Skip to main content
Log in

Follistatin-like 1 and its paralogs in heart development and cardiovascular disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) are a group of disorders affecting the heart and blood vessels and a leading cause of death worldwide. Thus, there is a need to identify new cardiokines that may protect the heart from damage as reported in GBD 2017 Causes of Death Collaborators (2018) (The Lancet 392:1736–1788). Follistatin-like 1 (FSTL1) is a cardiokine that is highly expressed in the heart and released to the serum after cardiac injury where it is associated with CVD and predicts poor outcome. The action of FSTL1 likely depends not only on the tissue source but also post-translation modifications that are target tissue- and cell-specific. Animal studies examining the effect of FSTL1 in various models of heart disease have exploded over the past 15 years and primarily report a protective effect spanning from inhibiting inflammation via transforming growth factor, preventing remodeling and fibrosis to promoting angiogenesis and hypertrophy. A better understanding of FSTL1 and its homologs is needed to determine whether this protein could be a useful novel biomarker to predict poor outcome and death and whether it has therapeutic potential. The aim of this review is to provide a comprehensive description of the literature for this family of proteins in order to better understand their role in normal physiology and CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acid

ACS:

Acute coronary syndrome

ACVR2B:

Activin A receptor type 2B

ATP1A1:

ATPase Na+/K+ transporting subunit alpha 1

BMP:

Bone morphogenetic protein

CAA:

Coronary artery aneurysms

circRNA:

Circular RNA

CVD:

Cardiovascular disease

DIP2A:

Disco-interacting protein 2 homolog A

FS:

Follistatin

FST:

Follistatin

FSTL:

Follistatin-like

GWAS:

Genome-wide association studies

HFpEF:

Heart failure with preserved ejection fraction

I/R:

Ischemia/reperfusion

LAD:

Left anterior descending

LoF:

Loss-of-function

LV:

Left ventricular

MI:

Myocardial infarction

miRNA:

MicroRNA

ncRNAs:

Non-coding RNAs

PCI:

Percutaneous coronary intervention

SPARC:

Secreted protein acidic and cysteine rich

SPIG1:

SPARC-related protein containing immunoglobulin domain 1

TAC:

Transverse aortic constriction

TGF:

Transforming growth factor

References

  1. Oshima Y, Ouchi N, Sato K et al (2008) Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 117:3099–3108. https://doi.org/10.1161/CIRCULATIONAHA.108.767673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shibanuma M, Mashimo J, Mita A et al (1993) Cloning from a mouse osteoblastic cell line of a set of transforming-growth-factor-beta 1-regulated genes, one of which seems to encode a follistatin-related polypeptide. Eur J Biochem FEBS 217:13–19

    Article  CAS  Google Scholar 

  3. Zwijsen A, Blockx H, Van Arnhem W et al (1994) Characterization of a rat C6 glioma-secreted follistatin-related protein (FRP). Cloning and sequence of the human homologue. Eur J Biochem 225:937–946

    Article  CAS  Google Scholar 

  4. Sylva M, Moorman AFM, van den Hoff MJB (2013) Follistatin-like 1 in vertebrate development: follistatin-like 1 in vertebrate development. Birth Defects Res Part C Embryo Today Rev 99:61–69. https://doi.org/10.1002/bdrc.21030

    Article  CAS  Google Scholar 

  5. Mattiotti A, Prakash S, Barnett P, van den Hoff MJB (2018) Follistatin-like 1 in development and human diseases. Cell Mol Life Sci CMLS 75:2339–2354. https://doi.org/10.1007/s00018-018-2805-0

    Article  CAS  PubMed  Google Scholar 

  6. Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7 Suppl 1:S12.1–14. https://doi.org/10.1186/gb-2006-7-s1-s12

  7. Takehara-Kasamatsu Y, Tsuchida K, Nakatani M et al (2007) Characterization of follistatin-related gene as a negative regulatory factor for activin family members during mouse heart development. J Med Investig JMI 54:276–288

    Article  Google Scholar 

  8. Lara-Pezzi E, Felkin LE, Birks EJ et al (2008) Expression of follistatin-related genes is altered in heart failure. Endocrinology 149:5822–5827. https://doi.org/10.1210/en.2008-0151

    Article  CAS  PubMed  Google Scholar 

  9. Oshima Y, Ouchi N, Shimano M et al (2009) Activin A and follistatin-like 3 determine the susceptibility of heart to ischemic injury. Circulation 120:1606–1615. https://doi.org/10.1161/CIRCULATIONAHA.109.872200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimano M, Ouchi N, Nakamura K et al (2011) Cardiac myocyte-specific ablation of follistatin-like 3 attenuates stress-induced myocardial hypertrophy. J Biol Chem 286:9840–9848. https://doi.org/10.1074/jbc.M110.197079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Panse KD, Felkin LE, López-Olañeta MM et al (2012) Follistatin-like 3 mediates paracrine fibroblast activation by cardiomyocytes. J Cardiovasc Transl Res 5:814–826. https://doi.org/10.1007/s12265-012-9400-9

    Article  PubMed  Google Scholar 

  12. Namdari M, Negahdari B, Cheraghi M et al (2017) Cardiac failure detection in 30 minutes: new approach based on gold nanoparticles. J Microencapsul 34:132–139. https://doi.org/10.1080/02652048.2017.1296900

    Article  CAS  PubMed  Google Scholar 

  13. Shintani T, Kato A, Yuasa-Kawada J et al (2004) Large-scale identification and characterization of genes with asymmetric expression patterns in the developing chick retina. J Neurobiol 59:34–47. https://doi.org/10.1002/neu.10338

    Article  CAS  PubMed  Google Scholar 

  14. Yonehara K, Shintani T, Suzuki R et al (2008) Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLoS ONE 3:e1533. https://doi.org/10.1371/journal.pone.0001533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Masuda T, Kai N, Sakuma C et al (2009) Laser capture microdissection and cDNA array analysis for identification of mouse KIAA/FLJ genes differentially expressed in the embryonic dorsal spinal cord. Brain Res 1249:61–67. https://doi.org/10.1016/j.brainres.2008.10.028

    Article  CAS  PubMed  Google Scholar 

  16. GBD (2017) Causes of Death Collaborators (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Lond Engl 392:1736–1788. https://doi.org/10.1016/S0140-6736(18)32203-7

    Article  Google Scholar 

  17. Ling C, Cao S, Kong X (2022) Changes of FSTL1 and MMP-9 levels in patients with acute cerebral infarction and its relationship with hemorrhagic transformation. J Clin Neurosci Off J Neurosurg Soc Australas 99:164–168. https://doi.org/10.1016/j.jocn.2021.10.041

    Article  CAS  Google Scholar 

  18. Uematsu M, Nakamura K, Nakamura T et al (2020) Persistent myocardial production of follistatin-like 1 is associated with left ventricular adverse remodeling in patients with myocardial infarction: myocardial production of FSTL1 in AMI patients. J Card Fail 26:733–738. https://doi.org/10.1016/j.cardfail.2020.05.015

    Article  PubMed  Google Scholar 

  19. Gorelik M, Wilson DC, Cloonan YK et al (2012) Plasma follistatin-like protein 1 is elevated in Kawasaki disease and may predict coronary artery aneurysm formation. J Pediatr 161:116–119. https://doi.org/10.1016/j.jpeds.2012.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El-Armouche A, Ouchi N, Tanaka K et al (2011) Follistatin-like 1 in chronic systolic heart failure: a marker of left ventricular remodeling. Circ Heart Fail 4:621–627. https://doi.org/10.1161/CIRCHEARTFAILURE.110.960625

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li B, An J, Feng S, Ge W (2016) Change in serum follistatin-like protein 1 and its clinical significance in children with chronic heart failure. Zhongguo Dang Dai Er Ke Za Zhi

  22. Cunningham F, Achuthan P, Akanni W et al (2018) Ensembl 2019. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1113

    Article  PubMed  PubMed Central  Google Scholar 

  23. Stelzer G, Rosen N, Plaschkes I et al (2016) The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma 54:1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5

  24. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. cell 116:281–297

  25. Sundaram GM, Common JEA, Gopal FE et al (2013) “See-saw” expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495:103–106. https://doi.org/10.1038/nature11890

    Article  CAS  PubMed  Google Scholar 

  26. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  27. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:D158–D169. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  28. Hambrock HO, Kaufmann B, Müller S et al (2004) Structural characterization of TSC-36/Flik: analysis of two charge isoforms. J Biol Chem 279:11727–11735. https://doi.org/10.1074/jbc.M309318200

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka M, Ozaki S, Osakada F et al (1998) Cloning of follistatin-related protein as a novel autoantigen in systemic rheumatic diseases. Int Immunol 10:1305–1314

    Article  CAS  Google Scholar 

  30. Liu T, Qian W-J, Gritsenko MA et al (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J Proteome Res 4:2070–2080. https://doi.org/10.1021/pr0502065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sayers EW, Agarwala R, Bolton EE et al (2019) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 47:D23–D28. https://doi.org/10.1093/nar/gky1069

    Article  CAS  PubMed  Google Scholar 

  32. Finn RD, Attwood TK, Babbitt PC et al (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107

    Article  CAS  PubMed  Google Scholar 

  33. Keutmann HT, Schneyer AL, Sidis Y (2004) The role of follistatin domains in follistatin biological action. Mol Endocrinol 18:228–240. https://doi.org/10.1210/me.2003-0112

    Article  CAS  PubMed  Google Scholar 

  34. Letunic I, Bork P (2018) 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493–D496. https://doi.org/10.1093/nar/gkx922

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt T, Samaras P, Frejno M et al (2018) ProteomicsDB. Nucleic Acids Res 46:D1271–D1281. https://doi.org/10.1093/nar/gkx1029

    Article  CAS  PubMed  Google Scholar 

  36. Bradshaw AD (2012) Diverse biological functions of the SPARC family of proteins. Int J Biochem Cell Biol 44:480–488. https://doi.org/10.1016/j.biocel.2011.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yates B, Braschi B, Gray KA et al (2017) Genenames.org: the HGNC and VGNC resources in 2017. Nucleic Acids Res 45:D619–D625. https://doi.org/10.1093/nar/gkw1033

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Zhou S, Smas CM (2010) Downregulated expression of the secreted glycoprotein follistatin-like 1 (Fstl1) is a robust hallmark of preadipocyte to adipocyte conversion. Mech Dev 127:183–202. https://doi.org/10.1016/j.mod.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng S, Huang Y, Lou C et al (2018) FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol Ther. https://doi.org/10.1080/15384047.2018.1529101

    Article  PubMed  PubMed Central  Google Scholar 

  40. Galimov A, Hartung A, Trepp R et al (2015) Growth hormone replacement therapy regulates microRNA-29a and targets involved in insulin resistance. J Mol Med Berl Ger 93:1369–1379. https://doi.org/10.1007/s00109-015-1322-y

    Article  CAS  Google Scholar 

  41. Rosenberg MI, Georges SA, Asawachaicharn A et al (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175:77–85. https://doi.org/10.1083/jcb.200603039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shi D-L, Shi G-R, Xie J et al (2016) MicroRNA-27a inhibits cell migration and invasion of fibroblast-like synoviocytes by targeting follistatin-like protein 1 in rheumatoid arthritis. Mol Cells 39:611–618. https://doi.org/10.14348/molcells.2016.0103

  43. Xiao Y, Zhang Y, Chen Y et al (2018) Inhibition of microRNA-9-5p protects against cardiac remodeling following myocardial infarction in mice. Hum Gene Ther. https://doi.org/10.1089/hum.2018.059

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Z-M, Zhang A-R, Xu M et al (2017) TLR-4/miRNA-32-5p/FSTL1 signaling regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages. Exp Cell Res 352:313–321. https://doi.org/10.1016/j.yexcr.2017.02.025

    Article  CAS  PubMed  Google Scholar 

  45. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. eLife 4:. https://doi.org/10.7554/eLife.05005

  46. Chou C-H, Chang N-W, Shrestha S et al (2016) miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 44:D239–D247. https://doi.org/10.1093/nar/gkv1258

    Article  CAS  PubMed  Google Scholar 

  47. Mouillet J-F, Mishima T, Paffaro AMDA et al (2015) The expression and post-transcriptional regulation of FSTL1 transcripts in placental trophoblasts. Placenta 36:1231–1238. https://doi.org/10.1016/j.placenta.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Doroudgar S, Glembotski CC (2011) The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart. Trends Mol Med 17:207–214. https://doi.org/10.1016/j.molmed.2010.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ouchi N, Oshima Y, Ohashi K et al (2008) Follistatin-like 1, a secreted muscle protein, promotes endothelial cell function and revascularization in ischemic tissue through a nitric-oxide synthase-dependent mechanism. J Biol Chem 283:32802–32811. https://doi.org/10.1074/jbc.M803440200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Widera C, Horn-Wichmann R, Kempf T et al (2009) Circulating concentrations of follistatin-like 1 in healthy individuals and patients with acute coronary syndrome as assessed by an immunoluminometric sandwich assay. Clin Chem 55:1794–1800. https://doi.org/10.1373/clinchem.2009.129411

    Article  CAS  PubMed  Google Scholar 

  51. Thul PJ, Åkesson L, Wiking M et al (2017) A subcellular map of the human proteome. Science. https://doi.org/10.1126/science.aal3321

    Article  PubMed  Google Scholar 

  52. Chaly Y, Fu Y, Marinov A et al (2014) Follistatin-like protein 1 enhances NLRP3 inflammasome-mediated IL-1β secretion from monocytes and macrophages. Eur J Immunol 44:1467–1479. https://doi.org/10.1002/eji.201344063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  CAS  Google Scholar 

  54. Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. https://doi.org/10.1006/jmbi.2000.3903

    Article  CAS  PubMed  Google Scholar 

  55. Wei K, Serpooshan V, Hurtado C et al (2015) Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525:479–485. https://doi.org/10.1038/nature15372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Magadum A, Singh N, Kurian AA et al (2018) Ablation of a single N-glycosylation site in human FSTL 1 induces cardiomyocyte proliferation and cardiac regeneration. Mol Ther Nucleic Acids 13:133–143. https://doi.org/10.1016/j.omtn.2018.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sidis Y (2001) Follistatin: essential role for the N-terminal domain in activin binding and neutralization. J Biol Chem 276:17718–17726. https://doi.org/10.1074/jbc.M100736200

    Article  CAS  PubMed  Google Scholar 

  58. Li L, Li X, Liu X et al (2013) Expression, characterization, and preliminary X-ray crystallographic analysis of recombinant murine follistatin-like 1 expressed in Drosophila S2 cells. Biosci Trends 7:93–100

    CAS  PubMed  Google Scholar 

  59. Zhou J, Liao M, Hatta T et al (2006) Identification of a follistatin-related protein from the tick Haemaphysalis longicornis and its effect on tick oviposition. Gene 372:191–198. https://doi.org/10.1016/j.gene.2005.12.020

    Article  CAS  PubMed  Google Scholar 

  60. Tanaka M, Murakami K, Ozaki S et al (2010) DIP2 disco-interacting protein 2 homolog A (Drosophila) is a candidate receptor for follistatin-related protein/follistatin-like 1 - analysis of their binding with TGF-β superfamily proteins: DIP2A is a candidate receptor for FRP/FSTL1. FEBS J 277:4278–4289. https://doi.org/10.1111/j.1742-4658.2010.07816.x

    Article  CAS  PubMed  Google Scholar 

  61. Geng Y, Dong Y, Yu M et al (2011) Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proc Natl Acad Sci 108:7058–7063. https://doi.org/10.1073/pnas.1007293108

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li K-C, Zhang F-X, Li C-L et al (2011) Follistatin-like 1 suppresses sensory afferent transmission by activating Na+, K+-ATPase. Neuron 69:974–987. https://doi.org/10.1016/j.neuron.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  63. Murakami K, Tanaka M, Usui T et al (2012) Follistatin-related protein/follistatin-like 1 evokes an innate immune response via CD14 and toll-like receptor 4. FEBS Lett 586:319–324. https://doi.org/10.1016/j.febslet.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  64. Prieto C, De Las RJ (2006) APID: agile protein interaction dataanalyzer. Nucleic Acids Res 34:W298–W302. https://doi.org/10.1093/nar/gkl128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ouchi N, Asaumi Y, Ohashi K et al (2010) DIP2A functions as a FSTL1 receptor. J Biol Chem 285:7127–7134. https://doi.org/10.1074/jbc.M109.069468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ogura Y, Ouchi N, Ohashi K et al (2012) Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126:1728–1738. https://doi.org/10.1161/CIRCULATIONAHA.112.115089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miyabe M, Ohashi K, Shibata R et al (2014) Muscle-derived follistatin-like 1 functions to reduce neointimal formation after vascular injury. Cardiovasc Res 103:111–120. https://doi.org/10.1093/cvr/cvu105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seki M, Powers JC, Maruyama S et al (2018) Acute and chronic increases of circulating FSTL1 normalize energy substrate metabolism in pacing-induced heart failure. Circ Heart Fail 11:e004486. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shimano M, Ouchi N, Nakamura K et al (2011) Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload. Proc Natl Acad Sci U S A 108:E899-906. https://doi.org/10.1073/pnas.1108559108

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ni S, Li C, Xu N et al (2018) Follistatin-like protein 1 induction of matrix metalloproteinase 1, 3 and 13 gene expression in rheumatoid arthritis synoviocytes requires MAPK, JAK/STAT3 and NF-κB pathways. J Cell Physiol 234:454–463. https://doi.org/10.1002/jcp.26580

    Article  CAS  PubMed  Google Scholar 

  71. Sundaram GM, Ismail HM, Bashir M et al (2017) EGF hijacks miR-198/FSTL1 wound-healing switch and steers a two-pronged pathway toward metastasis. J Exp Med 214:2889–2900. https://doi.org/10.1084/jem.20170354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang D, Ma X, Sun W et al (2015) Down-regulated FSTL5 promotes cell proliferation and survival by affecting Wnt/β-catenin signaling in hepatocellular carcinoma. Int J Clin Exp Pathol 8:3386–3394

    PubMed  PubMed Central  Google Scholar 

  73. Miyamae T, Marinov AD, Sowders D et al (1950) (2006) Follistatin-like protein-1 is a novel proinflammatory molecule. J Immunol Baltim Md 177:4758–4762

    Google Scholar 

  74. Wilson DC, Marinov AD, Blair HC et al (2010) Follistatin-like protein 1 is a mesenchyme-derived inflammatory protein and may represent a biomarker for systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum 62:2510–2516. https://doi.org/10.1002/art.27485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Masuda T, Sakuma C, Nagaoka A et al (2014) Follistatin-like 5 is expressed in restricted areas of the adult mouse brain: implications for its function in the olfactory system. Congenit Anom 54:63–66. https://doi.org/10.1111/cga.12022

    Article  CAS  Google Scholar 

  76. Karczewski KJ, Weisburd B, Thomas B et al (2017) The ExAC browser: displaying reference data information from over 60 000 exomes. Nucleic Acids Res 45:D840–D845. https://doi.org/10.1093/nar/gkw971

    Article  CAS  PubMed  Google Scholar 

  77. Sylva M, Li VSW, Buffing AAA et al (2011) The BMP antagonist follistatin-like 1 is required for skeletal and lung organogenesis. PLoS ONE 6:e22616. https://doi.org/10.1371/journal.pone.0022616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Adams D, Larman B, Oxburgh L (2007) Developmental expression of mouse follistatin-like 1 (Fstl1): dynamic regulation during organogenesis of the kidney and lung. Gene Expr Patterns 7:491–500. https://doi.org/10.1016/j.modgep.2006.10.009

    Article  CAS  PubMed  Google Scholar 

  79. Dal-Pra S, Fürthauer M, Van-Celst J et al (2006) Noggin1 and follistatin-like2 function redundantly to chordin to antagonize BMP activity. Dev Biol 298:514–526. https://doi.org/10.1016/j.ydbio.2006.07.002

    Article  CAS  PubMed  Google Scholar 

  80. Liu S, Shen H, Xu M et al (2010) FRP inhibits ox-LDL-induced endothelial cell apoptosis through an Akt-NF-{kappa}B-Bcl-2 pathway and inhibits endothelial cell apoptosis in an apoE-knockout mouse model. Am J Physiol Endocrinol Metab 299:E351-363. https://doi.org/10.1152/ajpendo.00005.2010

    Article  CAS  PubMed  Google Scholar 

  81. Okabayashi K, Shoji H, Onuma Y et al (1999) cDNA cloning and distribution of the Xenopus follistatin-related protein. Biochem Biophys Res Commun 254:42–48. https://doi.org/10.1006/bbrc.1998.9892

    Article  CAS  PubMed  Google Scholar 

  82. Suzuki R, Matsumoto M, Fujikawa A et al (2014) SPIG1 negatively regulates BDNF maturation. J Neurosci Off J Soc Neurosci 34:3429–3442. https://doi.org/10.1523/JNEUROSCI.1597-13.2014

    Article  CAS  Google Scholar 

  83. Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126. https://doi.org/10.1186/s13059-015-0690-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci. https://doi.org/10.3390/ijms17010063

    Article  PubMed  PubMed Central  Google Scholar 

  85. Li M, Ding W, Sun T et al (2018) Biogenesis of circular RNAs and their roles in cardiovascular development and pathology. FEBS J 285:220–232. https://doi.org/10.1111/febs.14191

    Article  CAS  PubMed  Google Scholar 

  86. van den Berg G, Somi S, Buffing AAM et al (2007) (2007) Patterns of expression of the follistatin and Follistatin-like1 genes during chicken heart development: a potential role in valvulogenesis and late heart muscle cell formation. Anat Rec Hoboken NJ 290:783–787. https://doi.org/10.1002/ar.20559

    Article  CAS  Google Scholar 

  87. Kretzschmar K, Post Y, Bannier-Hélaouët M et al (2018) Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci U S A 115:E12245–E12254. https://doi.org/10.1073/pnas.1805829115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang M, Weiss M, Simonovic M et al (2012) PaxDb, a database of protein abundance averages across all three domains of life. Mol Cell Proteomics MCP 11:492–500. https://doi.org/10.1074/mcp.O111.014704

    Article  CAS  PubMed  Google Scholar 

  89. Wu C, Jin X, Tsueng G et al (2016) BioGPS: building your own mash-up of gene annotations and expression profiles. Nucleic Acids Res 44:D313-316. https://doi.org/10.1093/nar/gkv1104

    Article  CAS  PubMed  Google Scholar 

  90. Stylianidis V, Hermans KCM, Blankesteijn WM (2017) Wnt signaling in cardiac remodeling and heart failure. Handb Exp Pharmacol 243:371–393. https://doi.org/10.1007/164_2016_56

    Article  CAS  PubMed  Google Scholar 

  91. Prakash S, Borreguero LJJ, Sylva M et al (2017) Deletion of Fstl1 (follistatin-Like 1) from the endocardial/endothelial lineage causes mitral valve disease. Arterioscler Thromb Vasc Biol 37:e116–e130. https://doi.org/10.1161/ATVBAHA.117.309089

    Article  CAS  PubMed  Google Scholar 

  92. Prakash S, Mattiotti A, Sylva M et al (2019) Identifying pathogenic variants in the follistatin-like 1 gene (FSTL1) in patients with skeletal and atrioventricular valve disorders. Mol Genet Genomic Med e567. https://doi.org/10.1002/mgg3.567

  93. Maruyama S, Nakamura K, Papanicolaou KN et al (2016) Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol Med 8:949–966. https://doi.org/10.15252/emmm.201506151

  94. Tanaka K, Valero-Muñoz M, Wilson RM et al (2016) Follistatin like 1 regulates hypertrophy in heart failure with preserved ejection fraction. JACC Basic Transl Sci 1:207–221. https://doi.org/10.1016/j.jacbts.2016.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  95. Widera C, Giannitsis E, Kempf T et al (2012) Identification of follistatin-like 1 by expression cloning as an activator of the growth differentiation factor 15 gene and a prognostic biomarker in acute coronary syndrome. Clin Chem 58:1233–1241. https://doi.org/10.1373/clinchem.2012.182816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aikawa T, Shimada K, Miyauchi K et al (2019) Associations among circulating levels of follistatin-like 1, clinical parameters, and cardiovascular events in patients undergoing elective percutaneous coronary intervention with drug-eluting stents. PLoS ONE 14:e0216297. https://doi.org/10.1371/journal.pone.0216297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee S-Y, Kim D-Y, Kyung Kwak M et al (2019) High circulating follistatin-like protein 1 as a biomarker of a metabolically unhealthy state. Endocr J. https://doi.org/10.1507/endocrj.EJ18-0352

    Article  PubMed  Google Scholar 

  98. Xi Y, Gong D-W, Tian Z (2016) FSTL1 as a potential mediator of exercise-induced cardioprotection in post-myocardial infarction rats. Sci Rep 6:32424. https://doi.org/10.1038/srep32424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hayakawa S, Ohashi K, Shibata R et al (2015) Cardiac myocyte-derived follistatin-like 1 prevents renal injury in a subtotal nephrectomy model. J Am Soc Nephrol JASN 26:636–646. https://doi.org/10.1681/ASN.2014020210

    Article  CAS  PubMed  Google Scholar 

  100. Philipp U, Vollmar A, Häggström J et al (2012) Multiple loci are associated with dilated cardiomyopathy in Irish wolfhounds. PLoS ONE 7:e36691. https://doi.org/10.1371/journal.pone.0036691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stern JA, Hsue W, Song K-H et al (2015) Severity of mitral valve degeneration is associated with chromosome 15 loci in Whippet dogs. PLoS ONE 10:e0141234. https://doi.org/10.1371/journal.pone.0141234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Divers J, Palmer ND, Langefeld CD et al (2017) Genome-wide association study of coronary artery calcified atherosclerotic plaque in African Americans with type 2 diabetes. BMC Genet 18:105. https://doi.org/10.1186/s12863-017-0572-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guo Y, Tomlinson B, Chu T et al (2012) A genome-wide linkage and association scan reveals novel loci for hypertension and blood pressure traits. PLoS ONE 7:e31489. https://doi.org/10.1371/journal.pone.0031489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schriml LM, Mitraka E, Munro J et al (2019) Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res 47:D955–D962. https://doi.org/10.1093/nar/gky1032

    Article  CAS  PubMed  Google Scholar 

  105. Maruyama S, Nakamura K, Papanicolaou KN et al (2016) Follistatin‐like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol Med 8:949–966. https://doi.org/10.15252/emmm.201506151

  106. Tuunanen H, Ukkonen H, Knuuti J (2008) Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 10:142–148

    Article  Google Scholar 

  107. Le Luduec JB, Condamine T, Louvet C et al (2008) An immunomodulatory role for follistatin-like 1 in heart allograft transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 8:2297–2306. https://doi.org/10.1111/j.1600-6143.2008.02398.x

    Article  CAS  Google Scholar 

  108. Shen H, Cui G, Li Y et al (2019) Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model. Stem Cell Res Ther 10:17. https://doi.org/10.1186/s13287-018-1111-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van Wijk B, Gunst QD, Moorman AFM, van den Hoff MJB (2012) Cardiac regeneration from activated epicardium. PLoS ONE. https://doi.org/10.1371/journal.pone.0044692

    Article  PubMed  PubMed Central  Google Scholar 

  110. Chen W, Xia J, Hu P et al (2016) Follistatin-like 1 protects cardiomyoblasts from injury induced by sodium nitroprusside through modulating Akt and Smad1/5/9 signaling. Biochem Biophys Res Commun 469:418–423. https://doi.org/10.1016/j.bbrc.2015.12.026

    Article  CAS  PubMed  Google Scholar 

  111. Yang W, Duan Q, Zhu X et al (2019) Follistatin-like 1 attenuates ischemia/reperfusion injury in cardiomyocytes via regulation of autophagy. In: BioMed Res. Int. https://www.hindawi.com/journals/bmri/2019/9537382/abs/. Accessed 22 May 2019

  112. Li C, Dai L, Zhang J et al (2018) Follistatin-like protein 5 inhibits hepatocellular carcinoma progression by inducing caspase-dependent apoptosis and regulating Bcl-2 family proteins. J Cell Mol Med 22:6190–6201. https://doi.org/10.1111/jcmm.13906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15:387–407. https://doi.org/10.1038/s41569-018-0007-y

    Article  CAS  PubMed  Google Scholar 

  114. Rubattu S, Forte M, Marchitti S, Volpe M (2019) Molecular implications of natriuretic peptides in the protection from hypertension and target organ damage development. Int J Mol Sci. https://doi.org/10.3390/ijms20040798

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shiojima I, Sato K, Izumiya Y et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118. https://doi.org/10.1172/JCI24682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365:563–581. https://doi.org/10.1007/s00441-016-2431-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Frangogiannis NG (2015) Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol 30:240–245. https://doi.org/10.1097/HCO.0000000000000158

    Article  PubMed  PubMed Central  Google Scholar 

  118. Winbanks CE, Chen JL, Qian H et al (2013) The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J Cell Biol 203:345–357. https://doi.org/10.1083/jcb.201211134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bergmann O (2019) Clearing up the mist: cardiomyocyte renewal in human hearts. Eur Heart J 40:1037–1038. https://doi.org/10.1093/eurheartj/ehz097

    Article  CAS  PubMed  Google Scholar 

  120. Bergmann O, Zdunek S, Felker A et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575. https://doi.org/10.1016/j.cell.2015.05.026

    Article  CAS  PubMed  Google Scholar 

  121. DeLeon-Pennell KY, Meschiari CA, Jung M, Lindsey ML (2017) Matrix metalloproteinases in myocardial infarction and heart failure. Prog Mol Biol Transl Sci 147:75–100. https://doi.org/10.1016/bs.pmbts.2017.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chan QKY, Ngan HYS, Ip PPC et al (2009) Tumor suppressor effect of follistatin-like 1 in ovarian and endometrial carcinogenesis: a differential expression and functional analysis. Carcinogenesis 30:114–121. https://doi.org/10.1093/carcin/bgn215

    Article  CAS  PubMed  Google Scholar 

  123. Fan D, Takawale A, Lee J, Kassiri Z (2012) Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair 5:15. https://doi.org/10.1186/1755-1536-5-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hu P-F, Ma C-Y, Sun F-F et al (2019) Follistatin-like protein 1 (FSTL1) promotes chondrocyte expression of matrix metalloproteinase and inflammatory factors via the NF-κB pathway. J Cell Mol Med 23:2230–2237. https://doi.org/10.1111/jcmm.14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kawabata D, Tanaka M, Fujii T et al (2004) Ameliorative effects of follistatin-related protein/TSC-36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis Rheum 50:660–668. https://doi.org/10.1002/art.20023

    Article  CAS  PubMed  Google Scholar 

  126. Liu Y, Wei J, Zhao Y et al (2017) Follistatin-like protein 1 promotes inflammatory reactions in nucleus pulposus cells by interacting with the MAPK and NFκB signaling pathways. Oncotarget 8:43023–43034. https://doi.org/10.18632/oncotarget.17400

  127. Ni X, Cao X, Wu Y, Wu J (2018) FSTL1 suppresses tumor cell proliferation, invasion and survival in non-small cell lung cancer. Oncol Rep 39:13–20. https://doi.org/10.3892/or.2017.6061

    Article  CAS  PubMed  Google Scholar 

  128. Tanaka M, Ozaki S, Kawabata D et al (2003) Potential preventive effects of follistatin-related protein/TSC-36 on joint destruction and antagonistic modulation of its autoantibodies in rheumatoid arthritis. Int Immunol 15:71–77. https://doi.org/10.1093/intimm/dxg005

    Article  CAS  PubMed  Google Scholar 

  129. Zabala W, Cruz R, Barreiro-de Acosta M et al (2013) New genetic associations in thiopurine-related bone marrow toxicity among inflammatory bowel disease patients. Pharmacogenomics 14:631–640. https://doi.org/10.2217/pgs.13.38

    Article  CAS  PubMed  Google Scholar 

  130. Rosano GM, Vitale C (2018) Metabolic modulation of cardiac metabolism in heart failure. Card Fail Rev 4:99–103. https://doi.org/10.15420/cfr.2018.18.2

  131. Li F, Zhang K, Xu T et al (2019) Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy. Endocrine 63:480–488. https://doi.org/10.1007/s12020-018-1753-7

    Article  CAS  PubMed  Google Scholar 

  132. Coronado MJ, Bruno KA, Blauwet LA et al (2019) Elevated Sera sST2 is associated with heart failure in men ≤50 years old with myocarditis. J Am Heart Assoc 8:e008968. https://doi.org/10.1161/JAHA.118.008968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li W, Alahdal M, Deng Z et al (2020) Molecular functions of FSTL1 in the osteoarthritis. Int Immunopharmacol 83:106465. https://doi.org/10.1016/j.intimp.2020.106465

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded in part by the National Institutes of Health grants R21 AI145356, R21 AI152318, and R21 AI154927 and the American Heart Association 20TPA35490415 to DF. This study has received support from RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), Horizon 2020 Teaming 2 project (857560), and the Ministry of Education, Youth and Sports of the Czech Republic (CZ.02.1.01/0.0/0.0/17_04369/ 0009632 and CZ.02.1.01/0.0/0.0/15_003/ 0000469). Moreover, the study was funded by grant no. NU22-02–00418 by the Ministry of Health of the Czech Republic.

Author information

Authors and Affiliations

Authors

Contributions

The whole team participated in the preparation of the manuscript, while Martin Horak conceived the idea and prepared the initial draft, Piia Kokkonen and David Bednar provided the database analyses and provided valuable insight into the functional aspects of FSTL1 and its paralogs. DeLisa Fairweather critically reviewed the manuscript and provided valuable insight into the practical implications of use of FSTLs as biomarkers in cardiology. Julie Bienertova-Vasku provided guidance for manuscript preparation by Martin Horak and critically reviewed the manuscript.

Corresponding author

Correspondence to Julie Bienertova-Vasku.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horak, M., Fairweather, D., Kokkonen, P. et al. Follistatin-like 1 and its paralogs in heart development and cardiovascular disease. Heart Fail Rev 27, 2251–2265 (2022). https://doi.org/10.1007/s10741-022-10262-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-022-10262-6

Keywords

Navigation