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Abstract
Barth syndrome (BTHS) is a rare, X-linked recessive, infantile-onset debilitating disorder characterized by early-onset cardio-
myopathy, skeletal muscle myopathy, growth delay, and neutropenia, with a worldwide incidence of 1/300,000–400,000 live
births. The high mortality rate throughout infancy in BTHS patients is related primarily to progressive cardiomyopathy and a
weakened immune system. BTHS is caused by defects in the TAZ gene that encodes tafazzin, a transacylase responsible for the
remodeling and maturation of the mitochondrial phospholipid cardiolipin (CL), which is critical to normal mitochondrial
structure and function (i.e., ATP generation). A deficiency in tafazzin results in up to a 95% reduction in levels of structurally
mature CL. Because the heart is the most metabolically active organ in the body, with the highest mitochondrial content of any
tissue, mitochondrial dysfunction plays a key role in the development of heart failure in patients with BTHS. Changes in
mitochondrial oxidative phosphorylation reduce the ability of mitochondria to meet the ATP demands of the human heart as
well as skeletal muscle, namely ATP synthesis does not match the rate of ATP consumption. The presence of several
cardiomyopathic phenotypes have been described in BTHS, including dilated cardiomyopathy, left ventricular noncompaction,
either alone or in conjunction with other cardiomyopathic phenotypes, endocardial fibroelastosis, hypertrophic cardiomyopathy,
and an apical form of hypertrophic cardiomyopathy, among others, all of which can be directly attributed to the lack of CL
synthesis, remodeling, and maturation with subsequent mitochondrial dysfunction. Several mechanisms by which these
cardiomyopathic phenotypes exist have been proposed, thereby identifying potential targets for treatment. Dysfunction of the
sarcoplasmic reticulum Ca2+-ATPase pump and inflammation potentially triggered by circulating mitochondrial components
have been identified. Currently, treatment modalities are aimed at addressing symptomatology of HF in BTHS, but do not address
the underlying pathology. One novel therapeutic approach includes elamipretide, which crosses the mitochondrial outer mem-
brane to localize to the inner membranewhere it associates with cardiolipin to enhance ATP synthesis in several organs, including
the heart. Encouraging clinical results of the use of elamipretide in treating patients with BTHS support the potential use of this
drug for management of this rare disease.
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Introduction

Barth syndrome (BTHS) is a rare, X-linked recessive disorder
characterized by cardiolipin abnormalities, skeletal muscle
weakness, abnormal mitochondria, neutropenia, growth retar-
dation, and cardiomyopathy [1]. Current estimates are that the
incidence of BTHS is 1/300,000–400,000 live births, with 111

diagnosed individuals in the USA and 230–250 worldwide,
though it is widely accepted that the disease is underdiagnosed
[2]. Biopsies of the heart, liver, and skeletal muscle of patients
with BTHS showed both mitochondrial malformations and
dysfunction. BTHS patients have a high mortality rate
throughout infancy that is primarily related to progressive car-
diomyopathy and a weakened immune system [2].

BTHS was first described in 1983 [3]. Identification of the
underlying genetic culprit in 1996 [4–7] led to identification
of a large number of affected patients [1]. BTHS is caused by
mutations in a recessive, X-linked gene located in the distal
region of chromosome Xq28. This gene encodes the tafazzin
enzyme, a transacylase involved in cardiolipin side chain re-
modeling. Tafazzin is critical for the maturation of cardiolipin,
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an essential phospholipid of the inner mitochondrial mem-
brane. In BTHS, the significant loss of mature cardiolipin
leads to profound derangement in mitochondrial structure
and function. Accordingly, mitochondria are a key therapeutic
target in the treatment of BTHS patients. The first of two
segments of the discussion that follows will focus on the path-
ophysiology of BTHS. This includes mechanistic insights into
the disease, a description of the myopathic and inflammatory
pathologies associated with BTHS, and an overview of cur-
rent and potential new therapies. The second segment will
focus on elamipretide, a novel mitochondria-targeting peptide
that is a promising therapeutic agent for BTHS.

Mitochondrial bioenergetics

Mitochondria are an intracellular double-membraned network
that are the “power grids” of eukaryotic cells. Mitochondria
are most abundant in cells with high energy demands, notably
striated muscles. The heart is the most metabolically active
organ in the body and possesses the highest content of mito-
chondria of any tissue [9], comprising about 25% of cell vol-
ume in the human myocardium [10, 11] and approximately
35% of cardiomyocyte volume [12]. The key role of mito-
chondria in muscle cells is the regeneration of adenosine tri-
phosphate (ATP) from adenosine diphosphate (ADP) using
macromolecular complexes that form the electron transport
chain (ETC). These protein complexes are imbedded in the
mitochondrial inner membrane, and include the following:
nicotinamide-adenine dinuculeotide (NADH) dehydrogenase
(complex I), succinate dehydrogenase (complex II), cyto-
chrome bc1 (complex III), and cytochrome c oxidase (com-
plex IV) [12]. As electrons flow energetically “down-hill”
through the ETC (ultimately reducing oxygen to water), pro-
tons are pumped from the matrix into the cristae lumen. This
establishes an electrochemical proton gradient characterized
by a highly negative mitochondrial membrane potential. The
re-entry of protons into the matrix through the ATP synthase
(complex V) provides the energy to regenerate ATP from
inorganic phosphate (Pi) and ADP (Fig. 1) [13–15]. The cou-
pling of substrate oxidation and ATP formation in the mito-
chondria, termed oxidative phosphorylation, is central to tis-
sue and organ health [12]. Cardiolipin is a unique phospho-
lipid expressed almost exclusively in the inner mitochondrial
membrane and involved in nearly every aspect of mitochon-
drial structure and function.

Humans produce and consume about 65 kg of ATP every
day, with the heart accounting for about 8% of ATP consump-
tion daily, or about 6 kg [16]. About 90% of cellular ATP
within the myocardium is used to meet the enormous energy
requirements for contraction and relaxation, both of which are
ATP-dependent [17]. Mitochondrial dysfunction therefore
plays a central role in a wide variety of metabolic and cardiac

disorders, including heart failure (HF) and BTHS [1, 18], the
subject of this review. Dysfunctional mitochondria in skeletal
muscle has been implicated in HF-associated exercise intoler-
ance [19] and in skeletal muscle myopathy and exercise intol-
erance in BTHS [20].

Because ATP cannot be stored, it is critical that the rate of
ATP synthesis matches the rate of ATP consumption [8]. This
process is accomplished by mitochondrial oxidative phos-
phorylation within the ETC using fatty acids as the primary
fuel source [21]. Although there are numerous reasons why
human hearts fail, a mismatch between ATP supply and de-
mand has been observed in almost all etiologies of HF [16].
Changes in oxidative phosphorylation are characterized by
decreased energy production, with reductions in oxygen utili-
zation, and respiratory chain and ATP synthase activity.
Mitochondrial dysfunction also contributes to skeletal muscle
performance limitations by reducing the ability of mitochon-
dria to meet the ATP demands of aerobic, slow-twitch,
fatigue-resistant working muscles [22]. Lack of availability
of energy during activity leads, in part, to exercise intolerance,
a characteristic feature of both acquired forms of HF and
BTHS [23].

Tafazzin, TAZ gene mutations, and Barth
syndrome

The TAZ gene provides instructions for producing the enzyme
tafazzin. Since tafazzin transacylase activity is responsible for
cardiolipin remodeling, it is critical to maintaining mitochon-
drial inner membrane structure and function. Tafazzin is
encoded by the TAZ gene, is highly expressed in cardiac
and skeletal muscle, and functions as a phospholipid-
lysophospholipid transacylase in humans [6, 7]. The protein
is produced by alternate splicing of the TAZ gene or G4.5.
The gene is a single-copy gene composed of ∼ 11 kb of
genomic DNA with 11 exons, which maps to Xq28, and
two ATG initiation sites. Multiple mRNAs can be produced
by alternate splicing at exons 5–7, resulting in tafazzin
proteins ranging from 129 to 292 amino acids in length that
differ at the N-terminal and central regions. Two putative
functional domains have been identified: (1) a highly hydro-
phobic segment of 30 residues at the N-terminus, which acts
as a membrane anchor, and (2) a hydrophilic segment in the
central region that forms an exposed loop interacting with
other proteins.

As alluded to earlier, tafazzin is a nuclear-encoded acyl-
transferase that is “trafficked” to the inner mitochondrial
membrane and functions in remodeling cardiolipin fatty acyl
chains [24]. The putative phospholipid-binding site, which is
the active site of tafazzin, is a 57-amino acid cleft with two
open ends and positively charged residues [25]. Tafazzin has
at least 4 different isoforms and has a molecular weight of
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approximately 35 kDa, but may also appear in lower
molecular weights due to species differences in isoform
expression [4, 5]. The TAZ gene contains two peptides
independent of its active site for directing the protein to the
mitochondria, forming residues 84–95 in exon 3 and residues
185–200 in exon 7/8 [26]. Within the mitochondria, tafazzin
localizes between the inner mitochondrial membrane and
outer mitochondrial membrane, facing the intermembrane
space [27, 28]. Tafazzin’s characteristic interfacial anchoring
is achieved by its hydrophobic sequence from residues 215–
232 [29]. Finally, the translocase of the outer membrane and
the translocase of the inner membrane mediate tafazzin’s
movement and insertion into the outer mitochondrial
membrane and anchoring to the inner mitochondrial
membrane [29].

Mutations in the TAZ gene have been associated with mi-
tochondrial dysfunction in BTHS cardiomyopathies, dilated
cardiomyopathy, hypertrophic-dilated cardiomyopathy,
endocardial fibroelastosis, LV noncompaction, breast cancer,
papillary thyroid carcinoma, non-small cell lung cancer,
glioma, gastric cancer, thyroid neoplasms, and rectal cancer
[30–32]. Several functional classes of TAZ gene mutations
have been classified based on the pathogenic loss-of-
function mechanisms of each mutation. A variety of TAZ gene
mutations, including splice site mutations, insertions,
deletions, nonsense, and missense mutations, located
throughout the TAZ gene have been reported to cause
BTHS. Individuals harboring mutations in the TAZ gene,
namely patients with BTHS, manifest compromised or
missing tafazzin enzymatic activity, resulting in specific
alterations in cardiolipin that include increased molecular
species heterogeneity, decreased levels of cardiolipin, and
increased levels of monolysocardiolipin. If, for example, a
given TAZ gene mutation gives rise to a tafazzin protein
with residual enzyme activity, lesser changes in cardiolipin

content and composition, and a milder phenotype, may be
anticipated [33]. On the other hand, more severe mutations
in the TAZ gene that lead to complete loss of transacylase
activity will have a more deleterious effect on inner
mitochondrial membrane structure and function. Despite
this, TAZ gene mutations have been described in which the
correlation between genotype and phenotype is not apparent
[34]. Conceivably, individual differences in TAZ mRNA
splicing and mRNA stability or differences in tafazzin
protein turnover rate could affect residual enzyme activity.
Similarly, one or more extraneous phenotypic modifiers,
ranging from environmental to biochemical, could be
responsible for differences in the degree of disease
manifestation [33, 34]. Despite the X-linked inheritance of
Barth’s syndrome and the identification of many females car-
rying TAZ genemutations, there are no reports of females with
the classic pathology observed in BTHS.

Cardiolipin and Barth syndrome

Amongmitochondrial lipids, cardiolipin is unique. It is the only
phospholipid that is specific to mitochondria. Cardiolipin ac-
counts for roughly 20% of inner membrane phospholipids, and
plays a vital role in the molecular organization and physiolog-
ical function of mitochondria. Cardiolipin is very abundant in
mitochondria of myocytes of the heart and skeletal muscle.
Unlike other glycerophospholipids, cardiolipin is unique in that
two phosphatidate moieties share the same glycerol head
group, giving rise to an anionic phospholipid with four esteri-
fied fatty acyl chains and a cone-shaped structure [35]. In
myocytes and all other eukaryotes, cardiolipin is confined to
the inner mitochondrial membrane. In cardiomyocytes and
skeletal muscle, nearly 90% of cardiolipin exists as a single
molecular species, tetralinoleoylcardiolipin [36]. Formation of
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tetralinoleoylcardiolipin depends largely on a series of phos-
pholipid remodeling reactions, with tafazzin being one of the
last transacylases leading to mature cardiolipin [37]. In addition
to tafazzin, cardiolipin remodeling can occur via the endoplas-
mic reticulum localized enzyme acyl-CoA:lysocardiolipin
acyltransferase (ALCAT1) [38, 39] and via mitochondrial
monolysocardiolipin acyltransferase (MLCAT) [40, 41]. Even
though the relative contribution of ALCAT1 and MLCAT to
the total pool of mature cardiolipin is not known, it is well
recognized that ALCAT1- and MLCAT-mediated reactions
cannot fully compensate for loss of tafazzin [35]. Tafazzin
catalyzes remodeling of immature cardiolipin to its mature
composition containing a predominance of tetralinoleoyl
moieties. The condensation of phosphatidylglycerol and
CDP-diacylglycerol produces immature cardiolipin which con-
tains predominantly shorter chain saturated and monounsatu-
rated fatty acyl chains (palmitic and oleic acids). The immature
cardiolipin is then remodeled to form mature cardiolipin
through the coordinated activity of specific lipases and acyl-
transferase/transacylase, primarily tafazzin [42–44]. Mature
cardiolipin is responsible for maintenance of mitochondrial
membrane fluidity, osmotic stability, and proper curvature of
the cristae, which serves as a crucial binding site for electron
transport chain (ETC) proteins and stabilization of the ETC
supercomplexes [6, 45–47].

Cardiolipin plays essential roles in mitochondrial protein/
metabolite transport, mitochondrial morphology, and mito-
chondrial bioenergetics [1]. Nuclear-encoded mitochondrial
proteins are transported into mitochondria after translation in
the cytosol. Protein transport across mitochondrial mem-
branes is mediated by specialized translocases that are located
in cardiolipin-rich contact sites where the inner and outer
membranes converge to close proximity [1, 48, 49].
Mitochondrial morphology is markedly abnormal when
cardiolipin is deficient, as in BTHS, where marked malforma-
tion of cristae structures is evident [1, 50]. Similar abnormal-
ities of mitochondrial morphology have been reported in
many tafazzin-deficient cell and animal models [1].

Cardiolipin regulates several enzyme activities and, in par-
ticular, those related to oxidative phosphorylation and coupled
respiration [51–56]. Cardiolipin binds complexes I, III, IV,
and V and stabilizes the super complexes (I/III/IV and II/III/
IV), indicating an absolute requirement of cardiolipin for cat-
alytic activity of these complexes [52, 53, 57, 58]. The activity
of numerous respiratory chain complexes is directly related to
cardiolipin content [54, 59, 60] and composition [55, 56, 61].
Under normal physiological conditions, monolysocardiolipin
is converted to mature cardiolipin by a functional tafazzin
enzyme. Impaired tafazzin activity in BTHS leads to the ac-
cumulation of monolysocardiolipin and an overall loss in
cardiolipin species. Both of these contribute to morphological
abnormalities of the mitochondrial inner membrane and inef-
ficient cellular bioenergetics [62–66].

Cardiomyopathies of Barth syndrome

Cardiac disease is common in Barth syndrome and is often
diagnosed within the first year of life. In fact, cardiomyopathy
is the single most frequent sign, occurring in approximately
90% of males with BTHS, although the manifestation and
severity vary for each individual. Several cardiomyopathic
phenotypes have been described. Dilated cardiomyopathy is
common and is characterized by decreased left ventricular
(LV) systolic function, increased LV mass, and an increased
LV end-diastolic dimension [23, 67, 68]. Left ventricular
noncompaction is also commonly seen either alone or in con-
junction with other cardiomyopathic phenotypes and is char-
acterized by LV trabeculations with associated wall motion
abnormalities [68]. Endocardial fibroelastosis may be seen,
although less commonly [69]. Hypertrophic cardiomyopathy
[70], as well as an apical form of hypertrophyic cardiomyop-
athy [71], is also reported to occur in BTHS. A mixed
hypertrophic-dilated cardiac phenotype characterized by
thickening of the LV walls with an increase in LV mass and
end-diastolic dimension, and depressed systolic function has
also been reported [72]. Transition between distinct pheno-
types has also been described in the setting of LV
noncompaction termed “undulating phenotype” [73]. No cur-
rent mechanism has been proposed that explains the various
cardiomyopathic phenotypes seen in BTHS, yet evidence of
varying phenotypic cardiac disease is well documented in
families with recognized sarcomeric mutations suggesting
shared molecular etiology of different forms of cardiomyopa-
thy [74]. In addition, there is an increased risk of cardiac
arrhythmia in BTHS, some of which may be life-threatening.
The arrhythmia may be a direct result of abnormal mitochon-
drial function and/or a function of the associated cardiac phe-
notype, as ventricular arrhythmias are well reported in dilated
cardiomyopathy, LV noncompaction, and hypertrophic car-
diomyopathy [67, 75, 76].

Ca2+-ATPase, LV diastolic function, and Barth
syndrome

The sarcoplasmic reticulum Ca2+-ATPase (SERCA) is a P-
type ATPase which catalyzes the active transport of Ca2+ ions
from the cytoplasm into the sarcoplasmic reticulum. In cardiac
muscle, the primary isoform is SERCA2a, which is necessary
for the proper regulation ofmuscle contraction and, important-
ly, muscle relaxation, by ensuring proper Ca2+ uptake into the
sarcoplasmic reticulum during diastole and presence of suffi-
cient Ca2+ load in the sarcoplasmic reticulum for systolic con-
traction. Phospholamban is a 52-amino acid protein that, in its
non-phosphorylated state, binds to and regulates SERCA by
decreasing its affinity for Ca2+ [77, 78].When phosphorylated
at serine 16 and threonine 17 by protein kinase A and Ca2+-

240 Heart Fail Rev (2021) 26:237–253

https://en.wikipedia.org/wiki/Cardiolipin


calmodulin-dependent protein kinase II, respectively, phos-
pholamban dissociates from SERCA, thereby restoring its af-
finity for Ca2+ [78].

In addition to phospholamaban, SERCA can be regulated
by reactive oxygen/nitrogen species (ROS/RNS) [79–81]. The
SERCA pump is highly susceptible to oxidative and
nitrosative post translational modification as they contain vul-
nerable cysteine, lysine, and tyrosine residues [79–81]. Under
conditions of oxidative stress, superoxide and nitric oxide re-
act to form peroxynitrite, which can then adduct to tyrosine
resulting in altered SERCA protein structure and function
[82]. Interestingly, SERCA dysfunction, SERCA2a tyrosine
nitration, increased ROS formation, and phospholamban dys-
regulation have all been implicated in cardiomyopathy, a key
manifestation of Barth syndrome [67, 83–85]. It was previ-
ously shown that cardiolipin is markedly decreased in tafazzin
knockdown mice, a model of Barth syndrome, leading to mi-
tochondrial dysfunction and elevated ROS and RNS levels
[86, 87]. In tafazzin knockdown mice, SERCA activity was
impaired and SERCA2a tyrosine nitration increased com-
pared with wild-type mice [88]. SERCA2a tyrosine nitration
was negatively correlated with maximal SERCA activity [88].
These abnormalities were likely due to mitochondrial dys-
function and increased oxidative stress [88] and can promote
LV diastolic dysfunction and, subsequently, systolic dysfunc-
tion. Left ventricular diastolic dysfunction has been shown in
mice models of tafazzin knockdown that manifest
noncompaction even in the absence of myocardial fibrosis
and myocardial hypertrophy and speculated to result from
alterations in cardiolipin and abnormal Ca2+ homeostasis
[87]. Patients with myocardial noncompaction, typically pres-
ent with BTHS, almost always exhibit diastolic dysfunction
[89]. Left ventricular diastolic dysfunction with preserved sys-
tolic function has been demonstrated in the Friend of GATA-2
(FOG-2) null mouse that also develops noncompaction [90].
These findings suggest that SERCAmay be a viable therapeu-
tic target for BTHS.

Inflammatory cytokines and Barth syndrome

Inflammatory cytokines are signaling molecules produced
predominantly by T-helper cells and macrophages and are
involved in the upregulation of inflammatory reactions [91].
By initiating the inflammatory response, cytokines regulate
the host defense against pathogens mediating the innate
immune response. Several reports have demonstrated
enhanced expression and release of inflammatory cytokines
such as tumor necrosis factor alpha (TNF-α) and interleukin-6
(IL-6) in patients with acquired HF [92–94]. Cytokines and
other inflammatory mediators may contribute to the develop-
ment and progression of systolic HF. This pathogenic role of
inflammatory cytokines in chronic HF is supported by various

studies in animal models [95–98]. Systemic administration of
TNF-α in concentrations comparable to those found in the
circulation of HF patients has been shown to induce a dilated
cardiomyopathy-like phenotype in animal models [95], and
cardiac-specific overexpression of TNF-α has been found to
promote a phenotype mimicking several features of clinical
HF such as cardiac hypertrophy, ventricular dilation and fi-
brosis, and several biochemical and cellular dysfunctions [96].
More recent studies in gene-modified mice have also shown a
link between IL-6 and the development of HF [97].
Inflammatory cytokines may modulate myocardial function
by a variety of mechanisms including stimulation of hypertro-
phy and fibrosis through direct effects on cardiomyocytes and
fibroblasts, and impairment of myocardial contractile function
through direct effects on intracellular calcium transport.
Furthermore, inflammation-mediated signal transduction
through adrenergic receptors, induction of apoptosis, and
stimulation of genes involved in myocardial remodeling [98]
can exacerbate pathology. While increased inflammation is a
well-known feature of systolic heart failure, this has been less
well studied in patients with HF and preserved ejection frac-
tion (HFpEF). Recent studies, however, have shown that pa-
tients with overt HFpEF frequently have increased plasma
levels of TNF-α and IL-6 [99]. Moreover, IL-6 infusion in
rats results in concentric LV hypertrophy, increased collagen
volume fraction, and increased myocardial stiffness [100], all
characteristic features of HFpEF.

Given that BTHS is characterized by cardiomyopathies, it
would not be surprising to expect increased levels of TNF-α
and IL-6 in this disease state. Elevated levels of TNF-α and
IL-6 have indeed been reported in BTHS patients, further
exacerbating their cardiomyopathy [101]. In addition to the
adverse effects of cytokines on the myocardium as eluded to
earlier, increased expression of cytokines can have an adverse
effect on growth anomalies widely reported in BTHS. There
has been growing evidence that inflammatory processes may
influence normal muscle development in children [100].
Increased levels of TNF-α have been shown to suppress the
AKT/mTOR (mammalian target of rapamycin) pathway, a
crucial pathway for regulating skeletal muscle hypertrophy,
thereby increasing muscle catabolism [102–104].
Inflammatory cytokines may also antagonize the anabolic ef-
fects of insulin-like growth factor (IGF), a known promoter of
muscle hypertrophy [105–107]. It is plausible that an active
inflammatory process can contribute to the growth abnormal-
ities and pathology observed in BTHS. Higher levels of IL-6
and lower IGF-1 levels were observed in Barth syndrome
patients comparedwith age-matched controls [101]. This find-
ing may implicate inflammatory processes in the catabolic
nature of BTHS pathology, as well as provide a link to mito-
chondrial dysfunction. Furthermore, lower levels of IGF-1
may contribute to some of the growth delays and myopathies
observed in Barth syndrome [101].
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Cytokines and mitochondrial damage-associated mo-
lecular patterns

Functional, ultrastructural, and dynamic abnormalities of mi-
tochondria occur in BTHS and can lead to cellular stress and
death. In recent years, much has been unraveled about the pro-
inflammatory properties of various mitochondrial molecules
once released from the mitochondrial compartment and into
the cytosol or the extracellular space [108, 109]. Mitochondria
can generate and release multiple molecules that can stimulate
the innate immune system. On entering the cytoplasm or the
extracellular space, mitochondrial damage-associated molec-
ular patterns (DAMPs; also known as mitochondrial alarmins)
can become pro-inflammatory and initiate innate and adaptive
immune responses by activating cell surface and intracellular
receptors [108, 109]. Among the molecules listed as mito-
chondrial DAMPs are N-formyl peptides, cardiolipin, and mi-
tochondrial DNA (mtDNA), which are released from dam-
aged mitochondria and can activate sterile inflammation
[109–112]. Inflammatory responses induced by sterile stimuli
can elicit recruitment of neutrophils and macrophages, pro-
duction of inflammatory cytokines and chemokines, and in-
duction of T cell-mediated adaptive immune responses [113].
Of note, mtDNA has recently been established as an important
DAMP and a possible trigger of various inflammatory or de-
generative diseases [114, 115]. Failure to remove the damaged
mitochondria with resulting leak of DAMPs has been pro-
posed as an underlying mechanism in the pathophysiology
of HF [8].

Skeletal muscle and Barth syndrome

Exercise intolerance is a hallmark of most, if not all, cardio-
myopathies, including Barth syndrome, making it nearly im-
possible for individuals with BTHS to perform activities of
daily living or pursue an acceptable quality of life [116]. In
patients with chronic acquired HF, exercise intolerance has
been attributed to skeletal muscle atrophy, a shift from slow-
twitch, fatigue-resistant, type 1 (oxidative) to fast-twitch type
2 (glycolytic) muscle fibers and to mitochondrial abnormali-
ties [117]. A decrease in the relative composition of type 1
fibers and an increase in type 2 fibers have been shown in an
animal model of HF and were associated with reduced exer-
cise tolerance [118]. Changes in composition of skeletal mus-
cle fiber type have also been described in patients with HF and
were also associated with exercise intolerance [119–121].
These patients also manifest a reduction in myosin heavy-
chain type I [121], an isoform that is more abundant in skeletal
muscle type 1 aerobic fibers. The shift in fiber-type composi-
tion may be partly due to skeletal muscle mitochondrial ab-
normalities and the associated reduction of ATP synthesis
needed by aerobic type 1 fibers [122]. A reduction in ATP

production can lead to an adaptation of slow-twitch type 1
fibers to utilizing glycogen as their energy source and thus
shifting fiber-type composition toward a fast-twitch pheno-
type [117]. Under normal physiologic conditions, ATP pro-
duction by oxidative phosphorylation in the mitochondria ful-
fills most of the ATP demands of skeletal muscle at rest and
during exercise [22]. Mitochondrial dysfunction, therefore,
can contribute to decrements in skeletal muscle performance
via loss of mitochondrial capacity to generate ATP, or reduced
ability to meet the ATP demands of working skeletal muscle.
Abnormalities of skeletal muscle mitochondria have been
shown in the skeletal muscle of dogs with experimental HF
compared with normal dogs [19] as evidenced by reduction in
ADP-stimulated respiration, membrane potential, and com-
plex IV [115]. A variety of alterations specific to skeletal
muscle, including muscle atrophy, fiber-type changes, defects
in oxidativemetabolism, and decreased mitochondrial volume
density, have been described in patients with HF [123].
Studies using 31P nuclear magnetic resonance (NMR) spec-
troscopy clearly demonstrated intrinsic skeletal muscle meta-
bolic abnormalities in patients with chronic acquired HF
[124].

Daily functional activities, notably ambulation, require a
combination of muscular strength, endurance, and balance.
Patients with BTHS present with exercise intolerance that is
thought to be due to both cardiac impairment and decreased
skeletal muscle oxygen utilization [23]. In patients with
BTHS, affected individuals showed signs of multiple skeletal
muscle impairments including impaired functional exercise
capacity, knee and hip flexor, grip, and extensor strength,
and reduced daily activity [125]. In patients with Barth syn-
drome, 31P nuclear magnetic resonance (NMR) spectroscopy
showed a higher resting skeletal muscle phosphocreatine to
inorganic phosphate ratio (PCr/Pi) comparedwith control sub-
jects, a finding consistent with skeletal muscle containing
large fractions of type 2, fast-twitch, glycolytic fibers and a
smaller fraction of type 1, slow-twitch, oxidative fibers [126,
127]. This finding suggests that individuals with BTHS rely
on glycolytic metabolism to a greater extent than those with-
out BTHS. Barth syndrome patients also have higher respira-
tory exchange ratios during exercise [23] and a greater glucose
rate of disposal during a hyperinsulinemic-euglycemic clamp
procedure [128]; both suggestive of higher glycolytic depen-
dence. This higher glycolytic capacity is likely compensatory
for an impaired mitochondrial capacity to generate ATP.
Skeletal muscle and cardiac bioenergetics, as determined from
post-exercise PCr recovery kinetics using 31P-MRS, are mark-
edly impaired in BTHS patients when compared with unaf-
fected, age-matched, sedentary controls and are associated
with exercise intolerance [20]. Mitochondrial function in tis-
sues such as myocardium and skeletal muscle is closely inte-
grated with physiological demands below the anaerobic
threshold [129, 130]. Mitochondrial respiration has been
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shown to be impaired in BTHS patients [66] possibly due to
supercomplex destabilization [131], higher degradation and
reduced levels of mitochondrial cardiolipin [132], abnormal
mitochondrial morphology [50, 133], excessive production of
reactive oxygen species, and/or defects in ATP synthase ac-
tivity [66].

Current therapies for Barth syndrome

Barth syndrome is often considered a lethal early childhood
disease. However, improvements in the management of associ-
ated neutropenia/infectious risks, skeletal myopathy, and cardi-
ac disease have resulted in improved survival. This is in large
part secondary to the treatment of low circulating neutrophil
counts and avoidance of infection, systolic dysfunction, and
cardiac arrhythmia [71]. Neutropenia is treated with granulo-
cyte colony-stimulating factor (G-CSF)with reasonable success
concomitant with appropriate prophylactic antibiotics if clini-
cally indicated. Growth delay is managedwith growth hormone
(GH) supplementation when central GH deficiency is docu-
mented [71]. Arginine depletion has been implicated as contrib-
uting to low growth rates in BTHS patients, resulting in an
increased use of arginine supplementation as a putative treat-
ment to improve growth rates [134, 135].

Clinically significant arrhythmias can be a major cause of
mortality in Barth syndrome. The risk of ventricular arrhyth-
mias is well known and may be precipitated by associated met-
abolic acidosis or concomitant LV systolic dysfunction [136].
Ventricular arrhythmias in the form of ventricular tachycardia
or ventricular fibrillation may result in sudden cardiac death.
The use of implantable cardioverter defibrillators has been doc-
umented in BTHS, although limited data exist regarding the
effectiveness of this therapy [137]. Treatment of associated
myocardial dysfunction, however, remains paramount to alle-
viating symptoms as well as prolonging life in patients with
BTHS [71]. Medical and surgical options for dilated cardiomy-
opathy have increased, but remain sparse for other cardiac phe-
notypes of Barth syndrome. Angiotensin-converting enzyme
inhibitors or angiotensin receptor blockers, potentially in com-
bination with approved beta-adrenergic receptor blockers [71],
are commonly used to treat BTHS cardiomyopathy. For those
patients with worsening HF, more aggressive therapies may be
needed in the form of intravenous agents such as vasodilators or
inotropes, left ventricular assist devices, and/or cardiac trans-
plantation [138–140].

In a single-center experience, 4 BTHS patients (average
age ~ 2 years) underwent orthotopic heart transplantation
[141]. At the time of the follow-up report, patients were alive
with average age of ~ 8.6 years. The patients did not demon-
strate an increased rate of rejection compared with the general
heart transplant population [141].

Novel experimental therapeutic approaches
for treating Barth syndrome

Developing effective therapies for Barth syndrome continues
to be a challenge, especially because of the limited number of
patients, extraordinary phenotypic variability, and unpredict-
able clinical course. Experimental and potentially useful ther-
apies include recombinant adenovirus-associated TAZ gene
overexpression, peroxisome proliferator-activated receptor
(PPAR) agonist, and antioxidants. Recombinant adeno-
associated virus (rAAV) vectors are utilized in gene therapy
approaches because gene delivery is essentially a nonpatho-
genic virus that elicits a minimal immune response and per-
sists for long periods of time as an episome within the nucleus
of cells, providing stable gene transfer without disruption of
genes, by insertional mutagenesis [142]. In a recent study
aimed at developing a clinically relevant gene therapy to re-
store tafazzin function and treat Barth syndrome, AAV-
mediated TAZ gene replacement was shown to restore mito-
chondrial and cardioskeletal function in a Barth syndrome
mouse model of TAZ gene knockdown [24]. Due to a central
role in energy metabolism and mitochondrial bioenergetics,
peroxisome proliferator-activated receptors (PPARs) have
been considered potential therapeutic targets to ameliorate
cardiac dysfunction induced by tafazzin deficiency.
Beneficial effects of activation of the PPAR/PGC1α axis have
been demonstrated in various mitochondrial disorders [143].
The PPAR pan-agonist bezafibrate has been shown to amelio-
rate cardiomyopathy in a mouse model of Barth syndrome
[143]. Dysfunction of mitochondria increases ROS produc-
tion and contributes to cardiac dysfunction in both acquired
HF and BTHS [144]. The mitochondria-targeted antioxidant,
mito-Tempo, was shown to prevent cardiac dysfunction in-
duced by tafazzin gene knockdown in cardiac myocytes
[144]. The above discussed therapies, while promising, must
await confirmation of potential benefit by clinical trials in
patients with BTHS.

Elamipretide: potential novel therapy
for Barth syndrome

Elamipretide (also known as SS-31, MTP-131, Bendavia™)
is a water-soluble, aromatic-cationic mitochondria-targeting
tetrapeptide that readily penetrates and transiently localizes
to the inner mitochondrial membrane (7115). Elamipretide
crosses the mitochondrial outer membrane and localizes to
the inner membrane where it associates with cardiolipin, im-
proving membrane stability and ATP production and reducing
pathogenic ROS production. Cardiolipin plays a central role in
cristae formation, mitochondrial fusion, mtDNA stability and
segregation, and function and organization of the respiratory
comp lexe s i n t o supe r comp lexe s fo r ox id a t i v e
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phosphorylation. Elamipretide has been shown to enhance
ATP synthesis in multiple organs, including the heart, kidney,
neurons, and skeletal muscle [145–149]. High-resolution res-
pirometry of individual electron transport chain complexes in
permeabilized ventricular fibers from ischemia-reperfusion
rats showed that ischemia-reperfusion-induced decrements in
mitochondrial complexes I, II, and IV were significantly alle-
viated with elamipretide [150]. Furthermore, studies in serial
block face scanning electron microscopy used to create high-
resolution 3-dimentional reconstructions of cristae ultrastruc-
ture showed that disease-induced fragmentation of cristae net-
works was improved with elamipretide [150]. Studies using
biomimetic membranes modeling the inner mitochondrial
membranes also showed that elamipretide improved mem-
brane biophysical properties by aggregating cardiolipin.
These studies suggest that mitochondrial structure-function
are interdependent and demonstrate that elamipretide targets
mitochondrial membranes to sustain cristae networks and im-
prove bioenergetic function [150].While there are limited data
sets with elamipretide in non-clinical BTHS models, it has
been studied extensively in models of experimental LV dys-
function and failure. It is these studies in animal models of
acquired HF that provide much of the knowledge base avail-
able to date that supports the potential use of elamipretide for
the treatment of patients with BTHS.

Modulation of cardiolipin by elamipretide

As noted above, cardiolipin is biosynthesized in a series of
steps from phosphatidic acid and remodeled into various spe-
cies, with muscles containing mostly tetralinolyl cardiolipin
(four 18:2 fatty acid chains (18:2)4CL). Cardiolipin peroxida-
tion and depletion have been reported in a variety of patho-
logical conditions, including BTHS, and are associated with
energy deficiency [151, 152]. In dogs with coronary
microembolization-induced HF, total cardiolipin and
(18:2)4CL were decreased in LV myocardium [152] (Fig. 2),
although the decrease in cardiolipin content is more modest
(20 to 30%) than that which appears in humans. A 3-month
treatment with subcutaneous elamipretide normalized total
cardiolipin and (18:2)4CL [152]. In these dogs, the decrease
in cardiolipin was driven by changes in the lipid structure on
the inner mitochondria membrane because of peroxidation
and was not necessarily a reflection of changes in the total
LV myocardial pool of mitochondrial protein [152]. This ob-
servation is also supported by results showing concordant
changes in LV myocardial levels of 4-hydroxynonenal, a ma-
jor bi-product of lipid peroxidation [152].

The effects of elamipretide on cardiolipin were also inves-
tigated in freshly explanted failing and nonfailing ventricular
tissue from children and adults [153]. Cardiolipin was quan-
tified using liquid chromatography coupled to electrospray
ionization mass spectrometry and cardiolipin species were

quantified per milligram of protein [153]. The predominant
cardiac cardiolipin species, namely (18:2)4CL, was reported
as a percentage of the total (11 major species were used for
total) cardiolipin content. The percentage of (18:2)4CL was
significantly lower in HF tissue, but acute exposure to
elamipretide for 4 hours had no effect on tetralinoleoyl
cardiolipin in nonfailing or HF samples [153]. It is likely that
the absence of change in cardiolipin after exposure to
elamipretide in this study with human tissue was due to the
short duration of treatment (4 hours) in comparison with long-
term treatment (3months) with elamipretide in animalmodels.

Several studies have shown that cardiolipin is decreased in
diseases associated with mitochondrial dysfunction and that
cardiolipin remodeling enzymes are either upregulated or
downregulated [154, 155]. Abnormal protein levels and
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Fig. 2 Bar graph depicting magnitude of change of various measures of
mitochondrial function calculated as a percent of levels seen in normal
dogs (Percent of Normal). The percentages are shown for untreated dogs
with coronary microembolization-induced heart failure (HF-Untreated;
n = 7) and for dogs with heart failure treated with elamipretide (HF+
Elamipretide; n = 7). Original data in references 163 and 167. The mea-
sures are as follows: ADP-dependent state 3 respiration (ADP-
Respiration); mitochondrial membrane potential; mitochondrial maxi-
mum rate of ATP synthesis (Max. ATP Synthesis); mitochondrial perme-
ability transition pore opening (mPTP Opening); mitochondrial complex
I (C-I) activity; mitochondrial complex IV (C-IV) activity; ATP synthase
activity; cardiolipin (18:2)4; cardiolipin synthase-1 levels (CLS-1) nor-
malized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) levels;
tafazzin levels normalized to GAPDH; and acyl CoA lysocardiolipin
acyltransferase-1 (ALCAT1) levels normalized to GAPDH
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messenger RNA (mRNA) expression of cardiolipin synthase-
1 (CLS-1), an essential enzyme for the synthesis of
cardiolipin, and the CL remodeling enzymes tafazzin-1 and
acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT-1) occur
in LVmyocardium of the failing heart and in cardiomyopathic
hearts of patients with BTHS. In LVmyocardium of dogswith
experimental HF, protein and mRNA levels of CLS-1 were
significantly reduced in untreated HF dogs compared with
normal dogs [156] (Fig. 2). Protein and mRNA levels of
tafazzin-1 were significantly reduced and ALCAT-1 levels
significantly increased in untreated HF dogs compared with
normal dogs. These changes are directionally similar to those
seen in cardiomyopathic hearts of BTHS. Treatment of dogs
with HF with subcutaneous injections of elamipretide for
3 months normalized protein and mRNA levels of CLS-1,
tafazzin-1, and ALCAT-1 [156] (Fig. 2). Upregulation of
CLS-1 and tafazzin-1 and downregulation of ALCAT-1 by
elamipretide favor improvement in cardiolipin synthesis and
remodeling that can potentially elicit beneficial effects in
cardiomyopathic hearts associated with Barth syndrome.

Effects of elamipretide on mitochondrial dynamics

Mitochondria are a highly dynamic network that constantly
undergo biogenesis, fission, fusion, and mitophagy [154,
157]. Fission and fusion are essential for normal mitochondri-
al function. A number of proteins and lipids have been shown
to be important mediators of these dynamic processes [157],
particularly peroxisome proliferator-activated receptor gam-
ma coactivator 1α (PGC-1α), which is a transcription factor
that drivesmitochondrial biogenesis. The failing heart, regard-
less of etiology, manifests dysregulation in both fission- and
fusion-regulating proteins. Downregulation of mitochondrial
fusion proteins enhances apoptosis, an important contributor
to ongoing cardiomyocyte loss and potential mediator of pro-
gressive worsening of the HF state [158–160]. Fission-1 (Fis-
1) and dynamin-related protein-1 (Drp-1) are key proteins that
regulate mitochondrial fission while mitofusion-2 (Mfn-2)
and dominant optic atrophy-1 (OPA-1) are key proteins that
regulate mitochondrial fusion [156]. Another key protein in
mitochondrial dynamics is mitofilin, a transmembrane protein
of the inner mitochondrial membrane that has a critical role in
mitochondrial morphology, fission and fusion, and the forma-
tion of tubular cristae and cristae junctions [156].
Downregulation of mitofilin can lead to a disorganized mito-
chondrial inner membrane and ultrastructural abnormalities
that are also manifested in the failing heart as well as in
cardiomyopathic hearts of patients with Barth syndrome
[156]. Studies in LV myocardium of explanted failed human
hearts and hearts from dogs with experimental HF showed
marked downregulation of the fusion proteins Mfn-2 and
OPA-1, and marked upregulation of the fission proteins Fis-
1 and Drp-1 [156]. These abnormalities were also

accompanied by significant downregulation of PGC-1α and
mitofilin [156]. In dogs with experimental HF, long-term ther-
apy with elamipretide normalized PGC-1α, levels of fission
and fusion proteins, and protein levels of mitofilin [156].
Taken together, these findings provide support for
elamipretide therapy as a positive modulator of mitochondrial
structure and dynamics in the setting of HF of various
etiologies.

Cardiolipin, through its influence on mitochondrial fission
and fusion, also affects mitophagy, a central step in maintain-
ing mitochondrial quality control process and overall health of
the cellular mitochondrial pool by removing mitochondria
with damage too severe for correction through biogenic or
fusion-mediated repair [161]. Suppression of fission, for in-
stance, accelerates mitophagy by lowering the threshold for
mitochondrial removal, a maladaptation likely to promote the
elimination of functioning mitochondria, while inhibition of
fusion suppresses mitophagy, thus reducing the removal of
toxic, ROS-producing mitochondria. Studies in mitochondrial
fission- and fusion-defective murine hearts and cells showed
that Drp-1-mediated mitochondrial fission is essential to prop-
erly target mitophagy and restrain mitochondrial permeability
transition pore (MPTP)-mediated cell necrosis [162]. Mfn-2
deletion, on the other hand, resulted in accumulation of defec-
tive mitochondria without appropriately increasing
mitophagy, while Drp-1 ablation interrupted mitochondrial
fission by increased mitophagy, causing a generalized loss
of mitochondria [162]. MPTP opening in Drp-1-null mito-
chondria was associated with mitophagy, cardiomyocyte ne-
crosis, and dilated cardiomyopathy [161]. Normalization of
cardiolipin synthesis and remodeling in the failing heart along
with normalization of fission and fusion protein levels through
treatment with elamipretide argues well for maintenance of
essential physiologic levels of mitophagy.

Effects of elamipretide on mitochondrial function

Functional abnormalities of mitochondria exist in most if not all
forms of HF and cardiomyopathies including Barth syndrome.
In the failing heart, mitochondrial functional abnormalities are
characterized by poor respiration, opening of the permeability
transition pores (mPTP), collapse of mitochondrial membrane
potential, reduced rate of ATP synthesis, and excessive produc-
tion of ROS [152, 156, 163–165]. These abnormalities are typ-
ically associated with abnormal synthesis and remodeling of
cardiolipin and with increases in cytosolic cytochrome c [152,
166, 167]. The combination of ROS with elevated mitochon-
drial calcium concentrations leads to mPTP opening and sub-
sequently reduced membrane potential, which decreases the
extra-mitochondrial phosphorylation potential, adversely
impacting cell function [168, 169]. A surge in ROS production
can lead to cytochrome c release, which initiates cell death via
apoptosis through activation of caspase-3 [152, 170]. ROS can
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damage the mitochondrial electron transport chain [171–174],
trigger lipid peroxidation [175], and cause DNA strand breaks
[176], all of which can lead to mitochondrial dysfunction [177].
Elevated mitochondrial ROS production and downstream
ROS-mediated damage, mtDNA damage, and defects in elec-
tron transport complexes have been reported in animal models
of HF [178–180]. Mitochondrial damage to cardiomyocytes
from excess ROS production limits ATP production to a level
insufficient to support contractile function during times of high
oxidative energy requirements [172]. Mitochondria of the fail-
ing heart also manifest significant reductions in the activity and
abundance of complexes I, II, III, and IV [152, 153] as well as
the reduction of supercomplex-associated complex IV activity
[153]. Cardiolipin is essential for activity ofmitochondrial com-
plexes and, in particular, complex I and complex IV. Defects of
complex I are integral to the formation of ROS, whereas com-
plex IV is essential for oxidative phosphorylation. In dogs with
experimental HF, long-term therapy with elamipretide normal-
ized mitochondrial respiration, mPTP opening, and membrane
potential and improved the maximum rate of ATP synthesis
[152] (Fig. 2). These improvements were accompanied by a
reduction of cytochrome c release, a reduction of ROS forma-
tion, and improvements in mitochondrial complex I and IV
activities [152]. Elamipretide also restored, albeit in part, pro-
tein levels of key subunits of mitochondrial complexes I
through V [152]. Similar observations were made in LV tissue
from humans with HF along with improvement of
supercomplex-associated complex IV activity [153].

Effects of elamipretide on LV systolic function

Studies in dogs with coronary microembolization-induced
chronic HF with reduced LV ejection fraction (HFrEF) showed
that 3 months’monotherapy with daily subcutaneous injections
of elamipretide improved LV systolic function and prevented
progressive LV dilation without affecting heart rate, blood pres-
sure, or systemic vascular resistance [152]. In these dogs,
elamipretide significantly increased LV ejection fraction and
LV fractional area of shortening compared with controls, and
significantly reduced LV end-systolic volume and plasma con-
centration of n-terminal brain natriuretic peptide [152]. A phase
1/2 ascending single-dose study of elamipretide (4-h infusions,
0.005, 0.05, and 0.25 mg/kg/h) in 36 patients with HFrEF
showed that elamipretide was well tolerated and significantly
reduced LV end-diastolic (− 18 mL; P = 0.009) and end-
systolic (− 14 mL; P = 0.005) volumes in the highest dose co-
hort and correlated with peak plasma concentrations,
supporting a temporal association and dose–effect relationship
[181]. No serious adverse events were reported in any of the
cohorts and blood pressure and heart rate remained stable. In a
more recent randomized phase 2 trial in patients with ischemic
or idiopathic dilated cardiomyopathy receiving standard of care
treatment for HFrEF, elamipretide was well tolerated but did

not improve LV end-systolic volume compared with placebo
[181]. None of the patients in this phase 2 trial had BTHS.

Effects of elamipretide on Ca2+-ATPase and
inflammatory cytokines

In tafazzin knockdown mice, a model of Barth syndrome,
Ca2+-ATPase or SERCA2a activity was impaired and
SERCA2a tyrosine nitration increased compared with wild-
type mice [87]. A reduction in SERCA2a expression often
leads to poor LV active relaxation and overall LV diastolic
dysfunction. Patients with myocardial noncompaction, typi-
cally present in Barth syndrome, almost always exhibit dia-
stolic dysfunction [88]. These findings suggest that SERCA
may be a viable therapeutic target for the cardiolipin deficien-
cy typically observed in patients with Barth syndrome, partic-
ularly those manifesting HF with preserved ejection fraction
(HFpEF). In a dog model of HFrEF, SERCA2a protein levels
were shown to be significantly decreased in LV myocardium
compared with normal dogs, but normalized after long-term
treatment with elamipretide [152] (Fig. 3). The effects of
elamipretide on diastolic LV function were also examined in
a swine model of renovascular hypertension that manifests
HFpEF, as evidenced by preserved LV ejection fraction, LV
hypertrophy, poor LV relaxation and reduced Ca2+-ATPase
activity, and expression and phospholamban phosphorylation
at serine 16 [182]. In this swine model, treatment with
elamipretide improved LV relaxation, ameliorated cardiac hy-
pertrophy, and normalized phospholamban phosphorylation
and Ca2+-ATPase activity and expression without affecting
blood pressure or systolic LV function [182]. These results
support the use of elamipretide as potential therapy for pa-
tients with Barth syndrome that manifest HFpEF.

Increased plasma levels of pro-inflammatory cytokines
are a well-known feature of acquired HF and contribute to
mitochondrial dysfunction and ultimately to the progressive
worsening of the HF state. Given that BTHS is characterized
by cardiomyopathies, it would not be surprising to observe
increased levels of TNF-α and IL-6 in this disease state.
Higher levels of TNF-α and IL-6 have been reported in
BTHS and implicated in the pathophysiology of the disease.
In dogs with microembolization-induced heart failure, plas-
ma levels of the cytokines TNF-α, IL-6, and c-reactive pro-
tein (CRP) were significantly elevated compared with nor-
mal baseline levels [152]. In these HF dogs, levels of all 3
cytokines were normalized following long-term treatment
with elamipretide [152] (Fig. 3). Elevated levels of plasma
mitochondrial DNA DAMPs specifically within the COX1
and ND1 genes were markedly elevated in dogs with HF
compared with normal baseline levels. In these HF dogs,
long-term treatment with elamipretide normalized plasma
levels of both COX1 and ND1 DAMPs (unpublished obser-
vation by the author) (Fig. 3).
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Elamipretide and skeletal muscle

As alluded to earlier, exercise intolerance is a hallmark of
most, if not all, cardiomyopathies including those which occur
in Barth syndrome. Patients with Barth syndrome have mul-
tiple signs of skeletal muscle impairments, including impaired
functional exercise capacity and reduced daily activity, with a
greater reliance on skeletal muscle glycolytic metabolism than
those without Barth syndrome. This higher glycolytic capacity
might be compensatory for an impaired capacity to generate
ATP via oxidative phosphorylation. Mitochondrial respiration
has been shown to be impaired in the skeletal muscle of Barth
syndrome patients due to multiple factors that include mito-
chondrial supercomplex destabilization, higher degradation
and reduced levels of mitochondrial cardiolipin, abnormal mi-
tochondrial morphology, excessive production of reactive ox-
ygen species, and defects in ATP synthase activity [50, 66,
131–133]. In dogs with HF, long-term treatment with
elamipretide restored skeletal muscle fiber-type composition
to a more normal distribution (increased proportion of skeletal
muscle type 1 fibers relative to skeletal muscle type 2 fibers)
[183]. Elamipretide also normalized skeletal muscle mito-
chondrial function as evidenced by significant greater im-
provements in mitochondrial respiration, membrane potential,
and maximal rate of ATP synthesis when compared with

untreated HF dogs [183]. In dogs with HF, therapy with
elamipretide also increased skeletal muscle activity of cyto-
chrome c oxidase (complex IV of the ETC) [182]. In a phase I/
II multicenter, randomized, double-blind, placebo-controlled
trial of elamipretide in 36 patients with genetically confirmed
primary mitochondrial myopathy (not including Barth syn-
drome), participants who received elamipretide showed a sig-
nificant dose-dependent increase in distance walked on the 6-
min walk test (6MWT) compared with placebo [184]. These
findings, when viewed in concert, suggest that therapy with
elamipretide can improve skeletal muscle morphology and
metabolism and, in doing so, potentially set the stage for an
improvement of exercise tolerance in patients with Barth
syndrome.

Treating Barth syndrome with elamipretide

A phase 2/3 randomized, double-blind, placebo-controlled
crossover trial followed by an open-label treatment extension
of elamipretide in subjects with genetically confirmed BTHS
(TAZPOWER Trial) is ongoing. The TAZPOWER Trial was
designed to evaluate the efficacy and safety of the clinical-
phase, investigational product elamipretide in patients with
Barth syndrome; 12 patients (mean age 19.5 years, range 12
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Fig. 3 Top: Bar graph depicting
magnitude of change of plasma
cytokines, plasma natriuretic
peptide, plasma reactive oxygen
species (ROS), and left
ventricular tissue levels of
calcium ATPase (SERCA-2a)
calculated as a percent of levels
seen in normal dogs (Percent of
Normal). The percentages are
shown for untreated dogs with
coronary microembolization-
induced heart failure (HF-
Untreated, n = 7) and for dogs
with heart failure treated with
elamipretide (HF+Elamipretide,
n = 7). Original data in reference
151. nt-pro BNP, n-terminal pro-
brain natriuretic peptide; TNF-α,
tumor necrosis factor alpha;
interlukin-6; CRP, c-reactive pro-
tein. Bottom: Bar graph depicting
magnitude of change of two plas-
ma mitochondrial fragments also
referred to as damage-associated
molecular patters (DAMPs) cal-
culated as a percent of levels seen
in normal dogs (Percent of
Normal). CVOX1, subunit of cy-
tochrome c oxidase (complex IV);
ND1, subunit of complex I
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to 35 years) with genetically confirmed BTHS were enrolled.
The phenotype in these patients was that of hypertrophic
cardiomyopathy characterized by lower than normal LV
end-diastolic volume and normal LV ejection fraction. In
Part 1 of the trial, participants received once-daily subcutane-
ous injections of 40 mg elamipretide for 12 weeks, followed
by a 12-week treatment with placebo, or vice versa, with a 4-
week “washout” that occurred between each treatment. The
second part of the ongoing trial involves an open-label exten-
sion for up to 168 weeks, in which 10 of the 12 patients
participated. The primary objective, assessed at week 12, is
the change from baseline in the 6MWT. Additional outcome
measures include functional measures of muscle strength and
heart performance, and subjective measures of patient-
reported outcomes, as well as adverse effects.

Cardiac dysfunction has been shown to be a primary cause
of early mortality in this patient population and improvements
in left ventricular end-diastolic volume (LVEDV) and stroke
volume are major determinants of peak exercise capacity in
patients with hypertrophic cardiomyopathy. Recently reported
trial results showed that elamipretide improves overall cardiac
function, with averaged indexed cardiac stroke volumes in-
creasing by 27%—from 40.8 mL at the start of the trial
(baseline) to 51.8 mL—after 36 weeks of treatment with
elamipretide in the open-label extension. In this study,
elamipretide was generally well tolerated with the majority
of adverse events beingmild tomoderate in severity. Themost
commonly reported adverse event was injection site reactions,
occurring in 100% of patients while taking elamipretide [185,
186]. The U.S. Food and Drug Administration (FDA) has
granted Fast Track and Orphan Drug designations for
elamipretide for the treatment of patients with Barth syn-
drome. The encouraging clinical results seen in patients with
BTHS treated with elamipretide support the potential use of
this drug for the clinical management of this rare disease
syndrome.
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