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Abstract
Unmeasured confounding undermines the validity of observational studies. Although ran-
domized clinical trials (RCTs) are considered the “gold standard” of study types, we often 
observe divergent findings between RCTs and empirical settings. We present the “L-table”, 
a simulation-based, prior knowledge (e.g., RCTs) guided approach that estimates the true 
effect adjusting for the potential influence of unmeasured confounders when using obser-
vational data. Using electronic health record data from Kaiser Permanente Southern Cali-
fornia, we compare the effectiveness of coronary artery bypass grafting (CABG) and per-
cutaneous coronary intervention (PCI) on endpoints at 1, 3, 5, and 10 years for patients 
with stable ischemic heart disease. We applied the L-table approach to the propensity 
score adjusted cohort to derive the omitted-confounder-adjusted estimated effects. After 
the L-table adjustment, CABG patients are 57.6% less likely to encounter major adverse 
cardiac and cerebrovascular event (MACCE) at 1 year (OR [95% CI] 0.424 [0.396, 0.517]), 
56.4% less likely at 3 years (OR [95% CI] 0.436 [0.369, 0.527]), and 48.9% less likely at 
5  years (OR [95% CI] 0.511 [0.451, 0.538]). CABG patients are also 49.5% less likely 
to die by the end of 10 years than PCI patients (OR [95% CI] 0.505 [0.446, 0.582]). We 
found the estimated true effects all shifted towards CABG as a more effective procedure 
that led to better health outcomes compared to PCI. Unlike existing sensitivity tools, the 
L-table approach explicitly lays out probable values and can therefore better support clini-
cal decision-making. We recommend using L-table as a supplement to available techniques 
of sensitivity analysis.
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1 Introduction

Healthcare utilization databases represent a major data source for studies seeking to infer 
causal relationships between treatments and outcomes. The principal challenge for such 
studies comes from unmeasured confounders (Fig.  1). It is important that observational 
studies address the issue of unmeasured confounding as it is an often-overlooked threat to 
validity of observational studies (Greenland 1996, 2009, 1999, 2005; Imbens and Rubin 
2015; Rosenbaum 2010; VanderWeele and Ding 2017). With observational data, unmeas-
ured confounding bias is a central limitation—uncontrolled and unmeasured covariates 
may confound the relationship between treatment and outcome (Rosenbaum 1991; Corn-
field et al. 1959).

A comprehensive array of sensitivity analysis techniques has been designed to evaluate 
evidence of causation in the presence of unmeasured confounding (Greenland 1996, 1999; 
VanderWeele and Ding 2017; Rosenbaum and Small 2017; Greenland and Mansournia 
2015; Chiba 2012; Vanderweele and Arah 2011; Schneeweiss 2006; Brumback et al. 2004; 
Rosenbaum and Rubin 1983). Sensitivity analysis typically assess the magnitude of pos-
sible biases, and report the level of confidence for the study results.

As a supplement to existing sensitivity analysis, the E-value was introduced to assess 
the strength of the unmeasured confounding that could explain away the effects, thereby 
casting reasonable doubt on the accuracy of the estimate (VanderWeele and Ding 2017). 
E-value was defined as “the minimum strength of association, on the risk ratio scale, that 
an unmeasured confounder would need to have with both the treatment and the outcome 
to fully explain away a specific treatment–outcome association, conditional on the meas-
ured covariates” (VanderWeele and Ding 2017). In general, a small magnitude of E-value 
should increase concern that unmeasured confounding bias might be substantial relative to 
the estimated effect. Since its introduction, E-values have helped alleviate the over-reliance 
on the p-value and offset inadequate assessments of robustness to bias. Nevertheless, the 
E-value derivation relies on assumed relationships between binary variables, which do not 
necessarily generalize to mixed binary and continuous variables. The discussion around 
E-values inspired us to develop a new tool to supplement previously uncovered areas in 

Fig. 1  Causal relationship between treatment, outcome, and confounders
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sensitivity analysis of unmeasured confounders. The method we propose aims to help 
researchers find a range of likely true values rather than bounding the true value or focus-
ing on statistical significance. Presenting a range rather than simply a bounding end point 
gives a more balanced sense of likely values.

We use an empirical example to illustrate how this new tool works. The choice of opti-
mal coronary revascularization methods has been vigorously debated: CABG is more 
invasive than PCI, has a longer recovery time, remains more costly, but the incremental 
cost-effectiveness ratio was favorable (Lim 2014). The SYNTAX score is a scoring sys-
tem calculated based on clinical elements indicating disease stages. While it is a useful 
proxy for disease severity, the severity of coronary artery disease is often evaluated by 
physicians’ visual inspection, and the SYNTAX score is rarely calculated and thus remains 
unmeasured in electronic health records (EHR). Several randomized clinical trials (RCTs) 
found that patients with low and intermediate SYNTAX scores can be treated with PCI 
or CABG with equal results; and those with a high score do better with CABG (Mohr 
et al. 2013; Serruys et al. 2009; Kappetein et al. 2011; Thuijs et al. 2019). However, to our 
knowledge no observational studies have attained sufficient sample size and hence power, 
to detect the difference.

RCTs were often considered the “gold standard” of study types. Nevertheless, we often 
observe divergent findings between RCTs and empirical settings (Rothman 2014; Hernan 
et al. 2013). Rather than simply summarize the literature from RCTs as an evidence report, 
we consider how the answers might be different in our situation, and whether the conclu-
sions drawn from RCTs can be generalized to our circumstances. In this paper we show 
how we use information from both settings to reach a conclusion. We make no claim that 
the estimate of treatment effect we generate is better than an RCT for the general popula-
tion. We simply suggest that the proper estimate of the treatment effect for our population 
might be different from what one would see in a clinical trial. Consequently, we seek to 
incorporate the internal validity of a clinical trial that may not directly generalize to our 
unique system and population.

In this study we compare the safety and effectiveness of CABG vs. PCI for patients with 
stable ischemic heart disease using observational data, and introduce the “L-table,” a simu-
lation-based, prior knowledge guided approach, which enables investigators to use external 
information about unmeasured confounders (e.g., SYNTAX score) to identify a plausible 
range of estimated true effects in observational studies. We call it the L-table, named after 
uncovering the “Location” of the graphical frame in the numeric table that contains the 
estimated true effects corresponding to assumed correlations. Our framework is flexible 
enough to adapt to different types of models. The statistical code for L-table is open source 
with customizable parameters.

This approach uses well-known relationships from the literature. Although much of 
the literature is focused on testing statistical significance, our focus falls on understanding 
plausible effect sizes. This is an often-underappreciated element in applying confounder 
analysis to practical decision-making. Some consideration of the practical significance of 
the results must follow statistical significance. This is especially true in comparative effec-
tiveness problems where an incumbent treatment already exists. A focus on plausible effect 
sizes better supports some real-world applications like cost effectiveness analysis and the 
allocation of scarce resources to competing interventions.
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2  Methods

2.1  Model framework

We assume that the effect of a treatment on the outcomes can be estimated by a general-
ized linear model. In this study, we use a logistic model to illustrate how we have used the 
proposed method to evaluate the effectiveness of cardiovascular procedures. The depend-
ent variable is a binary outcome of interest; the independent variables include treatment, 
observed and unobserved confounders.

It is important to be precise in the way we talk about correlations when applying this 
method. The main issue is the difference between an estimator and an estimand. An esti-
mator uses a computation on observed data to calculate an estimate. Here we will use esti-
mand for parameters, typically unknown, that we wish to estimate. An easy source of con-
fusion in our setting is that an estimator may be estimating different things depending on 
the type of data it is applied to. For example, the Pearson correlation (estimator) estimates 
the product-moment correlation (estimand) when applied to bivariate normal data. The 
same estimator calculates the Spearman correlation when applied to binary data.

Our simulation framing uses a trivariate normal distribution to generate the data that we 
summarize to estimate the bias from unmeasured confounders. The correlations are used 
to construct a simulation data set with a known true value. Correlation-based simulation 
is the simplest way to characterize bias in a normal theory model. Specifically, the correla-
tions between unmeasured confounder and other components in the model were specified 
with assigned values to simulate the dataset generating the unmeasured confounding bias. 
This is one standard approach to characterizing omitted variable bias (Maddala 1983). It 
is a more flexible and general approach than the manipulation of odds or risk ratios from 
contingency tables. We will refer to these correlations as “product-moment” correlations 
(or “latent” correlations). This is similar to the way many econometrics books motivate 
limited dependent variables (Maddala 1983). The challenge is that correlations available in 
the literature or that inform clinical intuition may not be straight-forward estimates of the 
product-moment correlations. It may be necessary to transform the available correlations 
into these product-moment correlations to run the simulations. After the simulations have 
been run it may be necessary to transform the results back to the original scale for report-
ing in the original context.

(1) The tetrachoric correlation case
  Tetrachoric correlation characterizes the data in a 2 by 2 table by hypothesizing a 

latent bivariate normal variable that is dichotomized in both dimensions to generate 
the 2 by 2 table. The simple Spearman correlation calculated from the 2 by 2 table is 
not an estimate of the latent correlation. What is needed is a tetrachoric correlation 
estimate.

  This will be the common case for the relationship between treatment and outcome. 
Fortunately, this is data we will have in observational studies. Getting the needed latent 
correlation estimate is simply a matter of calculating the tetrachoric correlation with 
appropriate software. If the original Spearman metric is desired for reporting results 
the dichotomization that defines the tetrachoric correlation can be mimicked in the 
simulation.

  The generalization of tetrachoric correlation to ordered categorical variables in one 
or both dimensions is called polychoric correlation. If ordered categorical omitted 
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confounders are available in the literature the same process is used with polychoric 
correlations instead of tetrachoric correlations.

(2) The point-biserial case
  Point-biserial correlation is the application of the Pearson correlation calculation 

to a binary and a continuous variable. Conceptually, our framework is similar to the 
tetrachoric correlation situation, but in this case only one of the two latent variables 
has been dichotomized. We want to use the latent correlation in our simulation, but the 
point-biserial correlation does not estimate the latent correlation. However, the biserial 
correlation (Cox 1974) provides an estimate of the latent correlation we need.

  This is the case we commonly need to address when we estimate the correlation 
between the treatment and a continuous unmeasured confounder. This estimate usually 
comes from the literature where we are unlikely to have access to the subject level data. 
Fortunately, there is a formula to transform the point-biserial correlation into a biserial 
correlation using only summary quantities that are often available in the literature. As 
in the tetrachoric correlation case, dichotomization in the simulation can transform the 
results to the original point-biserial scale if needed as an aid to interpretation.

Our method simulates from these underlying correlations the drivers of the causal rela-
tionship to assess the estimated true effect when an important confounder is omitted. The 
model framework can be illustrated in a pipeline composed of four major steps (Fig. 2).

Step 1. Model empirical data.

1. (Optional but Optimal) Balance the empirical data. We used matched propensity 
score weighting (other propensity score methods can be substituted).

2. Estimate the effect based on balanced empirical data: �est_emp
3. Calculate proportion of treatment and outcome: treatment (%) and outcome (%)

Step 2. Ascertain correlation coefficients.

1. Calculate correlation between outcome and treatment ( �YT_emp ) based on empirical 
data. In this study, we applied tetrachoric correlation for the binary outcome and 
binary treatment. In a log-normal cost model a biserial correlation could be used.

Fig. 2  Pipeline of model framework to generate L-table
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2. Deduce observed correlations between the unmeasured confounder and outcome 
( �YU_ext ), and correlations between the unmeasured confounder and treatment 
( �TU_ext ) based on external information. We calculated both polychoric correlation 
(for simulation input) and biserial correlation (for matching L-table’s label), because 
the SYNTAX score was reported in ordinal form in the RCTs, and its original form 
is continuous.

3. Make a sequence of values for each latent correlation coefficient estimate with small 
intervals. We created a sequence using � ±0.3 with 0.05 intervals.

Step 3. Simulation.

1. Construct a collection of correlation matrices, tables that contain correlation coeffi-
cients between variables. These matrices are restricted to the positive definite cases; 
and are based on all combinations of the latent correlation coefficients estimations 
(from Step 2–3).

2. Simulate multivariate normal distributed datasets based on the collection of correla-
tion matrices. Each dataset is generated based on one correlation coefficient matrix.

(a) Simulate 100 (an adjustable parameter) datasets according to each correla-
tion matrix. Each dataset contains 1000 (an adjustable parameter) data-
points.

(b) Dichotomize the outcomes and treatments based on the proportions of treat-
ment and outcome in empirical data (from Step 1–3).

(c) Reassess the correlation coefficients in simulated datasets based on the 
recently dichotomized variables, and result in biserial �YU_sim and biserial 
�TU_sim  (estimates of the latent correlations).

(d) Perform suitable modeling for simulated datasets. We used logistic regres-
sion in this example.

(e) Output means of your estimates ( �est_sim ) based on the model of each 100 
datasets without inclusion of the measured cofounder, and the estimated 
true estimates ( �true_sim ) with inclusion of the unmeasured confounder in 
the model (from Step 3-2d), along with the corresponding estimates of the 
latent correlation in simulated datasets (from Step 3-2c).

Step 4. Obtain estimated true effects.

1. Select a small range around your empirical estimate �est_emp (from Step 1–2).We 
used ln�est_emp ±0.1.

2. Subset the outputs (from Step 3-2e) based on the collections of values around �est_emp
(from Step 4 -1) that match �est_sim (from Step 3-2e). This selected data includes 
�est_sim , �true_sim , �YU_sim , and �TU_sim.

3. Construct L-table

(a) (optional) Output contour plot
(b) Use the subgroup data (from Step 4–2) to tabulate �true_sim to form the 

L-table, which employs �TU_sim as column label and �YU_sim as row label.

4. Assess the estimated true effects
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Based on L-table (from step 4-3b), we can locate the estimated true effect �true using 
�YU_ext and �TU_ext in original context (from Step 2–2) to match the L-table’s labels. We 
used biserial correlations in this study.

Confidence intervals of the estimated true effect can be obtained by repeating step 4 
with confidence limits from the empirical analysis replacing the effect estimate.

2.2  Simulation calculation

The simulation uses a generalized linear model relationship between outcome and treat-
ment that is adjusted for an unmeasured confounder. The latent outcome, treatment and 
unmeasured variables are generated by a multivariate normal distribution. The covariance 
matrix is created based on the correlation matrix which is composed of the correlation 
coefficients guided by prior knowledge (Supplementary Figure 1). Because the latent cor-
relation will change to an observed correlation after some variables were dichotomized in 
simulation, we recommend users assign an adequate range surrounding the latent correla-
tion coefficients to span the needed range of observed correlations after dichotomization. 
Within this range, we specify the values of correlation coefficients with equally spaced 
values.

The simulations only use correlation matrices that satisfied positive definiteness. By 
working with the correlation matrix, we are implicitly using standardized regression coef-
ficients. In applications with continuous outcomes transformation to the original coefficient 
scale will be required. The propensity score adjustment with matching weights assures 
covariate balance between the treatment and comparison groups, and allows us to work 
with our simple trivariate normal setup in simulation—so that we do not need to simulate 
other confounders. We also assume that the unmeasured confounder used in the simulation 
represents the composite effect from all unmeasured confounders.

Once the initial dataset was simulated, we dichotomized outcome and treatment vari-
ables based on their corresponding proportions as found in the empirical data. We then 
calculated the latent correlation coefficients of outcome and unmeasured variable, and 
latent correlation coefficients of treatment and unmeasured variable, in order to use them in 
the results graph. These updated correlation coefficients were used to label the coordinates 
of the contour plot, or columns and rows for the L-table. We simulated each dataset with 
1000 observations based on a corresponding correlation matrix. We made 100 iterations of 
this data generation procedure. Mean and median of the estimated effects with and with-
out adjusting for unmeasured confounder were obtained. We used the multivariate normal 
approach to generate the data that can be easily generalized to other model types upon 
modification of the R code (Duan 2021).

2.3  Data source

Our analysis is based on a retrospective cohort study using EHR data from the Kaiser Per-
manente Southern California (KPSC) Health System. KPSC provides care to a racially, 
ethnically and socio-economically diverse population that is broadly representative of the 
racial-ethnic groups of Southern California (Derose et al. 2013). The study protocol was 
approved by the KPSC Institutional Review Board (IRB). A waiver of informed consent 
was obtained due to the observational nature of the study.

Using procedure codes and International Classification of Diseases (ICD) 9/10 codes 
(Supplementary Table 1), we searched EHR data for adult patients (age ≥ 18 years) who 
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underwent a revascularization procedure (CABG or PCI) between January 1st, 2006 and 
March 1st, 2015. We chose March 1st, 2015 as the end of the inclusion period to mitigate 
any impacts on hospitalization, mortality, and the means to facilitate revascularization pro-
cedures caused by the Covid-19 pandemic and to ensure this cohort has at least 5 years 
follow up time until March 2020, when healthcare utilization in California was affected by 
the state’s stay-at-home order. The index date was defined as that of the first revasculariza-
tion procedure the patient received. We excluded patients who were not KPSC members or 
who did not hold continuous one-year membership prior to the index date (allowing for a 
45-days gap), and who underwent revascularization procedures prior to the index date. To 
identify patients with ischemic heart disease, two conditions were used: first, a principal 
diagnosis of Coronary Artery disease or Angina; second, no prior history of acute myocar-
dial infarction. For inclusion in this cohort, both conditions had to be met at least twice in 
outpatient visits or at least once in inpatient admission within a year before the index date 
(Fig. 3).

Using this cohort, we created sub-cohorts for the 1-year, 3-year, 5-year, and 10-year 
endpoints to study the treatment effects in the short- and long-term. To ensure sufficient 
follow-up time for each patient, patients were excluded from the sub-cohort analysis if their 
KPSC membership lapsed prior to the end of each study period. Patients with insufficient 
follow-up time but experienced the endpoints wouldn’t be captured by our data, hence they 
were excluded from the particular sub-cohort analysis. Patients who experienced an out-
come event in early sub-cohorts will be considered as having an outcome event in the later 
sub-cohorts regardless of the change in their membership status. We moved forward the 
end of inclusion date for the 10-year cohort to March 1st, 2010 to allow sufficient follow-
up time. Patients’ disease history and outcomes were identified using the ICD 9/10 codes 
(Supplementary Table 2).

We identified covariates in the following categories: baseline demographics, medical 
comorbidities, cardiac risk factors, and cardiac medication usage. Medical comorbidities 
and cardiac risk factors were collected using ICD codes for one year prior to the index 
date. Baseline concomitant medications were identified using outpatient pharmacy records. 
The study endpoints include all-cause mortality, hospitalization from either myocardial 
infarction or stroke, repeat revascularization, and composite major cardiovascular events 
(MACCE) (Mohr et  al. 2013), defined as one of above endpoints by the end of 1  year, 
3 years, 5 years, or 10 years from the index date.

Mortality data was pulled from a mortality data mart derived from multiple sources: 
state of California’s death master files, Social Security Administrative death master files, 
hospital death records, and insurance enrollment records. The endpoints for myocardial 
infarction and stroke were identified with a principal diagnosis at inpatient settings. The 
repeated revascularization procedures were identified as the event after discharge following 
the first procedure.

2.4  External information

To locate the estimated true effects using the L-table, we need to identify potential unmeas-
ured confounders and to extract external information from available sources. The essential 
information concerns the correlation between unmeasured confounding and outcomes, and 
the correlation between unmeasured confounding and treatment. We need one L-table for 
each outcome. These correlation coefficients can be obtained from a pilot study or other 
relevant publications. Users may need to perform transformations or simulations to convert 
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the source information to suitable forms. For instance, based on available information, user 
can transform the point-biserial correlation into a biserial correlation; dichotomize con-
tinuous values in simulation to form a point-biserial scale.

We derived the correlation coefficients between a SYNTAX score and outcomes from 
published results of the SYNTAX trials (Mohr et al. 2013; Serruys et al. 2009; Kappetein 
et al. 2011; Thuijs et al. 2019). In this empirical example, we considered a SYNTAX score 
representing a linear combination of multiple omitted confounders. We chose to gather 
this information from RCTs because most sources of measured and unmeasured confound-
ing are mitigated by the study design. In applications where a high quality RCT is not 
available, a plausible range of correlations may be estimated using clinical judgement. We 
derived the correlation between the SYNTAX scores and treatment from an observational 

Fig. 3  Study cohort flowchart
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study (Valle et al. 2019) which accounts for the behavior effects of physicians’ and patients’ 
treatment choices. Subjective choices of this correlation may be used for sensitivity analy-
sis or when suitable observational analyses are not available.

2.5  Statistical analysis

Descriptive statistics on patients’ characteristics, including demographics, comorbidity, 
and medication history were reported by treatment groups using frequencies and percent-
ages. We calculated standardized mean difference before and after applying matching 
weights. A difference of 0.10 or less was considered an adequate balance between the two 
groups.

To resemble the enrollment patterns in RCTs and adjust for selection bias, we prepared 
data with matching weight (Li and Greene 2013), a propensity score weighting method. 
Matching weights are a variant of the inverse probability weight, but the matching weight 
estimator assigns greater weight to individuals whose propensity score is close to 0.5 (i.e., 
the circumstance generated in a two-arm RCT with clinical equipoise). The underlying pro-
pensity score model used a logistic regression between treatment (dependent variable) and 
57 baseline covariates (independent variables), which included age, sex, race, comorbidi-
ties and baseline medication use.

Logistic regression was performed to assess the treatment effects. We reported crude 
(unadjusted), and matching weighted Odds Ratios, along with their 95% confidence inter-
val, p values, and E-values. A small E value suggested that unmeasured confounding 
should be a concern (VanderWeele and Ding 2017). A p value of < 0.05 was the nominal 
level of significance.

Using simulated datasets, we assessed estimated effects with and without the unmeas-
ured confounder in the model. Using the method of bivariate interpolation for irregularly 
distributed data points (Akima 1978, 1996), we are able to plot the estimated true effects 
against biserial correlations coefficients between outcome and unmeasured confounding, 
and between treatment and unmeasured confounding. The pattern of the estimated true 
effect in relation to these correlations can be visualized in the contour plot. We tabulated 
these estimated true effects to form the L-table, similar to the assembly of a Chi-squared 
table, where the column was labeled with the correlation coefficients between treatment 
and unmeasured confounders, and the row was labeled with the correlation coefficients 
between outcome and unmeasured confounders. The user can adopt the L-table as a refer-
ence to locate a plausible range of estimated true effects with prior information about the 
correlations ( �YU_ext and �TU_ext ). The values bounded by the perimeter within the L-table 
represent the estimated true values of the causal effect on the scale of the applied analytic 
model. This effect is aligned with the correlations between unmeasured confounding and 
outcome on the one hand, and between unmeasured confounding and treatment—condi-
tional on the measured covariates—on the other.

Published studies may report varied findings. The polychoric correlation between treat-
ment selection and the SYNTAX score derived from external publication we used was 
0.625. To explore how sensitive the L-Table is to variation in inputs, we performed a sen-
sitivity analysis by assigning two different correlation coefficients (0.5 and 0.7) as the rela-
tionships between the treatment and the unmeasured confounders in simulation, and ran the 
models with the same procedures. All statistical analyses were conducted in SAS 9.4 (SAS 
Institute Inc., Cary, NC) and R version 4.1.0 (R core Team 2021).
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3  Results

We identified 12,216 adult KPSC members with stable ischemic heart disease who 
underwent PCI or CABG between January 1, 2006 and March 1, 2015. Among these 
patients, 5513 received CABG, and 6703 received PCI. In this group, 11,298 patients 
maintained their memberships by the 5th year: 5158 received CABG and 6140 received 
PCI (Table 1). The average age of CABG patients was 2.5 years older than their PCI 
counterparts (p < 0.001). More men than women underwent CABG (77.5% vs. 73.5%, 
p < 0.001). Asians were more likely to undergo CABG (11.6%) compared to PCI (9.0%). 
In general, CABG patients had more comorbidities and more frequently used cardiac 
medications. The baseline characteristics of the study cohort between CABG and PCI 
were balanced (SMD < 0.1) after propensity-score adjustment with matching weights. 
We used the weighted cohorts for our analysis.

After propensity score adjustment, patients treated with CABG were less likely to 
experience MACCE, mortality, hospitalization for MI, or repeat revascularization 
(Table 2). However, CABG patients are more likely to be hospitalized due to stroke after 
the revascularization procedure, but these effects were not statistically significant. All 
E-values are small, which suggests that unmeasured confounding should be considered.

We assessed the proportion of outcome and the proportion of treatment from adjusted 
empirical data, and correlation coefficients between each of the end points and SYN-
TAX score (low, intermediate, high) based on the SYNTAX trials (Mohr et  al. 2013; 
Serruys et al. 2009; Kappetein et al. 2011; Thuijs et al. 2019) (Supplementary Tables 3, 
4). Using 5-year MACCE as an example, we first calculated the tetrachoric correlation 
coefficients between treatment and outcome from our data ( ρYT = − 0.047); and derived 
the polychoric correlation coefficients based on an RCT study (Mohr et  al. 2013) 
( ρYU = 0.062) and a population-based study (Valle et  al. 2019) ( ρTU = 0.625). We then 
assigned these parameters to generate simulated data, where the treatment (45.7%) and 
outcome (25.1%) variables would be dichotomized based on empirical data.

The contour plot (Fig. 4) shows the estimated true effects when the estimated effects 
from simulation were within a close range of the estimated effect for MACCE at 5 years 
(OR = 0.759). A point or range of true effects can be identified based on the correlation 
coefficients on the horizontal and vertical labels. This set of the estimated true effects 
were tabulated to form the L-table (Supplement Figure 2). We presented an example of 
a partial L-table (Table 3) to illustrate how we identify the estimated true effects based 
on the present latent correlation (biserial correlation): ρTU = 0.586 and ρYU = 0.055. We 
took the mean of the values bordered by the frame and reached the desired Odds Ratio: 
0.511.

After the adjustments made with the L-table, we found the estimated true effects all 
shifted in the direction that favors CABG as a much more effective procedure that led 
to better health outcomes compared to PCI, including hospitalization due to stoke at 
5  year (OR [95% CI] 0.824 [0.649, 1.035]) (Table  2). These results suggest that the 
unmeasured confounder –disease severity, may have undermined the true contribution 
of CABG, because sicker people are more likely to receive CABG.

Different correlation inputs resulted in different L-table adjusted true effects. For 
5-year MACCE, our original estimated true odds ratio was 0.511 (95% CI [0.451, 
0.538]). When we assign �TU= 0.5 or 0.7 in simulation, the L-table adjusted true odds 
ratio became 0.45 (95% CI [0.397, 0.516]) and 0.517 (95% CI [0.459, 0.607]). These 
directions of the adjusted effect were the same. However, we found that hospitalization 
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Fig. 4  Contour plot generated by L-table method illustrating estimated true effects corresponding to speci-
fied correlations

Table 3  Sample of partial L-table where the true effect is identified (MACCE at 5 year, OR
est

=0.759, �
TU

=0.586, �
YU

=0.055)

�
TU

 , correlation coefficient between treatment and unmeasured confounder; �
YU

 , correlation coefficient 
between outcome and unmeasured confounder
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due to stroke at 5  years was no longer statistically significant (OR [95% CI] 0.824 
[0.649, 1.035]) when we assign �TU= 0.7 in simulation (Table 4).

4  Discussion

We introduce the L-table and illustrate how it can be used to make potential causal infer-
ences using observational data. We have illustrated the application of the L-table in a real-
world example, studying the safety and effectiveness of CABG vs. PCI for patients with 
ischemic heart disease at 1, 3, 5 and 10 years. We incorporated external information into 
the simulation with customizable parameters to locate the plausible range of estimated true 
effects. The foundation of the L-table is the correlation matrix for an ordinary linear esti-
mate in simple or multivariate linear regression, but can be applied to most/many general-
ized linear models.

We found CABG is associated with better safety and effectiveness than PCI for patients 
with stable ischemic heart disease. After L-table adjustment, we found that the Odds Ratio 
shifted to smaller values, suggesting that unmeasured confounding decreased CABG’s 
estimated advantage in standard analyses. We would have underestimated CABG’s greater 
protective effect if disease severity were not accounted for.

In RCTs, the correlation between treatment and unmeasured confounders is approxi-
mately zero by design. In observational studies we found that the correlations between 
treatment selection and SYNTAX score are similar in a US-based study (Valle et al. 2019) 
(which we used in this study) and in a South Korean study (Kim et al. 2010), suggesting 
that clinicians from different countries share treatment preferences. The L-table adjusted 
effects vary depending on the simulation inputs. In this setting, sensitivity analysis may be 
more important than literal interpretation of standard errors. Therefore, users are advised to 
address the generalizability of the external data they refer to.

To choose between CABG and PCI is more complex in real life than in a RCT setting. 
Our results confirmed the findings from the RCTs, and validated the generalizability of the 
inference from the SYNTAX trials to our study. RCTs have great internal validity but may 
have poor external validity. The strategy we deployed in this study—extracting information 
(i.e., correlations) from external sources (i.e., RCTs), and integrating the information into 

Table 4  Sensitivity analysis for variation of correlation inputs

MI myocardial infarction, MACCE major adverse cardiac and cerebrovascular events

Year Endpoint L-table adjusted OR
true

 (95% CI)

�
TU

=0.625 �
TU

=0.5 �
TU

=0.7

1 years MACCE 0.424 (0.396, 0.517) 0.342 (0.333, 0.431) 0.456 (0.416, 0.592)
3 years MACCE 0.436 (0.369, 0.527) 0.373 (0.349, 0.458) 0.459 (0.433, 0.575)
5 years MACCE 0.511 (0.451, 0.538) 0.45 (0.397, 0.516) 0.517 (0.459, 0.607)

Death 0.457 (0.376, 0.468) 0.379 (0.337, 0.416) 0.428 (0.397, 0.485)
Stroke 0.694 (0.551, 0.873) 0.538 (0.45, 0.702) 0.824 (0.649, 1.035)
MI 0.358 (0.264,0.368) 0.258 (0.241, 0.326) 0.411 (0.283, 0.436)
Repeat revascu-

larization
0.304 (0.235, 0.344) 0.272 (0.213, 0.318) 0.329 (0.256, 0.412)

10 years Death 0.505 (0.446, 0.582) 0.501 (0.421, 0.539) 0.632 (0.534, 0.652)
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our observational data, enables us to ask the following question: do we see the same results 
in our system and population (in the real world) as found in RCTs?

Existing sensibility tests on unmeasured confounders primarily work with a two-by-two-
by-two table setting. Although this dichotomous-variable setting allows the application of 
convenient mathematical relationships, it does not always generalize to broader settings. 
The L-table approach allows continuous measures in each component and by dichotomiza-
tion or transformation facilitates generating a broad range of measure types. We have set up 
an infrastructure to move into a richer class of problems, and to help investigators broaden 
the application areas. In addition, conventional sensitivity analysis often only tells the users 
how much unmeasured confounding is needed to explain away the effects or statistical sig-
nificance, while the L-table approach considers the plausible true effects. This can support 
cost effectiveness analysis and other practical decision making. Furthermore, the L-table 
approach exploits existing knowledge about unmeasured confounders to adjust the esti-
mated effects. Future work includes modifying the L-table framework for the application of 
other analytical methods (i.e., time to event models, non-model-based randomization infer-
ence) or more complicated scenarios (i.e., reverse causality).

L-table offers a framework that is flexible to use. The multivariate normal data generat-
ing process provides a foundation for users to assign different functional forms. In addition, 
we assumed the unmeasured confounding in the simulation is a composite influence from 
all unmeasured confounders that play a role in the causal relationships. Consequently, the 
user needs only deduce a single proxy based on her knowledge of the unmeasured con-
founding. Finally, with a generalized linear model functional form, users can apply differ-
ent analytical approaches to modify the simulation method accordingly.

Our simulation produces datasets with comparable properties as the balanced (PS-
adjusted) empirical data, but with the addition of a simulated unmeasured confounder (not 
available in the empirical data). Users are encouraged to perform a propensity score adjust-
ment on their observational data. This step balances the treatment and control group on 
measured confounders, and allows the simple trivariate normal setup in the simulation. 
In this study, we used matching weights adjusted real-world data to emphasize the causal 
effects inference on patients whose characteristics are such that each treatment has an 
equivalent chance to be chosen (i.e., we have equipoise).

A few limitations should be mentioned. Our proposed method is based on multi-
ple assumptions, but the assumptions can be modified by the user when they adapt the 
L-table’s framework. Second, the L-table is simulation based, so it comes without a closed-
form solution. Further work is warranted to develop a mathematically supported theory. 
Third, the correlation between SYNTAX scores and outcomes are small. Although many 
studies have supported the utility of SYNTAX scores in the selection of revascularization 
strategies, contradictory findings have undermined the validity of such scores (He et  al. 
2020). Finally, the L-table adjusted true effects are sensitive to the input parameters. We 
advise users discuss the assumptions and limitations of their selected external sources and 
proxies.

5  Conclusion

We found CABG is associated with better clinical outcomes than PCI when treating 
patients with stable ischemic heart disease. Our results confirmed the findings from SYN-
TAX trials and validated the generalizability of the inference from the RCTs with our 
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observational data. The L-table, built with customizable parameters, adaptable models, 
and modifiable precision, provides investigators with a more plausible value of estimated 
true effects based on the influence of unmeasured confounders than is currently possible 
via other sensitivity techniques. Our methods lay out richer information and clearer direc-
tions than existing sensitivity tools, and can thus better support clinical decision-making. 
Finally, the L-table provides investigators with a deeper understanding of the likely treat-
ment effects in the real world, and hence engenders greater confidence in study results 
based on both RCTs and observational data. We recommend using the L-table as a supple-
ment to available sensitivity analyses.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10742- 022- 00282-y.
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