point estimate when r = 0.8, v = 1, 
for a  ICCagreement the sample size should be increased to 40, while the ICC one-way would 
require a sample size of 50.

Fig. 6  95% confidence interval width for the ICC for r = 0.6, 0.7 or 0.8 (v = 1, no raters deviate; averaged 
over de three ICC models)
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3.5  Influence of various conditions on the width of the 95% confidence intervals 
of SEMs

The CI width for SEM estimation decreases when r increases (Fig. 8), similar as for ICC. 
However, in general, the width for SEM was smaller than for ICCs (Fig. 6).

When one rater deviates, the width of the 95% CI does not change for  SEMconsistency, but 
it does increase for  SEMagreement, and  SEMone-way (see Fig. 9). In general, the width of the 
95% CI is lower for SEM than it is for ICC. This means that in general, the SEM can be 
estimated with more precision than the ICC under the same conditions.

3.6  Online application that shows the implications for decisions about the sample 
sizes in reliability studies

As shown in the results of our simulation study, sample size recommendations are depend-
ent on the specific conditions of the study design at hand. Therefore, based on these simu-
lation studies, we have created a Sample size decision assistant that is freely available as 
an online application to inform the choice about the sample size and number of repeated 
measurements in a reliability study.

The Sample size decision assistant shows the implications of decisions about the 
study design on the power of the study, by using any of the three procedures described 
in the methods section (i.e., the width of the confidence interval (CI width) procedure, 
the CI lower limit procedure, and the MSE ratio procedure). Each procedure requires 
some assumptions about the study design as input, as described in Table 3. When you 
choose to use either the CI lower limit procedure or the MSE ratio procedure, you are 
asked to indicate what the target design is. The target design is the intended sample 
size of patients or the number of repeated measurements (e.g., raters), decided upon at 
the start of the study. For the MSE ratio procedure you are also asked to indicate the 

Fig. 7  95% confidence interval width for the three ICC models, when one rater deviates (r = 0.8, v = 1)
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adapted design, which refers to the number of patients or repeated measurements of the 
new design, e.g., the numbers that are included in the study so far. For both procedures 
you are asked to indicate the target width of the 95% CI of the parameter of interest. The 
width depends of the unit of measurements. As the range of the ICC is always between 
0 and 1, the range of the target width is fixed, and it is set default at 0.3 in the online 
application. However, the SEM depends on the unit of measurement, and changes across 
conditions v. Therefore, in the online application, the range for the target width of the 
95% CI for the SEM changes across conditions v, and various default settings are used.

Fig. 8  95% confidence interval width for the ICC for r = 0.6, 0.7 or 0.8 (averaged over SEM models, v = 1, 
no raters deviate)

Fig. 9  95% confidence interval width for the three SEM models, when one rater deviates (v = 1, r = 0.8)
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In the design phase of a study, before the data collection has started, two approaches 
can be used. For example, to obtain the sample size recommendation to obtain the 
 ICCagreement with the CI width procedure, we need to make some assumptions on the 
correlation between the repeated measurements, the presence of a systematic difference 
and expected variance in score. If we assume the measurements will be correlated with 
0.8 (in other words, you expect to find an ICC of 0.8), with no systematic difference 
between the measurements (e.g., the raters), and the expected variance between the 
score is 10. Based on this information, we will get an overview as shown in Fig. 10.

By scrolling over the different blocks in the online application, we can easily see 
what the consequence is for the width of the CI around the estimated ICC when add-
ing an extra rater or including more patients. For example, when we use 3 raters and 
20 patients, the estimated width of the CI around the ICC estimation is 0.293; or when 
k = 2 and n = 30 the width of te CI is 0.278; and when k = 2 and n = 25 the width is 0.33. 
In the online application this information automatically pops up.

If we compare the results for various conditions in the application, we see that the 
impact of whether or not a systematic difference exist on the sample size recommenda-
tions is much larger than the impact of different values for the variance between the 
scores, specifically when in the one-way random effects model, or the two-way random 
effects model for agreement.

The second procedure that can be used in the design phase is the CI lower limit pro-
cedure. This procedure is developed by Zou for  ICCone-way. Note that procedure may 
lead to an overestimation of the required sample size for ICCs based on a two-way 
effects model (see results, and (Donner and Eliasziw 1987)). An example to use this 
procedure: if we expect the ICC to be 0.8, and we accept a lower CI limit of the ICC 

Table 3  Choices and assumptions per approach that are available in the  online application (https:// irise 
ekhout. shiny apps. io/ ICCpo wer/)

Target design refers to the intended number of patients or number of repeated measurements chosen at the 
start of the study as described in the study protocol; adapted design refers to the number of patients or 
repeated measurements in the new design, e.g., included so far in the study

Width of the CI procedure
Choice of type of ICC or SEM (one-way random effects model, two-way random effects model, or two-way 

mixed effects model)
Choice about the target width of the 95% CI for the parameter
Assumption about correlation between the repeated measurements (e.g., the raters) (i.e., 0.6, 0.7 or 0.8)
Assumption about occurrence of systematic difference between repeated measurements (e.g., raters)
Assumption about variance in score (i.e., 1, 10, or 100)
CI lower limit method
Choice of the acceptable lower limit of 95% confidence interval
Target design
MSE ratio procedure
Choice of type of ICC or SEM
Choice about the target width of the 95% CI for the parameter
Assumption about correlation between the repeated measurements (e.g., the raters)
Assumption about occurrence of systematic difference between repeated measurements (e.g., raters)
Assumption about variance in score
Target design
Adapted design

https://iriseekhout.shinyapps.io/ICCpower/
https://iriseekhout.shinyapps.io/ICCpower/
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of 0.65, depending on the number of repeated measurements that will be collected, the 
adequate sample size is given (see Fig. 11). For example, for k = 3, a sample size of 40 
is appropriate (under the given conditions). As this procedure is based on a formula, it 
can be used beyond the conditions chosen in the simulated data.

The third procedure, the MSE ratio procedure, is most suitable when we have started the 
data collection and realize that the target design cannot be reached. In that case we want 
to know how an adapted design compares to our target design that was described in the 
study protocol. Suppose that patients were observed in clinical practice and scored by three 
raters (k = 3) at (about) the same time. We envisioned 50 patients (i.e., target design). The 
number of raters cannot be changed anymore, as patients will possibly have changed on 
the construct measured, or it is logistically impossible to invite the same patients to come 

Fig. 10  Print screen of the results of the expected width of the 95% confidence interval of the  ICCagreement 
for sample size and rater combination based on the CI width procedure under the expected conditions 
r = 0.8, v = 10, and no systematic difference between raters

Fig. 11  Recommendations for n and k using the CI lower limit procedure (r = 0.8, acceptable lower bound 
of CI is 0.65,  ICCone-way)
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back for another measurement. Based on the results of previous studies, or by running pre-
liminary analyses on the collected data within this study, we can make assumptions about: 
the expected correlation between the raters (i.e., the repeated measurements; e.g., 0.8), 
whether we expect one of these raters to systematically deviate from the others (e.g., no), 
and the expected variance in score (e.g., 10). Suppose we have collected data of three raters 
that each measured 25 patients; this is our adapted design. Now, we can see how much the 
95% CI will increase, when we don’t continue collecting data until we have included 50 
patients (i.e., your target design) (Fig. 12). The 95% CI will increase approximately from 
0.2 that we would have had if we measured 50 patients three times (i.e., target design) to 
0.3 now in the adapted design.

Another way to use this method, is to see how much one of the two variables n or k 
should increase to preserve the same level of precision as in the target design. For exam-
ple, in the target design 3 raters would assess 25 patients. As one of the raters dropped 
out, there are only 2 raters in the adapted design. The MSE ratio in this scenario was 1.43. 
To achieve the same level of precision in the adapted design with 2 raters as in the target 
design (n = 25, k = 3), the sample size should be increased by 1.43, resulting in a sample 
size of n = 36.

4  Discussion

From the simulation studies we learn that most gain in precision (i.e., largest change in 
MSE values) can be obtained by increasing an initially small sample sizes or small number 
of repeated measures. For example, an increase from 2 to 3 raters gains more precision 
than from 4 to 5 raters, or when the sample size is increased from 10 to 20 compared to 
an increase from 40 to 50. Moreover, results show that the expected ICC (i.e., correla-
tion between the repeated measurements), and the presence of a systematic difference have 

Fig. 12  Print screen of the expected decrease in width of the 95% confidence interval of the ICC between 
the adapted (k = 3, n = 25) and target design (k = 3, n = 50) based on the MSE ratio procedure
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most influence on the precision of the ICC and SEM estimations. Specifically, when the 
correlation increases the precision increases (i.e., smaller MSE values, and smaller width 
of CI). When one rater deviates the MSE values for  ICCone-way,  SEMone-way/SEMagreement 
increase, the coverage of the  ICCagreement and the  ICCone-way changes and the width of the 
CI increases for the  ICCone-way and  ICCagreement, but not for the  ICCconsistency. For example, 
to achieve an estimation with a width of the confidence interval of approximately 0.3 using 
an  ICCagreement model when one of the three raters systematically deviates, the sample size 
needs to be around 40 (when r = 0.7) or 30 (when r = 0.8). When no systematic difference 
occurs between the three repeated measurements, the required sample size when r = 0.7 or 
r = 0.8, can be lowered to approximately n = 35 or n = 20, respectively, to obtain an estima-
tion of the  ICCagreement with a CI width of 0.3.

Throughout this paper, we used ‘raters’ as the source of variation that varied across the 
repeated measurements, but the results are not limited to the use of raters as the source of 
variation. Accordingly, all results and recommendations also hold for other sources of vari-
ation, however feasibility of the recommendations may differ. For example, in a test–retest 
reliability study ‘occasion’ is the sources of variation of interest. However, it may not 
be feasible to have three repeated measurements of patients as patients may not be sta-
ble between three measurements. When only two repeated measurements can be obtained, 
sample size requirements increase. Note, that we only took one-way or two-way effect 
models into account, and we cannot generalize these results to three-way effects models. 
We did not simulate conditions of n between 50 and 100. Therefore, we can only roughly 
recommend that when there is a systematic difference between the repeated measurements, 
required sample size will increase up to 100, specifically when the  ICCone-way model is 
used, and likely around 75 when the  ICCagreement is used. Recommendations for specific 
conditions can be found in the online application  (https:// irise ekhout. shiny apps. io/ ICCpo 
wer/).

The selected sample of patients should be representative of the population in which 
the instrument will be used, as the variation of the patients will influence the ICC value. 
The result of the study can only be generalized to this population. The same holds for the 
selection of professionals that are involved in the measurements and any other source of 
variation that is being varied across the repeated measurements. Selecting only well trained 
raters in a reliability study will possibly decrease the variation between the raters, and sub-
sequently influence the ICC and SEM estimation. Therefore, it is important to well-con-
sider which patients and which professionals and other sources of variation are selected for 
the study. For an appropriate interpretation of the ICC and SEM values, complete reporting 
of research questions and rationale of choices made in the design (i.e., choice in type and 
number of patients, raters, equipment, circumstances etc.) is indispensable (Mokkink et al. 
2022).

As measurements can be expensive and burdensome to patients and professionals, we 
do not recommend to collect more data than required to estimate ICC or SEM values as 
this would lead to research waste. Therefore, it is important to involve these feasibility 
aspects in the decisions of the optimal sample size and repeated measurements. When a 
systematic difference between raters occurs, we showed that the use of a one-way model 
requires a higher sample size compared to two-way random effect models for agreement, 
which subsequently requires a higher sample size than the two-way mixed model for con-
sistency (see Fig. 7). The difference in data collection between the models, is that two-way 
effect models require extra predefined measurement conditions (Mokkink et al. 2022), e.g., 
only rater A and B are involved and measure all patients, while in one-way effects models 
no measurement conditions are defined, and any rater could measure the patient at any 

https://iriseekhout.shinyapps.io/ICCpower/
https://iriseekhout.shinyapps.io/ICCpower/
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occasion. As the goal of a reliability study is often to understand the influence of a specific 
source of variation (e.g., the rater) on the score (i.e., its systematic difference), a two-way 
random effects model is often the preferred statistical method (Mokkink et al. 2022). We 
have showed that this is also the most efficient model precision-wise.

Our recommendations are in line with other recommendations. Previous studies showed 
that the sample size is dependent on the correlation between the repeated measurements 
(Shoukri et al. 2004), and that adding more than three repeated measurements gains only 
little precision (Giraudeau and Mary 2001; Shoukri et  al. 2004). However, we provide 
recommendations under more conditions, i.e., for three types of effect models, and with 
and without systematic differences. Moreover, we present our recommendations in a user-
friendly way by the development of the Sample size decision assistant, that is available in 
the online application.

As an example, we used an appropriate width of the confidence interval around the 
point estimate of 0.3. We could have chosen another width. Zou (2012) used 0.2 as an 
appropriate interval, which we considered quite small. However, in the online application 
the consequences on precision with a width of 0.2 can be examined as well.

4.1  Strength and limitations

In this study we considered a large variety of conditions for the variables n, k, v, r. In con-
trast to previous studies on required sample sizes, we used three different and commonly 
used statistical models to estimate the parameters, and incorporated systematic differences 
between the repeated measurements. Moreover, we investigated the bias and precision of 
the ICC as well as of the SEM.

There are some limitations. Using 1000 samples seems arbitrarily. We calculated Monte 
Carlo standard errors (Morris et al. 2019), resulting in standard errors < 0.0001 in all simu-
lation conditions for the MSE estimate. So we conclude that 1000 samples are enough to 
obtain reasonably precise estimates. In this simulation study, it was not feasible to calculate 
confidence intervals around the SEM for each sample, as we would have to use bootstrap 
techniques in each of the 2 × 360 × 1000 and 216 × 1000 samples. Therefore, we could not 
evaluate the coverage for SEM. The precision of SEM is reflected in the MSE, and with this 
MSE we can compute the confidence interval width for each condition. This confidence 
width is used to reflect the gain precision of SEM in the MSE ratio procedure and to use as 
a criterion itself in the CI width procedure. The results for bias and MSE of SEM showed 
similar trends for precision and accuracy for SEM estimation as for ICC estimation.

Generally, we can see that the SEM can be estimated with more precision than the 
ICC. When in doubt, we propose to use recommendations on sample size and number of 
repeated measurements for ICC.

Furthermore, as conclusion based on simulation studies are restricted to the conditions 
investigated, our study is limited in that aspect. We only simulated three conditions of the 
correlations between repeated measurements (r =  0.6, 0.7 and 0.8) and we concluded that 
the presence of a systematic difference has most influence on the width of the confidence 
interval, specifically with the larger correlations (0.7 and 0.8). As we did not simulate the 
condition 0.9, we don’t know to what extent that holds for this condition. Moreover, we did 
not simulate any condition for n between 50 and 100. Therefore, we cannot give precise 
recommendations for when k = 2, as it is likely that the appropriate sample size in this 
situation will be between 50 and 100. Last, we simulated a systematic difference in one 
(k = 2–6) or two (k = 2–4) raters. However, the way the two raters deviated in the latter 
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condition was the same (i.e., by increasing the average score of the rater with 1 standard 
deviation in score). Other ways that raters may deviate were not investigated. Nevertheless, 
we feel that the use of one standard deviation deviance for one or two raters demonstrates 
a sufficient difference to test the relative performance of the two-way effect models, but not 
too large to be unrealistic.

We used multilevel methods to estimate the variance components that are subsequently 
used to calculate ICCs and SEMs. These methods are robust against missing data and able 
to deal with unbalanced designs. However, investigating the impact of missing data on the 
precision of the ICC and SEM estimations was beyond the scope of this study.

Our findings are utilized in an online application. The different ways in which this tool 
can be used provides insight into the influence of various conditions on the sample sizes 
and into the trade-off between various choices. Using this tool enables researchers to use 
the study findings to estimate required sample sizes for number of patients or number of 
raters (or other repetitions) for an efficient design of reliability studies. We aim to con-
tinue to improve the design and layout of the app to improve usability and user-friendliness 
of the application and to broaden the scope of the recommendations to match with the 
demands of users.

Appendix 1: Model specifications of ICCs and SEMs and the Agree 
package for R

The Agree package is developed to calculate the reliability and measurement error between 
the scores of multiple raters or repeated measurements in stable patients (Eekhout 2022). 
The intraclass correlation coefficient (ICC) and standard error of measurement (SEM) 
can be calculated for continuous scores. Multiple statistical models can be used to ana-
lyze reliability and measurement error. Often used models are the one-way random effects 
model, the two-way random effects model for agreement and the two-way mixed effects 
model for consistency. The research question together with the corresponding design of 
the study determine the best statistical model to analyze the data (Mokkink et al. 2022). In 
this “Appendix,” we will summarize these statistical models, and subsequently, we provide 
the a brief explanation of the functions from the Agree package that were used and present 
the R code that we used in the simulation studies. For more information on specific statisti-
cal models (including the multi-level models) we refer to Mokkink et al. (Mokkink et al. 
2022).

Statistical models for ICCs and SEMs

One‑way random effects model

In the design of the one-way random effects model the observers are unknown, so the effect 
of observers is not present in the model. This model is specified in Eq. 1:

(1)xij = �0 + a0i + eij

a0i ∼ N(0, �2

a0
)
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where  xij denotes the score for observation j of patient i, β0 denotes the overall population 
mean of the observations,  a0i denotes the random patient effect with a mean of 0 and a vari-
ance of σ2

a0 and  eij denotes the residual variance in the observed test scores with a mean 
of 0 and a variance of σ2ε. I this model the observed test scores are only explained by the 
differences between patients.

The  ICCone-way is the variance between the subjects (σ2
j) divided by the sum of the 

subject variance (σ2
j) and the residual variance (σ2

ε). The  ICCone-way is computed as fol-
lows:  ICCone-way = σ2

j/(σ2
j + σ2

ε). The  ICCone-way assumes that each subject is rated by 
a different set of raters, that are randomly selected from a larger population of judges 
(Shrout and Fleiss 1979). The  SEMone-way is the square root of the error variance (i.e., 
 SEMone-way = √σ2

ε). For the  ICCone-way, and  SEMone-way only the level 1, the patient level, is 
random. The rater variance is not used.

Two‑way random effects model for agreement

In the design of the two-way random effects model of agreement and the two-way mixed 
effects model of consistency the observers are known, so these effects are present in the 
models. In the two-way random effects model of agreement an additional random effect is 
added for the observers, as presented in Eq. 2.

where xij denotes the score for observation j of patient i, β0 denotes the overall population 
mean of the observations, a0i denotes the random patient effect with a mean of 0 and a vari-
ance of σ2

a0,  c0j denotes the random observer effect with a mean of 0 and a variance of σc0
2 

and  eij denotes the residual variance in the observed test scores with a mean of 0 and a vari-
ance of σ2

ε. This model accounts for systematic differences between observers represented 
in the random effect of the observers. The  ICCagreement is the variance between the subjects 
(σ2

j) divided by the sum of the subject variance (σ2
j), rater variance (σ2

k) and the residual 
variance (σ2

ε). The  ICCagreement  is computed as follows:ICCagreement = σ2
j/(σ2

j + σ2
k + σ2

ε) 
(Shrout and Fleiss 1979). All subjects are rated by the same set of raters, and the rater vari-
ance is taken into account in the calculation of the ICC. The  SEMagreement is the square root 
of the sum of the rater variance and the error variance (i.e.,  SEMagreement = √σ2

r + σ2
ε). For 

the  ICCagreement and the  SEMagreement both the level 1 and level 2 are random.

eij ∼ N(0, �2

�
)

(2)xij = �0 + a0i + c0j + eij

a0i ∼ N(0, �2

a0
)

c0j ∼ N(0, �2

c0
)

eij ∼ N(0, �2

�
)
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Two‑way mixed effects model for consistency

In the design of the two-way mixed effects model of consistency the effect for observers 
is considered as fixed, so the systematic differences between observers are not taken into 
account. The two-way mixed effects model is presented in Eq. 3:

where  xij denotes the score for observation j of patient i, β0 denotes the overall population 
mean of the observations,  a0i denotes the random patient effect with a mean of 0 and a 
variance of σ2

a0,  c1 denotes the fixed observer effect (so this effect does not vary between 
observers as opposed to the observer effect  (c0j) specified in Eq.  2) and  eij denotes the 
residual variance in the observed test scores with a mean of 0 and a variance of σ2

ε. The 
 ICCconsistency is the variance between the subjects (σ2

j) divided by the sum of the subject 
variance (σ2

j) and the residual variance (σ2
ε). The  rater variance is not used to calculate 

the ICC and can therefore also be considered as a fixed effect. The  ICCconsistency  is com-
puted as follows:  ICCconsistency = σ2

j\(σ2
j + σ2

ε) (Shrout and Fleiss 1979). The  SEMconsistency 
is the square root of the error variance (i.e.,  SEMconsistenct = √σ2

ε). For the  ICCconsistency and 
 SEMconsistency the level 1 (subject) is a random effect and the level 2 (rater) is fixed.

The Agree package for R

The package can be installed directly from GitHub by:
remotes::install_github(repo = ’iriseekhout/Agree’).
In the Agree package the icc() function computes the parameter for both the one- and 

two-way effects models. The icc() function can be used to estimate the reliability param-
eters (variance components and ICC’s), the 95% confidence intervals for the ICCs, and the 
SEM parameters. The confidence intervals for ICC one-way and consistency are computed 
with the exact F method. F = (k* σ2

j + σ2
ε)/σ2

ε, with df1 = n − 1 and df2 = n (k − 1) (Shrout 
and Fleiss 1979). For the  ICCagreement an approximate CI was derived, which accounts for 
the three independent variance components (Satterthwaite 1946; Fleiss and Shrout 1978).

Simulation application

For the simulation study we used the icc() function from the Agree package and speci-
fied that the three types of reliability and measurement error should be computed from the 
same model by using icc (data, onemodel = TRUE). Consequently, first the two-level model 
was estimated with a random intercept for both patients and raters. The  ICCagreement was 
obtained with the estimated variance components from this model (i.e., for patient, rater 
and residual). For the  ICCconsistency, only the estimated variance at the subject level and the 
error variance were used to compute the ICC. Accordingly, these variance components are 

(3)xij = �0 + a0i + c1 + eij

a0i ∼ N(0, �2

0a
)

eij ∼ N(0, �2

�
)
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adjusted for rater variance, but rater variance is not used to compute the ICC. To obtain the 
 ICCone-way, the estimated rater variance is part of the error variance. The subject variance 
is computed by subtracting the rater variance from the sum of subject variance over the 
raters, which is then averaged (i.e., σ2

j = ((k * σ2
j) − σ2

k)/k).

R code for simulation study

#simulation conditions.
k = c(2,3,4,5,6) #number of raters.
#k <—k[2].
cor = c(0.6, 0.7, 0.8) #raw correlation between the repeated measurements.
#cor <—cor[2].
n = c(10,20,30,40,50,100,200) #sample size (patients).
#n <—n[2].
vari = c(1, 10, 100) #variance in scores.
#vari <—vari[1].
#means when 1 rater deviates.
means <—c(sqrt(vari), rep(0,(k-1))) #means in scores, when first rater deviates with 1 

standard deviation.
means <—means * vari.
#covariance.
icc_cor <—matrix(cor,k,k) #correlation matrix.
diag(icc_cor) <—1.
icc_cov <—icc_cor*vari.
#simulation data sample.
data1 <—as.data.frame(MASS::mvrnorm(means, icc_cov, n = n)).
#compute ICC types and SEM.
icc(data1, onemodel = TRUE).

Appendix 2: MSE values of  ICCagreement estimations for k per sample size 
n for each condition r, when one rater systematically deviates

See Fig. 13.
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