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Abstract
Wild-type transthyretin amyloid cardiomyopathy (ATTRwt-CM) is an underrecognized cause of heart failure due to mis-
folded wild-type transthyretin (TTRwt) myocardial deposition. The development of wild-type TTR amyloid fibrils is a 
complex pathological process linked to the deterioration of homeostatic mechanisms owing to aging, plausibly implicating 
multiple molecular mechanisms. The components of amyloid transthyretin often include serum amyloid P, proteoglycans, 
and clusterin, which may play essential roles in the localization and elimination of amyloid fibrils. Oxidative stress, impaired 
mitochondrial function, and perturbation of intracellular calcium dynamics induced by TTR contribute to cardiac impairment. 
Recently, tafamidis has been the only drug approved by the U.S. Food and Drug Administration (FDA) for the treatment of 
ATTRwt-CM. In addition, small interfering RNAs and antisense oligonucleotides for ATTR-CM are promising therapeutic 
approaches and are currently in phase III clinical trials. Newly emerging therapies, such as antibodies targeting amyloid, 
inhibitors of seed formation, and CRISPR‒Cas9 technology, are currently in the early stages of research. The development 
of novel therapies is based on progress in comprehending the molecular events behind amyloid cardiomyopathy. There is 
still a need to further advance innovative treatments, providing patients with access to alternative and effective therapies, 
especially for patients diagnosed at a late stage.
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Introduction

Wild-type transthyretin amyloid cardiomyopathy (ATTRwt-
CM) is an underrecognized cause of heart failure. It is 
characterized by the progressive deposition of misfolded 
wild-type transthyretin (TTRwt) protein within the extra-
cellular space [1]. This dynamic misfolding process occurs 
simultaneously with or in place of physiologic folding [2], 
giving rise to insoluble, toxic protein aggregates [3]. These 
aggregates are deposited in tissues as bundles of fibrillar 
β-sheet proteins [4]. Histologically, amyloid deposits exhibit 
a unique apple-green birefringence when stained with Congo 
red and viewed under cross-polarized light. On negative 
stain electron microscopy, they appear as rigid, nonbranch-
ing fibrils with a diameter of approximately 10 nm [5].

Symptoms and signs appear when extracellular accumu-
lation of amyloid fibrils disrupts the structure, integrity and 
function of the affected tissue. In clinical practice, ATTRwt 
amyloidosis most commonly presents as cardiomyopathy, 
also known as wild-type transthyretin amyloid cardiomyo-
pathy (ATTRwt-CM) [6]. In the 1980s, it was reported in a 
groundbreaking autopsy study that 25% of the octogenarian 
population studied exhibited histologic evidence of ATTRwt-
CM [7]. Subsequent studies have corroborated this finding, 
indicating a high prevalence of TTRwt deposits among 
very old subjects. They also provided additional features of 
ATTRwt amyloidosis patients, such as predominant occur-
rence in males, heart failure with preserved ejection fraction 
(HFpEF), hypertrophic cardiomyopathy and aortic stenosis 
[8–13]. Currently, many patients suffering from ATTRwt-
CM have been diagnosed, with research exploring the molec-
ular mechanisms of the disease and novel treatments coming 
to light. Given the increasing recognition of the condition, 
this review summarizes the emerging and pipeline therapies, 
as well as molecular mechanisms necessary for understand-
ing and treating this progressive and fatal disease (Fig. 1).
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Molecular mechanisms

Amyloid and transthyretin

Amyloidosis is a spectrum of disorders caused by the depo-
sition of misfolded proteins as insoluble fibrils, which leads 
to tissue damage and organ dysfunction [14]. To date, 42 
human amyloid fibril proteins have been identified [15]. 
Amyloid transthyretin (ATTR) amyloidosis is one of the 
most common types of amyloidosis [16] and is character-
ized by the accumulation of full-length and fragmented 
monomers of TTR in tissues. Depending on the presence or 
absence of TTR gene mutation, the disease is classified as 
ATTRwt (no genetic mutation present) or ATTRv (genetic 
mutation present) [6].

The TTR gene is located on chromosome 18 (18q12.1), 
and contains four exons and three introns [17]. The TTR 
gene encodes a 55 kDa tetramer consisting of four identical 
monomers composed of 127 amino acids each [18]. The 
monomer assembles into a β-sandwich structure composed 
of a small α-helix and eight β-strands [19].

The TTR protein is mainly synthesized in the liver and 
choroid plexus in humans and is subsequently released into 
plasma and cerebrospinal fluid, respectively [8]. In plasma, 
TTR acts as a transporter of the thyroid hormone thyroxine 

 (T4), accounting for approximately 15% of the total  T4 pool 
[20]. In cerebrospinal fluid, however, TTR plays a more 
significant role as the major  T4-binding protein, effectively 
transporting 80% of the hormone [20]. Additionally, TTR 
facilitates the transport of vitamin A, which is bound to reti-
nol-binding protein 4 (RBP4). TTR serves as the primary 
carrier of vitamin A [21]. The normal plasma concentration 
of TTR is 20–40 mg/dl with a half-life of 2 days [20].

A dynamic view of the pathogenic process of ATTR 

ATTR amyloidosis is a complex dynamic process involv-
ing multiple mechanisms that have not been completely 
elucidated. In vitro, when the tetrameric structure of TTR 
becomes destabilized, causing the protein to dissociate into 
dimers and monomers and misfold into a nonnative confor-
mation, TTR then undergoes a conformational transforma-
tion into amyloid fibrils [22]. The dissociation of the TTR 
tetramer is the crucial and rate-limiting step for amyloid 
fibril formation [23–25]. Molecular dynamics simulations 
have investigated the dissociation process of TTR by con-
structing the free energy surface of the system [26, 27]. The 
analysis revealed that tetramer dissociation is a multistep 
process, and the first step in disrupting the native tetramer 
is most difficult since the largest energy barrier occurs in the 
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Fig. 1  Therapeutic targets and emerging pharmacotherapies for the 
treatment of ATTR-CM based on the pathophysiology of ATTR 
amyloidosis. Transthyretin is mainly synthesized in liver as a homo-
tetramer (crystallographic structure of PDB 3P3T), which dissoci-
ates into alternative folded monomers that self-assemble into amyloid 
fibrils. Wild-type transthyretin amyloid fibrils mainly deposit in the 
heart causing organ dysfunction. Current and emerging therapeutic 

approaches to ATTR-CM include gene editing, RNA-targeted gene 
silencing, TTR tetramer stabilizers, and agents to inhibit amyloid 
seeds or favor amyloid clearance. *Approved for ATTRwt-CM treat-
ment. +Approved for ATTRv-PM treatment. #Investigational agents 
in phase III clinical trials for ATTR-CM. ^Investigational agents in 
the early stages of the study. TTR, transthyretin; siRNA, small inter-
fering RNA; ASO, antisense oligonucleotide
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transition [28]. The energy barriers of TTRwt and the TTR 
variant (T119M) are comparable; however the T119M sys-
tem has a higher barrier, providing evidence of the protective 
function of T119M. Improper posttranslational modifica-
tions (PTMs) [29], altered proteostasis associated with aging 
[30], and metal cations [31] presumably contribute to the 
destabilization of the TTRwt structure, tipping the balance 
toward the monomer state.

TTR monomers may misfold. At a minimum of energy 
similar to that maintained by the native protein, the poly-
peptide can acquire an alternative and relatively stable “mis-
folded state” [32] that is prone to aggregation [33]. Native 
TTR monomers are rich in β-strands [34], exhibiting an 
intrinsic propensity to assume a misfolded conformation [4, 
35] that becomes evident with aging [22]. Misfolded TTR 
monomers interact to assemble dimers, which then com-
bine to produce spherical hexamers. These hexamers serve 
as building blocks for the self-assembly of cytotoxic oligom-
ers [3]. Notably, TTRwt tends to comprise linear oligom-
ers, unlike annular oligomers preferably produced by a TTR 
variant (G53T) [3]. Soluble nonfibrillar oligomers are cyto-
toxic and probably act as precursors of amyloid fibrils [36].

The kinetics of amyloid formation consist of three phases: 
nucleation, growth and saturation (Fig. 2). At a certain point 
in the oligomerization process, a critical nucleus is formed 
[36]. The critical nucleus is defined as a cluster of molecules 
in unstable equilibrium before polymerization into amyloid 
fibrils [37]. Since primary nucleation is a stochastic phenom-
enon, it occurs exclusively at a specific level of concentration 
and temperature, below which amyloid generation is unfea-
sible [38]. Interestingly, the lag time can be reduced or even 

eliminated through the addition of preformed seeds (seeding 
phenomenon) [38]. During the elongation stage, the addition 
of free monomers to the critical cluster leads to the develop-
ment of amyloid fibrils and then fibers [36]. Due to the gen-
eration of chemical bonds that stabilize the compound and 
result in a reduction in free energy [38], the process exhibits 
sigmoidal kinetics until the saturation phase [39]. Another 
reason for the kinetics pattern followed by this process is that 
fibrils may fragment, generating new fibril ends that then 
recruit other monomers and constitute new fibrils [40].

The common constituents of amyloid transthyretin

TTR amyloid deposits contain serum amyloid P (SAP), pro-
teoglycans [41], and clusterin [42], which is also present in 
other types of amyloid deposits [43].

Binding to SAP can potentially stabilize amyloid fibrils, 
protect them from proteolysis in vitro [44], and contribute 
to the pathogenesis of systemic amyloidosis in vivo [45]. 
Efficient removal of SAP may reduce the stability of amy-
loid deposits and promote their regression [46]. Heparan 
sulfate proteoglycans localize with constitutive elements of 
the extracellular matrix [47]. These molecules may serve as 
scaffolds to facilitate the initial phases of fibril nucleation 
[41], potentially playing a role in guiding the deposition of 
amyloid in tissue. Clusterin has been identified in TTRwt 
amyloid deposits [42]. It can bind to various amyloid pre-
cursor proteins, promoting fibril production under appropri-
ate conditions [48]. Currently, anti-SAP treatment has been 
developed for systemic amyloidosis, and phase II clinical 
trials have been completed [49].

Fig. 2  Schematic illustration of 
the amyloid formation kinetics. 
Native TTR monomers can mis-
fold and assemble into dimers, 
which then combine to produce 
spherical hexamers. These hex-
amers serve as building blocks 
for self-assembly of cytotoxic 
oligomers that can gener-
ate fibril nucleuses and form 
amyloid fibrils. This process 
occurs in the nucleation phase 
of assembly. As fibrils grow, 
they can fragment, yielding 
more fibril ends that then recruit 
other monomers and form new 
fibrils. This growth phase exhib-
its sigmoidal kinetics (blue line) 
until almost all free monomers 
form fibrils
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Mechanism of tissue damage

Misfolded and aggregated proteins are toxic to cells and 
contribute to the development of ATTR [50]. Regarding 
ATTRwt, previous studies have primarily investigated its 
effects on cardiac tissue. Studies on cardiac fibroblasts have 
indicated that TTR deposited in the extracellular matrix 
of tissue may impact the structure, function, and gene 
expression of these cells [51]. Transcriptional sequencing 
and cytokine proteomic analysis revealed an upregulation 
of inflammatory genes, potentially exacerbating cardiac 
inflammation and subsequent fibrosis [51]. Moreover, 
TTRwt amyloid toxicity induces oxidative stress in cardio-
myocytes, alters mitochondrial function, and disrupts cyto-
plasmic calcium levels and calcium cycling, which may lead 
to cardiac dysfunction [52].

Mechanisms underlying TTRwt amyloidogenesis

The molecular mechanism behind the amyloidogenic nature 
of TTRwt is yet to be determined. We outline potential 
mechanisms that could potentially elucidated TTRwt amy-
loidogenesis, aiding in a better understanding of the disease.

PTMs

Altered PTM mechanisms may lead to structural destabiliza-
tion of TTR proteins that form amyloid fibrils [53, 54]. The 
most relevant and well-known PTM for TTR occurs at free 
 Cys10. The native TTR monomer contains a single Cys residue 
located within the thyroid hormone-binding channel of the TTR 
tetramer. PTM of  Cys10 potentially impacts the interaction with 
thyroid hormones [55], indirectly affecting TTR stability.

The two most common modifications to TTR are S-sul-
fonation and S-cysteinylation [56]. S-sulfonation stabilizes 
TTR tetramers [57–59], whereas S-cysteinylation destabi-
lizes TTR [56, 60, 61]. Therefore, it is not surprising that 
 Cys10 modifications trigger some forms of TTR familial 
amyloidosis [62]. The results of these studies do not exclude 
the possibility that  Cys10 modifications might also destabi-
lize the unmutated protein in ATTRwt amyloidosis [56, 61]. 
Other PTMs include oxidative modification of Met and Cys 
residues, together with protein carbonylation, which imparts 
cytotoxicity to TTR toward human cardiomyocyte cell [29], 
indicating that the oxidative modifications of TTR due to 
aging may contribute to ATTRwt amyloidosis.

Metal ions

Metal ions may play a role in TTRwt amyloidogenesis. A 
ubiquitous physiological metal,  Ca2+, plays a crucial role 

in regulating cellular signaling pathways and maintaining 
tissue homeostasis. The disruption of calcium balance is 
a critical factor in ageing [63]. Calcium can bind to TTR 
[64]. Elżbieta Wieczorek et al. reported that the presence 
of  Ca2+ can compromise the stability of TTRwt and exac-
erbate the rate of fibril formation in the fibril formation 
assay [31], suggesting that the dysregulation of  Ca2+ ions 
associated with aging may contribute to the development 
of TTRwt amyloidosis. Other physiological metals, such as 
zinc  (Zn2+), copper  (Cu2+), and iron  (Fe2+), have also dem-
onstrated the ability to bind to TTRwt and induce a confor-
mational change in the TTRwt tetramer without significantly 
affecting TTRwt dissociation [65, 66].

Molecular chaperons

The critical role of the endoplasmic reticulum (ER) in TTR 
synthesis was confirmed by several studies conducted in the 
2000s, including the ER-associated degradation mechanism 
(ERAD) and the ER-associated protein folding mechanism 
(ERAF) [67–70]. Yoshiki Sekijima et al. indicated the exist-
ence of the ERAF mechanism, in which molecular chaper-
ones and folding enzymes stabilize newly synthesized TTR 
proteins and help them pass through the ERAD mechanism 
[67]. Another in vivo study revealed that in mice transgenic 
for multiple copies of the human wild-type TTR gene, young 
mice (3 months of age) do not have TTRwt deposits in the 
heart, while half of older mice (2 years of age) show [71]. 
The livers of the old mice without cardiac deposition display 
increased chaperone gene expression levels, such as that of 
the HSP90 cofactor Aha1 and the HSP70 family member 
HSP110. In contrast, animals with cardiac TTR deposition do 
not exhibit [71]. The aging-related disorder of liver intracel-
lular ERAF probably contributes to ATTRwt amyloidosis.

In addition to ER chaperones, some extracellular chaper-
ones are detectable in bodily fluids that can bind misfolded 
proteins and prevent their inappropriate protein‒protein 
interactions [72, 73]. Gonçalo da Costa and their team have 
identified certain extracellular chaperones that potentially 
counteract ATTR, including haptoglobin, clusterin, fibrino-
gen, alpha-1-anti-trypsin, and 2-macroglobulin. These pro-
teins have significantly increased plasma levels in individu-
als with ATTR amyloidosis [74].

Small molecules

Small molecules may contribute to TTRwt amyloidogen-
esis. In healthy individuals, the plasma ratio of  T4 to TTR 
is 0.1 [75], suggesting that a significant portion of TTR in 
circulation remains free of ligand. Extensive in vitro studies 
have established that some small molecules can kinetically 
stabilize the native quaternary structure of TTR by binding 
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TTR in the  T4 binding pocket [76, 77]. In fact, based on 
robust screening and structure-based drug design, a typical 
TTR stabilizer, tafamidis, has been discovered and shown 
to slow the rate of disease progression of ATTRwt in ran-
domized clinical trials [78, 79]. It is possible that natural 
products with comparable chemical properties are present in 
the circulation due to dietary intake or other environmental 
exposure. For example, epigallocatechin-3-gallate (EGCG) 
[80, 81] and curcumin [82, 83], the major medicinal com-
ponents of green tea and turmeric, respectively, have been 
demonstrated to effectively stabilize the TTR tetramer in 
human plasma and to inhibit the formation of TTR amyloid 
fibrils. As a result, they are considered potential treatments 
for ATTR [81, 83].

Acidic environment

In vitro studies have revealed that acidification of the TTR 
tetramer facilitates dissociation and conformational changes 
in the protein, allowing alternatively folded monomers to 
self-assemble into insoluble amyloid fibrils by a downhill 
polymerization mechanism. Satheesh K. Palaninathan and 
collaborators measured the crystal structures of wild-type 
human TTR at pH 4.0 and pH 3.5 [84]. Their findings 
demonstrated that acidic conditions exacerbate the vulner-
ability of TTR, potentially destabilizing the tetramer [84]. 
Currently, it is still unknown whether acidic environments, 
such as lysosomes or acidic vesicles [76], can trigger the 
formation of TTRwt amyloid in vivo.

Emerging therapies

Advances in biological understanding of the mechanisms 
involved in TTR amyloid formation have led to the develop-
ment of therapeutic strategies aimed at reducing the deposi-
tion of ATTR in the myocardium (Table 1).

Stabilizer: tafamidis, diflunisal, AG10

Tetramer stabilizers inhibit monomer dissociation and depo-
sition by binding on the TTR  T4 binding site (for example, 
tafamidis and diflunisal) or by mimicking the structural 
influence of the super-stabilizing TTR variant T119M (for 
example, acoramidis).

Tafamidis is the first and currently only FDA-approved 
therapy for ATTRwt-CM. In 2018, the randomized placebo-
controlled, double-blind tafamidis in transthyretin amyloid 
cardiomyopathy clinical trial (ATTR-ACT) demonstrated that 
tafamidis was effective in treating patients with ATTR-CM 
with NYHA functional class I to III [78]. In this phase III trial 
study, 441 patients with ATTR-CM (ATTRwt and ATTRv in 
76% and 24%, respectively) were randomized in a 2:1:2 ratio 

to receive tafamidis 80 mg, tafamidis 20 mg, or placebo once 
daily for 30 months. Tafamidis led to a reduction in lower 
all-cause mortality than placebo (29.5% vs. 42.9%; hazard 
ratio (HR): 0.70; 95% confidence interval (CI), 0.51–0.96) 
and a lower rate of cardiovascular hospitalizations (relative 
risk ratio (RR): 0.68; 95% CI, 0.56–0.81) [78]. In addition, 
tafamidis had beneficial effects on functional capacity and 
quality of life, as demonstrated by reduced deline in 6-min 
walk distance (6MWT) and the Kansas City Cardiomyopa-
thy Questionnaire-Overall Summary (KCCQ-OS) [78]. In 
May 2019, tafamidis became the first therapy specifically 
for ATTR-CM approved by the FDA.

Diflunisal is an FDA-approved oral nonsteroidal anti-
inflammatory drug (NSAID) but can also stabilize tetra-
meric TTR. Administration of 250 mg of diflunisal twice 
daily in healthy volunteers slowed transthyretin aggre-
gation and reduced in vitro fibrillization by 3-fold [85]. 
An international, multicenter, placebo-controlled trial 
has been conducted for familial amyloid polyneuropathy 
(NCT00294671). A phase III randomized control study 
showed that, over 2 years, diflunisal 250 mg twice daily 
reduced the rate of progression of neurologic impairment 
and improved quality of life [86]. Diflunisal was well toler-
ated in a retrospective study of 81 patients with wild-type 
and hereditary ATTR-CM. Left atrial volume index and 
cardiac troponin I were favorable over 1 year of follow-up 
without significant changes in left ventricular ejection frac-
tion and BNP [87]. More extensive studies of diflunisal in 
the ATTR-CA population are needed.

Acoramidis, also known as AG10, is a small-molecule 
TTR stabilizer. It is designed to mimic the protective influ-
ence of the T119M mutation, forming hydrogen bonds with 
the same serine residues at position 117. AG10 shows good 
safety and tolerability, following 800 mg twice daily for 28 
days in a phase II study [88]. ATTRibute-CM is an ongo-
ing phase III trial in patients with wild-type ATTR-CM and 
hereditary ATTR-CM (NCT03860935). After failing to meet 
its primary endpoint at month 12 (6MWT), the ATTRibute-
CM trial will evaluate the ability of AG10 to reduce all-
cause mortality and the frequency of cardiovascular-related 
hospitalizations at 30 months [89].

Silencer: patisiran, vutrisiran, inotersen, eplontersen

Tetramer silencers reduce TTR production by disrupting 
the relevant messenger RNA (mRNA) with either small 
interfering RNA (for example, patisiran and vutrisiran) 
or antisense oligonucleotides (for example, eplontersen). 
No ATTR silencer is currently approved for treating 
patients with ATTRwt-CM, while three gene silencers 
are approved for treating patients with ATTRv, either 
with or without cardiac involvement: patisiran, vutri-
siran, and inotersen.
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Patisiran was the first small interfering RNA (siRNA) 
developed for ATTR amyloidosis and has gained FDA 
approval for the treatment of ATTRv polyneuropathy 
(ATTRv-PN). The APOLLO phase III, randomized pla-
cebo-controlled study demonstrated the efficacy and safety 

of patisiran in ATTRv-PN, showing significant improvement 
in polyneuropathy, autonomic function, quality of life, and 
gait speed [90]. In a substudy with ATTR-CM, patisiran was 
associated with reduced NT-proBNP, left ventricular wall 
thickness, and increased left ventricular longitudinal strain 

Table 1  Clinical trials of emerging therapies for the treatment of ATTR-CM

ATTR-CM transthyretin amyloid cardiomyopathy, ATTRwt Wild-type transthyretin amyloid cardiomyopathy, ATTRv-PN hereditary transthyretin-
mediated amyloid polyneuropathy, KCCQ-OS score the Kansas City Cardiomyopathy Questionnaire-Overall Summary, Norfolk QOL-DN score 
Norfolk Quality of Life-Diabetic Neuropathy score

Machemism Medication Patients Route Frequency Latest 
Amyloidosis 
Clinical Trial 
Phase

Trial outcomes Potential 
adverse 
effects

NCT Clinical 
Trial Number

Tetramer
stabilizer

Tafamidis 
[78]

441 ATTR-CM 
(76%ATTRwt)

Oral Daily III ↓All-cause 
mortality 
↓Cardiovas-
cular-related 
hospitaliza-
tions

↑6-minute walk
↑KCCQ-OS 

score

No apparent 
drug-related 
serious 
adverse 
events

NCT01994889

Diflunisal 
[86]

130 ATTRv-PN Oral Twice daily III ↑Neuropathy 
Impairment 
Score

↓Short Form-36

No apparent 
drug-related 
serious 
adverse 
events

NCT00294671

AG10 632 ATTR-CM Oral Twice daily III Ongoing Ongoing NCT03860935
Tetramer 

silencer
Patisiran [91] 360 ATTR-CM Intravenous Every 

3 weeks
III ↑6-minute walk

↑KCCQ-OS 
score

No apparent 
drug-related 
serious 
adverse 
events

NCT03997383

Vutrisiran 655 ATTR-CM Subcutaneous Every 
3 months

III Ongoing Ongoing NCT04153149

Inotersen [94] 172 ATTRv-PN Subcutaneous Once weekly III ↑Neuropathy 
Impairment 
Score

↑Norfolk QOL-
DN score

Glomerulone-
phritis and 
thrombocy-
topenia

NCT01737398

Eplontersen 1438 ATTR-CM Subcutaneous Every 
4 weeks

III Ongoing Ongoing NCT04136184

Monoclonal 
antibodies

NI006 [99] 40 ATTR-CM 
(82.5%ATTRwt)

Intravenous Every 4 
weeks for 4 
months

I ↓Cardiac tracer 
uptake on 
scintigraphy

↓Extracellular 
volume on 
cardiac MRI

↓NT-proBNP
↓Troponin T
↑KCCQ-OS 

score

No apparent 
drug-related 
serious 
adverse 
events

NCT04360434

NNC6019-
0001 
(formerly 
PRX004)

99 ATTR-CM Intravenous Every 4 
weeks 
added to 
standard of 
care until 
week 52

II Ongoing Ongoing NCT05442047

CRISPR-Cas9 NTLA-2001 72 ATTR-CM, 
ATTRv-PN

Intravenous A single dose I Ongoing Ongoing NCT04601051
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after 18 months [90]. The APOLLO-B phase III trial was 
designed to investigate patisiran efficacy for ATTR-CM. 
This study enrolled patients with ATTRwt-CM or ATTRv-
CM, with a history of heart failure, and serum NT-proBNP 
ranging from 300 to 8,500 ng/L (NCT03997383). APOLLO-
B met its primary endpoint with a reduction in 6MWT dis-
tance and the first secondary endpoint with an improvement 
in KCCQ-OS among treated patients compared to placebo 
over 12 months [91]. However, the study findings have 
not yet been published, and thus, additional information is 
needed before definitive conclusions can be made.

Vutrisiran, also known as ALN-TTRsc02, is another 
siRNA. It has an enhanced stabilizing chemistry that allows 
subcutaneous administration at greater intervals than pati-
siran [92]. The HELIOS-A phase III, open-label, mul-
ticenter study compared the efficacy and safety of vutri-
siran in ATTRv-PN to an external placebo group from the 
APOLLO trial [93]. At 18 months of follow-up, vutrisiran 
treatment resulted in significant improvement in the modi-
fied Neuropathy Impairment Score + 7 score (mNIS + 7) 
(LS mean difference [95% CI]: −28.55 [− 34.00, − 23.10]; 
P = 6.50 ×  10−20) and Norfolk Quality of Life-Diabetic Neu-
ropathy (QOL-DN) score (LS mean difference [95% CI]: 
−21.0 [− 27.1, − 14.9]; P = 1.84 ×  10−10) when compared 
to placebo [93]. Based on these results, FAD approved 
vutrisiran for the treatment of ATTRv-PN in 2022. Another 
study, HELIOS-B, is an ongoing phase III, randomized, pla-
cebo-controlled trial for the treatment of ATTRwt-CM and 
ATTRv-CM. This trial enrolled 600 ATTR-CM patients with 
NYHA class I–III, whose primary outcome is a composite 
of all-cause mortality and recurrent cardiovascular events at 
30–36 months (NCT04153149). The results from HELIOS-
B are expected in early 2024.

Inotersen was the first antisense oligonucleotide (ASO) 
developed for ATTR amyloidosis, targeting the 3’ untrans-
lated portion of TTR mRNA. The NEURO-TTR trial was 
a phase III, randomized, placebo-controlled study that 
assessed the efficacy and safety of inotersen and enrolled 
172 patients with ATTRv-PN [94]. The trial showed that 
inotersen significantly improved polyneuropathy as meas-
ured by the mNIS + 7 (95% CI, − 26.4 to − 13.0; P < 0.001) 
and quality of life as measured by the Norfolk QOL-DN 
score (95% CI, − 18.3 to − 5.1; P < 0.001). Within the car-
diomyopathy subgroup, baseline left ventricular ejection 
fraction (LVEF) and global longitudinal strain (GLS) were 
preserved at 64% and 14%, respectively, without significant 
changes after 66 weeks of inotersen therapy in GLS and 
other echocardiographic variables [94]. Of note, five deaths 
occurred in the inotersen group while none occurred in the 
control group. Following the findings of the NEURO-TTR 
clinical trial, Inotersen received FDA approval for the treat-
ment of ATTRv-PN. With the side effect profiles, further 
study of inotersen in ATTR-CM is needed.

Eplontersen, another ASO, has an identical nucleotide 
sequence to inotersen. Unlike inotersen, eplontersen is con-
jugated to a triantennary N-acetylgalactosamine moiety 
that facilitates its uptake by hepatocytes, thereby increasing 
drug potency to reduce the expression of the TTR gene [95]. 
Neuro-TTRansform (NCT04136184) and Cardio-TTRans-
form (NCT04136171) are ongoing phase III multicenter, 
open-label, randomized trials of eplontersen in patients with 
ATTR-PN and ATTR-CM, respectively. The Neuro-TTRans-
form trial will evaluate the efficacy and safety of eplontersen 
in patients with ATTRv-PN over 66 weeks, with the aim 
of improving neurologic function and quality of life [96]. 
The interim analysis at 35 weeks demonstrated a significant 
reduction in the serum TTR, improvement in the neuropathic 
disease, and patient-reported quality of life (both P < 0.0001) 
[97]. The final efficacy analysis results are expected in 2024. 
The phase III trial CARDIO-TTRansform, launched in 2020, 
is presently the largest ongoing trial on ATTR-CM, actually 
enrolling 1438 patients (NCT04136184). Patients will be 
randomly assigned in a 1:1 ratio to receive either eplont-
ersen or a placebo for 30 months. The primary endpoint is a 
hierarchical composite endpoint of cardiovascular mortality 
and recurrent cardiovascular events across 140 weeks. The 
results are expected in 2025.

Amyloid disruptors: monoclonal antibodies

Many of the recent targeted therapies for ATTR aimed at 
reducing the deposition of ATTR in the myocardium through 
stabilization of the circulating TTR tetramer or through 
reduction of hepatic synthesis of TTR. However, there is still 
an urgent need for therapies that address amyloid deposits 
and reverse amyloid deposition to promote organ function 
recovery. Recently, a promising strategy, monoclonal anti-
bodies, for the clearance of amyloid deposits has emerged.

NI006 is a humanized IgG1 monoclonal antibody that 
can bind to an epitope exposed on an abnormal TTR protein. 
Its intent is to promote active clearance of ATTR amyloid 
through phagocytic uptake [98]. The recently completed 
phase I open-label study (NCT04360434) has shown prom-
ising results indicating the drug’s safety, reduced amyloid 
load in the heart, and improved heart function after 12 
months of treatment [99]. Other promising antibodies are 
Ab-A and PRX004. Ab-A has been demonstrated to have 
a strong affinity for binding aggregated TTR and is capa-
ble of eliminating amyloid deposits both ex vivo based on 
autopsy results and in vivo using mice with human TTR 
grafts in cardiac tissue [100]. The phase I study for PRX004 
(NCT03336580), although terminated prematurely due to 
the COVID-19 pandemic, showed promising results after 
only 9 months of treatment [101]. Its phase II study is ongo-
ing (NCT05442047). A recent study reported that three 
patients with ATTR-CM experienced reversal due to the 
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presence of high-titer IgG antibodies targeting ATTR amy-
loid, raising expectations for this promising treatment [102].

Seeding inhibitors: TabFH2

Seeding inhibitor therapies (for example, TabFH2) are 
emerging treatments that aim to inhibit amyloid aggrega-
tion by blocking amyloid seeds.

TabFH2 is a compound designed to bind the TTR amyoi-
dogenic segment (F and H β-strands), which are important 
segments driving aggregation [103]. In vitro experiments have 
indicated that TabFH2 has a dose-dependent inhibitory effect 
on the aggregation of TTR by amyloid seeds, with complete 
inhibition at higher doses [103]. Further results revealed that 
TabFH2 effectively inhibits amyloid formation by both wild-
type and mutant TTR seeds in a tissue-independent manner 
[103]. In two Drosophila models carrying the V30M TTR 
mutation, TabFH2 improved motor parameters and reduced 
TTR deposition compared with the control group [104]. Fur-
ther study of TabFH2 in the ATTR-CM is needed.

CRISPR‒Cas9: NTLA‑2001

The prospect of a single treatment that can effectively halt 
TTR production utilizing CRISPR‒Cas9 technology is 
becoming more promising. NTLA-2001 is a genome edit-
ing therapy that utilizes CRISPR‒Cas9 technology to spe-
cifically target and edit the TTR gene within hepatocytes, 
thereby reducing the production of both TTRwt and TTRv. 
In transgenic mice, > 97% TTR reduction was observed after 
a single administration lasting at least 12 months [105]. Sim-
ilar results were obtained in various animal models, includ-
ing cynomolgus monkeys and transgenic mice bearing the 
human Val30Met TTR variant, without significant adverse 
events [106]. An open-label, single-dose phase I multicenter 
trial is ongoing to assess the safety, tolerability, pharmacoki-
netics, and pharmacodynamics of NTLA-2001 in patients 
with ATTRv-PN and ATTR-CM (NCT04601051). This pre-
liminary analysis was conducted on 6 ATTRv-PN patients. 
After reveiving a single dose of NTLA-2001, pharmacody-
namic analysis showed reductions in serum TTR protein of 
87% in the 0.3 mg/kg group at 28 days [107]. Adverse events 
were rare and mild. The primary completion date is 2025.

Conclusions

Wild-type transthyretin amyloid cardiomyopathy is an age-
related, life-threatening disease resulting from the myocardial 
deposition of misfolded wild-type transthyretin. It is increas-
ingly recognized as an underdiagnosed condition. Substantial 
milestones have been achieved over the last few years due 

to the understanding of amyloidogenesis mechanisms and 
the development of effective therapies. While Tafamidis is 
currently the only FDA-approved drug for the treatment of 
ATTRwt-CM, several other drugs, including stabilizer AG10, 
silencer eplontersen, and antibodies PRX006, are currently 
undergoing clinical trials for the management of ATTR-CM. 
There is still a need to translate other innovative treatments 
from the bench to the clinical bedside so that patients can 
have the option of other effective alternative therapies, espe-
cially for patients diagnosed at a late stage.
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