Skip to main content
Log in

Cardiac contractility modulation in patients with heart failure — A review of the literature

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Experimental in vivo and in vitro studies showed that electric currents applied during the absolute refractory period can modulate cardiac contractility. In preclinical studies, cardiac contractility modulation (CCM) was found to improve calcium handling, reverse the foetal myocyte gene programming associated with heart failure (HF), and facilitate reverse remodeling. Randomized control trials and observational studies have provided evidence about the safety and efficacy of CCM in patients with HF. Clinically, CCM therapy is indicated to improve the 6-min hall walk, quality of life, and functional status of HF patients who remain symptomatic despite guideline-directed medical treatment without an indication for cardiac resynchronization therapy (CRT) and have a left ventricular ejection fraction (LVEF) ranging from 25 to 45%. Although there are promising results about the role of CCM in HF patients with preserved LVEF (HFpEF), further studies are needed to elucidate the role of CCM therapy in this population. Late gadolinium enhancement (LGE) assessment before CCM implantation has been proposed for guiding the lead placement. Furthermore, the optimal duration of CCM application needs further investigation. This review aims to present the existing evidence regarding the role of CCM therapy in HF patients and identify gaps and challenges that require further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ (1997) Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806

    Article  CAS  PubMed  Google Scholar 

  2. Armoundas AA, Wu R, Juang G, Marban E, Tomaselli GF (2001) Electrical and structural remodeling of the failing ventricle. Pharmacol Ther 92:213–230

    Article  CAS  PubMed  Google Scholar 

  3. Iyer V, Heller V, Armoundas AA (1985) Altered spatial calcium regulation enhances electrical heterogeneity in the failing canine left ventricle: Implications for electrical instability. J Appl Physiol 2012(112):944–955

    Google Scholar 

  4. Armoundas AA, Rose J, Aggarwal R, Stuyvers BD, O’Rourke B, Kass DA, Marban E, Shorofsky SR, Tomaselli GF, William BC (2007) Cellular and molecular determinants of altered Ca2+ handling in the failing rabbit heart: primary defects in SR Ca2+ uptake and release mechanisms. Am J Physiol Heart Circ Physiol 292:H1607–H1618

    Article  CAS  PubMed  Google Scholar 

  5. Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O’Rourke B (2003) Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 93:46–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katz AM (2011) Physiology of the Heart, 5th edn. Wolters Kluwer Health/Lippincott Williams & Wilkins Health

  7. Akar FG, Wu RC, Juang GJ, Tian Y, Burysek M, Disilvestre D, Xiong W, Armoundas AA, Tomaselli GF (2005) Molecular mechanisms underlying K+ current downregulation in canine tachycardia-induced heart failure. Am J Physiol Heart Circ Physiol 288:H2887–H2896

    Article  CAS  PubMed  Google Scholar 

  8. Rose J, Armoundas AA, Tian Y, DiSilvestre D, Burysek M, Halperin V, O’Rourke B, Kass DA, Marban E, Tomaselli GF (2005) Molecular correlates of altered expression of potassium currents in failing rabbit myocardium. Am J Physiol Heart Circ Physiol 288:H2077–H2087

    Article  CAS  PubMed  Google Scholar 

  9. Akar FG, Wu RC, Deschenes I, Armoundas AA, Piacentino V 3rd, Houser SR, Tomaselli GF (2004) Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol 286:H602–H609

    Article  CAS  PubMed  Google Scholar 

  10. Wood EH, Heppner RL, Weidmann S (1969) Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res 24:409–45

    Article  CAS  PubMed  Google Scholar 

  11. Roger S, Schneider R, Rudic B, Liebe V, Stach K, Schimpf R, Borggrefe M, Kuschyk J (2014) Cardiac contractility modulation: first experience in heart failure patients with reduced ejection fraction and permanent atrial fibrillation. Europace 16(8):1205–1209. https://doi.org/10.1093/europace/euu050

    Article  PubMed  Google Scholar 

  12. Kuschyk J, Kloppe A, Schmidt-Schweda S, Bonnemeier H, Rousso B, Roger S (2017) Cardiac contractility modulation: a technical guide for device implantation. Rev Cardiovasc Med 18:1–13

    Article  PubMed  Google Scholar 

  13. Merchant FM, Sayadi O, Sohn K, Weiss EH, Puppala D, Doddamani R, Singh JP, Heist EK, Owen C, Kulkarni K, Armoundas AA (2020) Real-time closed-loop suppression of repolarization alternans reduces arrhythmia susceptibility in vivo. Circ Arrhythm Electrophysiol 13:e008186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sayadi O, Puppala D, Ishaque N, Doddamani R, Merchant FM, Barrett C, Singh JP, Heist EK, Mela T, Martinez JP, Laguna P, Armoundas AA (2014) A novel method to capture the onset of dynamic electrocardiographic ischemic changes and its implications to arrhythmia susceptibility. J Am Heart Assoc 3:e001055

    Article  PubMed  PubMed Central  Google Scholar 

  15. Merchant FM, Sayadi O, Puppala D, Moazzami K, Heller V, Armoundas AA (2014) A translational approach to probe the proarrhythmic potential of cardiac alternans: a reversible overture to arrhythmogenesis? Am J Physiol Heart Circ Physiol 306:H465–H474

    Article  CAS  PubMed  Google Scholar 

  16. Armoundas AA, Weiss EH, Sayadi O, Laferriere S, Sajja N, Mela T, Singh JP, Barrett CD, Kevin Heist E, Merchant FM (2013) A novel pacing method to suppress repolarization alternans in vivo: implications for arrhythmia prevention. Heart Rhythm 10:564–572

    Article  PubMed  Google Scholar 

  17. Burkhoff D, Shemer I, Felzen B, Shimizu J, Mika Y, Dickstein M, Prutchi D, Darvish N, Ben-Haim SA (2001) Electric currents applied during the refractory period can modulate cardiac contractility in vitro and in vivo. Heart Fail Rev 6:27–34

    Article  CAS  PubMed  Google Scholar 

  18. Sabbah HN, Haddad W, Mika Y, Nass O, Aviv R, Sharov VG, Maltsev V, Felzen B, Undrovinas AI, Goldstein S, Darvish N, Ben-Haim SA (2001) Cardiac contractility modulation with the impulse dynamics signal: Studies in dogs with chronic heart failure. Heart Fail Rev 6:45–53

    Article  CAS  PubMed  Google Scholar 

  19. Mohri S, He KL, Dickstein M, Mika Y, Shimizu J, Shemer I, Yi GH, Wang J, Ben-Haim S, Burkhoff D (2002) Cardiac contractility modulation by electric currents applied during the refractory period. Am J Physiol Heart Circ Physiol 282:H1642–H1647

    Article  CAS  PubMed  Google Scholar 

  20. Butter C, Wellnhofer E, Schlegl M, Winbeck G, Fleck E, Sabbah HN (2007) Enhanced inotropic state of the failing left ventricle by cardiac contractility modulation electrical signals is not associated with increased myocardial oxygen consumption. J Card Fail 13(2):137–142. https://doi.org/10.1016/j.cardfail.2006.11.00421

    Article  PubMed  Google Scholar 

  21. Goliasch G, Khorsand A, Schutz M, Karanikas G, Khazen C, Sochor H, Schmidinger H, Wolzt M, Graf S (2012) The effect of device-based cardiac contractility modulation therapy on myocardial efficiency and oxidative metabolism in patients with heart failure. Eur J Nucl Med Mol Imaging 39(3):408–415. https://doi.org/10.1007/s00259-011-1977-8

    Article  CAS  PubMed  Google Scholar 

  22. Tschope C, Kherad B, Klein O, Lipp A, Blaschke F, Gutterman D, Burkhoff D, Hamdani N, Spillmann F, Van Linthout S (2019) Cardiac contractility modulation: mechanisms of action in heart failure with reduced ejection fraction and beyond. Eur J Heart Fail 21:14–22

    Article  PubMed  Google Scholar 

  23. Kloppe A, Mijic D, Schiedat F, Bogossian H, Mugge A, Rousso B, Lemke B (2016) A randomized comparison of 5 versus 12 hours per day of cardiac contractility modulation treatment for heart failure patients: A preliminary report. Cardiol J 23(1):114–119. https://doi.org/10.5603/CJ.a2015.0073

    Article  PubMed  Google Scholar 

  24. Pappone C, Rosanio S, Burkhoff D, Mika Y, Vicedomini G, Augello G, Shemer I, Prutchi D, Haddad W, Aviv R, Snir Y, Kronzon I, Alfieri O, Ben-Haim SA (2002) Cardiac contractility modulation by electric currents applied during the refractory period in patients with heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 90:1307–1313

    Article  PubMed  Google Scholar 

  25. Pappone C, Augello G, Rosanio S, Vicedomini G, Santinelli V, Romano M, Agricola E, Maggi F, Buchmayr G, Moretti G, Mika Y, Ben-Haim SA, Wolzt M, Stix G, Schmidinger H (2004) First human chronic experience with cardiac contractility modulation by nonexcitatory electrical currents for treating systolic heart failure: mid-term safety and efficacy results from a multicenter study. J Cardiovasc Electrophysiol 15(4):418–427. https://doi.org/10.1046/j.1540-8167.2004.03580.x

    Article  PubMed  Google Scholar 

  26. Zhang Q, Chan YS, Liang YJ, Fang F, Lam YY, Chan CP, Lee AP, Chan KC, Wu EB, Yu CM (2013) Comparison of left ventricular reverse remodeling induced by cardiac contractility modulation and cardiac resynchronization therapy in heart failure patients with different QRS durations. Int J Cardiol 167(3):889–893. https://doi.org/10.1016/j.ijcard.2012.01.066

    Article  PubMed  Google Scholar 

  27. Kuschyk J, Nagele H, Heinz-Kuck K, Butter C, Lawo T, Wietholt D, Roeger S, Gutterman D, Burkhoff D, Rousso B, Borggrefe M (2019) Cardiac contractility modulation treatment in patients with symptomatic heart failure despite optimal medical therapy and cardiac resynchronization therapy (CRT). Int J Cardiol 277:173–177. https://doi.org/10.1016/j.ijcard.2018.10.086

    Article  PubMed  Google Scholar 

  28. Yucel G, Fastner C, Hetjens S, Toepel M, Schmiel G, Yazdani B, Husain-Syed F, Liebe V, Rudic B, Akin I, Borggrefe M, Kuschyk J (2022) Impact of baseline left ventricular ejection fraction on long-term outcomes in cardiac contractility modulation therapy. Pacing Clin Electrophysiol 45(5):639–648. https://doi.org/10.1111/pace.14478

    Article  PubMed  Google Scholar 

  29. Yu CM, Chan JY, Zhang Q, Yip GW, Lam YY, Chan A, Burkhoff D, Lee PW, Fung JW (2009) Impact of cardiac contractility modulation on left ventricular global and regional function and remodeling. JACC Cardiovasc Imaging 2(12):1341–1349. https://doi.org/10.1016/j.jcmg.2009.07.011

    Article  PubMed  Google Scholar 

  30. Anker SD, Borggrefe M, Neuser H, Ohlow MA, Roger S, Goette A, Remppis BA, Kuck KH, Najarian KB, Gutterman DD, Rousso B, Burkhoff D, Hasenfuss G (2019) Cardiac contractility modulation improves long-term survival and hospitalizations in heart failure with reduced ejection fraction. Eur J Heart Fail 21(9):1103–1113. https://doi.org/10.1002/ejhf.1374

    Article  PubMed  Google Scholar 

  31. Kuschyk J, Falk P, Demming T, Marx O, Morley D, Rao I, Burkhoff D (2021) Long-term clinical experience with cardiac contractility modulation therapy delivered by the Optimizer Smart system. Eur J Heart Fail 23(7):1160–1169. https://doi.org/10.1002/ejhf.2202

    Article  CAS  PubMed  Google Scholar 

  32. Kuschyk J, Roeger S, Schneider R, Streitner F, Stach K, Rudic B, Weiss C, Schimpf R, Papavasilliu T, Rousso B, Burkhoff D, Borggrefe M (2015) Efficacy and survival in patients with cardiac contractility modulation: Long-term single center experience in 81 patients. Int J Cardiol 183:76–81. https://doi.org/10.1016/j.ijcard.2014.12.178

    Article  PubMed  Google Scholar 

  33. Liu M, Fang F, Luo XX, Shlomo BH, Burkhoff D, Chan JY, Chan CP, Cheung L, Rousso B, Gutterman D, Yu CM (2016) Improvement of long-term survival by cardiac contractility modulation in heart failure patients: A case-control study. Int J Cardiol 206:122–126. https://doi.org/10.1016/j.ijcard.2016.01.071

    Article  PubMed  Google Scholar 

  34. Muller D, Remppis A, Schauerte P, Schmidt-Schweda S, Burkhoff D, Rousso B, Gutterman D, Senges J, Hindricks G, Kuck KH (2017) Clinical effects of long-term cardiac contractility modulation (CCM) in subjects with heart failure caused by left ventricular systolic dysfunction. Clin Res Cardiol 106(11):893–904. https://doi.org/10.1007/s00392-017-1135-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schau T, Seifert M, Meyhofer J, Neuss M, Butter C (2011) Long-term outcome of cardiac contractility modulation in patients with severe congestive heart failure. Europace 13(10):1436–1444. https://doi.org/10.1093/europace/eur153

    Article  PubMed  Google Scholar 

  36. Fastner C, Yuecel G, Rudic B, Schmiel G, Toepel M, Burkhoff D, Liebe V, Kruska M, Hetjens S, Borggrefe M, Akin I, Kuschyk J (2021) Cardiac contractility modulation in patients with ischemic versus non-ischemic cardiomyopathy: Results from the MAINTAINED observational study. Int J Cardiol 342:49–55. https://doi.org/10.1016/j.ijcard.2021.07.048

    Article  PubMed  Google Scholar 

  37. Yao J, Gao J, Yan JF, Fang S (2023) Cardiac contractility modulation and subcutaneous defibrillator (S-ICD): first experience with simultaneous implantation. Pacing Clin Electrophysiol 46:1595–1598

    Article  PubMed  Google Scholar 

  38. Roger S, Rudic B, Akin I, Shchetynska-Marinova T, Fastenrath F, Tulumen E, Liebe V, El-Battrawy I, Baumann S, Kuschyk J, Borggrefe M (2018) Long-term results of combined cardiac contractility modulation and subcutaneous defibrillator therapy in patients with heart failure and reduced ejection fraction. Clin Cardiol 41(4):518–524. https://doi.org/10.1002/clc.22919

    Article  PubMed  PubMed Central  Google Scholar 

  39. Trolese L, Faber T, Gressler A, Steinfurt J, Stuplich J, Jordan E, Bode C, Zehender M, Hilgendorf I (2021) Device interaction between cardiac contractility modulation (CCM) and subcutaneous defibrillator (S-ICD). J Cardiovasc Electrophysiol 32:3095–3098

    Article  PubMed  Google Scholar 

  40. Fastenrath F, Roger S, Akin I, Borggrefe M, Kuschyk J (2016) Combined implantation of dual-chamber ICD and optimizer through a persistent left superior vena cava. Anatol J Cardiol 16:138–140

    PubMed  PubMed Central  Google Scholar 

  41. Linde C, Grabowski M, Ponikowski P, Rao I, Stagg A, Tschope C (2022) Cardiac contractility modulation therapy improves health status in patients with heart failure with preserved ejection fraction: A pilot study (CCM-HFpEF). Eur J Heart Fail 24(12):2275–2284. https://doi.org/10.1002/ejhf.2619

    Article  PubMed  Google Scholar 

  42. Ansari U, Overhoff D, Burkhoff D, Fastner C, Yucel G, Roger S, Rudic B, Liebe V, Borggrefe M, Akin I, Kuschyk J, Papavassiliu T, Tulumen E (2022) Septal myocardial scar burden predicts the response to cardiac contractility modulation in patients with heart failure. Sci Rep 12(1):20504. https://doi.org/10.1038/s41598-022-24461-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stix G, Borggrefe M, Wolpert C, Hindricks G, Kottkamp H, Bocker D, Wichter T, Mika Y, Ben-Haim S, Burkhoff D, Wolzt M, Schmidinger H (2004) Chronic electrical stimulation during the absolute refractory period of the myocardium improves severe heart failure. Eur Heart J 25(8):650–655. https://doi.org/10.1016/j.ehj.2004.02.027

    Article  PubMed  Google Scholar 

  44. Borggrefe MM, Lawo T, Butter C, Schmidinger H, Lunati M, Pieske B, Misier AR, Curnis A, Bocker D, Remppis A, Kautzner J, Stuhlinger M, Leclerq C, Taborsky M, Frigerio M, Parides M, Burkhoff D, Hindricks G (2008) Randomized, double blind study of non-excitatory, cardiac contractility modulation electrical impulses for symptomatic heart failure. Eur Heart J 29:1019–1028. https://doi.org/10.1093/eurheartj/ehn020

    Article  PubMed  Google Scholar 

  45. Neelagaru SB, Sanchez JE, Lau SK, Greenberg SM, Raval NY, Worley S, Kalman J, Merliss AD, Krueger S, Wood M, Wish M, Burkhoff D, Nademanee K (2006) Nonexcitatory, cardiac contractility modulation electrical impulses: feasibility study for advanced heart failure in patients with normal QRS duration. Heart Rhythm 3(10):1140–1147. https://doi.org/10.1016/j.hrthm.2006.06.031

    Article  PubMed  Google Scholar 

  46. Kadish A, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Abraham WT (2011) A randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. Am Heart J 161(2):329–337 e321–322. https://doi.org/10.1016/j.ahj.2010.10.025

    Article  PubMed  Google Scholar 

  47. Abraham WT, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Kadish A, Investigators F-H- and Coordinators (2011) Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail 17:710–7. https://doi.org/10.1016/j.cardfail.2011.05.006

    Article  PubMed  Google Scholar 

  48. Abraham WT, Kuck KH, Goldsmith RL, Lindenfeld J, Reddy VY, Carson PE, Mann DL, Saville B, Parise H, Chan R, Wiegn P, Hastings JL, Kaplan AJ, Edelmann F, Luthje L, Kahwash R, Tomassoni GF, Gutterman DD, Stagg A, Burkhoff D, Hasenfuss G (2018) A randomized controlled trial to evaluate the safety and efficacy of cardiac contractility modulation. JACC Heart Fail 6:874–883. https://doi.org/10.1016/j.jchf.2018.04.010

    Article  PubMed  Google Scholar 

  49. Wiegn P, Chan R, Jost C, Saville BR, Parise H, Prutchi D, Carson PE, Stagg A, Goldsmith RL, Burkhoff D (2020) Safety, performance, and efficacy of cardiac contractility modulation delivered by the 2-lead optimizer smart system: The FIX-HF-5C2 study. Circ Heart Fail 13(4):e006512. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006512

    Article  CAS  PubMed  Google Scholar 

  50. Roger S, Said S, Kloppe A, Lawo T, Emig U, Rousso B, Gutterman D, Borggrefe M, Kuschyk J (2017) Cardiac contractility modulation in heart failure patients: Randomized comparison of signal delivery through one vs. two ventricular leads. J Cardiol 69(1):326–332. https://doi.org/10.1016/j.jjcc.2016.06.015

    Article  PubMed  Google Scholar 

  51. Giallauria F, Vigorito C, Piepoli MF, Stewart Coats AJ (2014) Effects of cardiac contractility modulation by non-excitatory electrical stimulation on exercise capacity and quality of life: an individual patient’s data meta-analysis of randomized controlled trials. Int J Cardiol 175:352–357

    Article  PubMed  Google Scholar 

  52. Giallauria F, Cuomo G, Parlato A, Raval NY, Kuschyk J, Stewart Coats AJ (2020) A comprehensive individual patient data meta-analysis of the effects of cardiac contractility modulation on functional capacity and heart failure-related quality of life. ESC Heart Fail 7:2922–2932

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mando R, Goel A, Habash F, Saad M, Ayoub K, Vallurupalli S, Maskoun W (2019) Outcomes of cardiac contractility modulation: a systematic review and meta-analysis of randomized clinical trials. Cardiovasc Ther 2019:9769724

    Article  PubMed  PubMed Central  Google Scholar 

  54. Witte K, Hasenfuss G, Kloppe A, Burkhoff D, Green M, Moss J, Peel A, Mealing S, Durand Zaleski I, Cowie MR (2019) Cost-effectiveness of a cardiac contractility modulation device in heart failure with normal QRS duration. ESC Heart Fail 6:1178–1187

    Article  PubMed  Google Scholar 

  55. Hesselson AB (2022) Cardiac contractility modulation: a technical review. J Innov Card Rhythm Manag 13:5205–5218

    Article  PubMed  PubMed Central  Google Scholar 

  56. Vartanian K, Franco M, Busse N, Bidzhoian S, Hamdan T, von Schwarz ER (2022) Improved physical function after cardiac contractility modulation therapy in 10 patients with chronic heart failure. Tex Heart Inst J 49(6):e227905https://doi.org/10.14503/THIJ-22-7905

    Article  Google Scholar 

  57. Kloppe A, Lawo T, Mijic D, Schiedat F, Muegge A, Lemke B (2016) Long-term survival with cardiac contractility modulation in patients with NYHA II or III symptoms and normal QRS duration. Int J Cardiol 209:291–295. https://doi.org/10.1016/j.ijcard.2016.02.001

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the RICBAC Foundation, NIH grants 1 R01 HL135335-01, 1 R21 HL137870-01, 1 R21EB026164-01, 3R21EB026164-02S1, and R01HL161008 awarded to Antonis A. Armoundas.

Author information

Authors and Affiliations

Authors

Contributions

George Bazoukis: Wrote the first draft, major revisions, approval of the final manuscript.  Athanasios Saplaouras: major revisions, approval of the final manuscript.  Polyxeni Efthymiou: major revisions, approval of the final manuscript.  Andronikos Yannikourides: major revisions, approval of the final manuscript.  Tong Liu: major revisions, approval of the final manuscript.  Konstantinos P Letsas: major revisions, approval of the final manuscript.  Michael Efremidis: major revisions, approval of the final manuscript.  Konstantinos Lampropoulos: major revisions, approval of the final manuscript.  Sotirios Xydonas: major revisions, approval of the final manuscript.  Gary Tse: supervision, major revisions, approval of the final manuscript.  Antonis A. Armoundas: Supervision, major revisions, approval of the final manuscript.

Corresponding authors

Correspondence to George Bazoukis or Antonis A. Armoundas.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazoukis, G., Saplaouras, A., Efthymiou, P. et al. Cardiac contractility modulation in patients with heart failure — A review of the literature. Heart Fail Rev 29, 689–705 (2024). https://doi.org/10.1007/s10741-024-10390-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-024-10390-1

Keywords

Navigation