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Abstract
Initially developed as glucose-lowering drugs, sodium-glucose co-transporter type 2 inhibitors (SGLT2i) have demonstrated to
be effective agents for the risk reduction of cardiovascular (CV) events in patients with type 2 diabetes mellitus (T2DM).
Subsequently, data has emerged showing a significant CV benefit in patients treated with SGLT2i regardless of diabetes status.
Renal protection has been initially evaluated in CV randomized trials only as secondary endpoints; nonetheless, the positive
results gained have rapidly led to the evaluation of nephroprotection as primary outcome in the CREDENCE trial. Different renal
and vascular mechanisms can account for the CV and renal benefits enlightened in recent literature. As clinical guidelines rapidly
evolve and the role of SGLT2i appears to become pivotal for CV, T2DM, and kidney disease management, in this review, we
analyze the renal effects of SGLT2, the benefits derived from its inhibition, and how this may result in the multiple CV and renal
benefits evidenced in recent clinical trials.
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Introduction

Sodium-glucose co-transporter type 2 inhibitors
(SGLT2i) were originally developed to reduce hypergly-
cemia in diabetic patients via an insulin-independent
mechanism, through their glycosuric effect. However,
over the past 5 years, evidence from randomized clinical
trials (RCTs) showed an unexpected benefit and safety
in most cardiovascular (CV) and renal outcomes, irre-
spective on their impact on glycemic control.

Chronic kidney disease (CKD) occurs in approximately
40% type 2 diabetes mellitus (T2DM) patients [1] and is
associated with a very high risk of CV diseases [2].
Moreover, heart failure (HF) and CKD frequently coexist,
sharing diabetes as one of the main risk factors, thus
interacting in a vicious circle which contributes to a poor
prognosis [3]. The growing evidence from many RCTs on
SGLT2i as a CV protective class of drugs led to a class 1
level A recommendation for their use in patients with
T2DM and established atherosclerotic CV disease
(ACVD), or in patients with T2DM and multiple risk fac-
tors but without an ACVD [4]. More recently, SGLT2i
showed to significantly reduce morbidity and mortality
even in HF irrespective of diabetes status [4, 5].

Specific nephroprotection as a primary adjusted outcome
has been evaluated only recently in the CREDENCE trial [6];
however, the mechanisms leading to renal benefit in patients
treated with SGLT2i are still under debate.

This review focuses on the role of SGLT2i on kidney func-
tion, in order to clarify their potential direct and indirect ben-
efits in preventing or delaying kidney damage, and on how
this could translate into a reduction of CV and renal events as
evidenced in recent trials.
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The role of SGLTs in the kidney

Sodium-glucose transporters (SGLTs) are cell-membrane
symporters that transfer sodium, together with glucose, into
the cell down and against the concentration gradient, respec-
tively [7] (see Fig. 1). SGLT2 is a high-capacity low-affinity
transporter located in the first segment of the proximal tubule
and is responsible for the reabsorption of about 90% of filtered
glucose. Residual glucose is reabsorbed by the high-affinity
low-capacity transporter SGLT1 in the distal segment of the
proximal tubule [9]. In an individual with preserved glomer-
ular filtration rate (GFR) and normoglycemia, all the glucose
filtered in the proximal tubules is reabsorbed; conversely, an
increase in the concentration of plasma glucose leads to a
constant increase in filtered glucose, until the threshold of
reabsorption is reached (normally for values of glycemia
around 180–215 mg/dl) and glycosuria begins [10].

Diabetes mellitus is associated with an improved capacity
of renal glucose reabsorption probably through an increased
activity of SGLT2 in the proximal tubules, sustaining hyper-
glycemia in a sort of vicious cycle [11]. Whether this in-
creased expression of SGLT2 is a result of persistent exposure
to hyperglycemia is still unclear [10, 12].

It is important to underline that, although SGLT2 has the
main quantitative role in tubular glucose reabsorption, the
benefit of SGLT2i may be slightly blurred by the concomitant
activity of SGLT1. However, a double block on SGLTs could
lead to both an increase in glycosuria and an enhanced risk of
hypoglycemic events.

Direct renal benefits

There are different direct effects of SGLT2i on kidney homeo-
stasis that can explain the favorable renal outcomes reported in
the literature. Firstly, SGLT2i, by reducing sodium reabsorp-
tion at the proximal tubules, causes an increase of sodium
concentration at the macula densa, which in turn enhances
sodium entrance in the cell and therefore its osmolarity [13].
The net effect is an increase in ATP’s conversion to adenosine
leading to vasoconstriction of the afferent arterioles—via the
tubuloglomerular feedback—and to a reduction of GFR. This
process is of paramount importance since it reduces glomeru-
lar hyperfiltration, intraglomerular pressure, and consequently
barotrauma and proteinuria, which are typical events of the
early stage of diabetic nephropathy and HF, thus slowing the
progression of nephropathy [14, 15].

Osmotic diuresis induced by SGLT2i is particularly rele-
vant in the situation of interstitial volume overload working in
synergy with the other diuretics, in particular loop diuretics
[16]. Indeed, it has been demonstrated that SGLT2i primarily
reduces interstitial volume, with a minor effect on intravascu-
lar volume [16, 17], while loop diuretics mostly reduce intra-
vascular volume. This synergistic effect of SGLT2i and loop
diuretics on both intravascular and interstitial volumes is very
useful in states of volume overload by also limiting adverse
effects of other diuretics such as inappropriate reflex neuro-
hormonal stimulation, a response to intravascular volume de-
pletion, and uric acid levels increase [18, 19]. SGLT2i give a
significant advantage particularly in HF because they reduce
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the need for the first introduction of a loop diuretic—as shown
in EMPA-REG-Outcome—limiting the renin-angiotensin-
aldosterone system (RAAS) activation [20, 21].

SGLT2i also mitigates the direct kidney damage with a
suppression of numerous pathways linked to tubular hypoxia
and fibrosis, such as oxidative stress, and inflammasome ac-
tivity [22–24] regardless of diabetes [25] together with a prov-
en significant reduction of urinary excretion of inflammatory
markers [26].

Indirect renal benefits

Sympathetic nervous system

Several systemic mechanisms can in part account for the
nephroprotective properties of SGLT2i. Elevated sympathetic
activity is widely known as a major risk factor for renal dis-
ease [27, 28] and a known feature of diabetic patients [29].
The cross-talk between the sympathetic nervous system and
SGLT2 has been proved with compelling evidence in animal
models: in fact, it has been demonstrated that chemical sym-
pathetic denervation in neurogenic hypertensive mice resulted
in reduced renal SGLT2 expression, and that dapagliflozin-
treated mice showed a significant decrease in the expression
of markers of sympathetic activity and a reduction in blood
pressure [30, 31]. The modulation of RAAS by SGLT2i has
not been fully clarified. It has been suggested that this class of
drugs activates the non-classic pathway of RAAS by stimu-
lating the type 2 angiotensin II receptor with vasodilatation
and anti-inflammatory properties, instead of the classic pro-
pathogenetic pathway via the type 1 angiotensin II receptors
[32].

Vascular protection

The micro- and macrovascular protection derived from
sustained control of glycemia, blood pressure, and lipid profile
has been widely recognized also for SGLT2i [33].
Hypertension is independently associated with the risk of de-
veloping future complications in T2DM, and the positive im-
pact of lowering blood pressure in T2DM seems even more
important than treating hyperglycemia [34, 35]. A reduction
of systolic and diastolic blood pressure of 3–5 mmHg and 2–
3 mmHg, respectively, has been reported with SGLT2i, both
in monotherapy and in combination with other antidiabetic
agents [36–38]. Natriuresis, a decrease in stress on vascular
wall, and a reduction in body weight are the most important
anti-hypertensive–related mechanisms [39–41]. Nonetheless,
small reduction of blood pressure seems to be associated with
minor renal benefit in the literature: in particular, as a reduc-
tion in albuminuria has been showed, favorable data on hard

renal outcomes are controversial [42] but more recently
emerging in the literature [43, 44].

Weight loss

A high body mass index (BMI) is one of the strongest risk
factors for new-onset CKD [45], and the links between obesity
and CKD are numerous and bidirectional [8]. Treatment with
SGLT2i is accompanied by consistent and sustained weight
loss, mainly caused by a reduction in visceral adipose tissue
[46–48]. Decreased insulin secretion, increased urinary glu-
cose excretion, increased lipolysis, and fat oxidation are met-
abolic effects induced by SGLT-2 inhibition that seem to sig-
nificantly contribute to weight loss [49].

Cardiac benefit

It is important to underline that the direct benefit of SGLT2i
on the myocardium, especially in patients with HF or with an
established cardiac disease, has beneficial effects also on kid-
ney function and on renal outcomes. Direct effects on the
myocardium are summarized in four main areas: reduction
of left ventricular (LV) hypertrophy and mass and cardiomyo-
cyte apoptosis; improvement of myocardial energetics and
metabolomics; improvement of myocardial and ECM remod-
eling; reduction of myocardial inflammation and cytokines
levels [21].

Finally, it is worth underlining that as the inhibition of
SGLT2 is not insulin-dependent, the derived renal benefits
abovementioned can be obtained during any phase of the nat-
ural history of diabetes, and the only limiting factor could be a
severely reduced glomerular filtration rate, as in the end-stage
renal disease (ESRD).

Renal outcomes in RCTs on SGLT2 inhibitors:
state of the art

In 2008, the Food and Drug Administration requested, as
mandatory, the assessment of CV safety outcomes in RCTs
evaluating new glucose-lowering therapies. Since then, a large
amount of evidence has emerged pointing toward a CV safety
and efficacy of novel antidiabetic drugs. In particular, benefi-
cial effects of SGLT2i on CV outcomes have been recently
demonstrated by empagliflozin [50], canagliflozin [51], and
dapagliflozin [52] in patients with established ACVD and in
those with multiple risk factors but without an established
ACVD.

Renal protection as a primary endpoint by SGLT2i treat-
ment was evaluated only in the most recent CREDENCE trial
[6]: nonetheless, data on the effects of SGLT2 on kidney
function has been reported from secondary or exploratory
endpoints (EPs) in CV trials (see Table 1).
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In the 7020 patients with T2DM and established ACVD of
the EMPA-REG OUTCOME [50], empagliflozin showed a
significant 14% relative risk reduction (RRR) of the primary
composite outcome (CV death, non-fatal myocardial infarction,
or non-fatal stroke) driven by a 38% RR reduction of CV mor-
tality (3.7% vs. 5.9%; hazard ratio [HR] 0.62; 95% confidence
interval [CI] 0.49–0.77, p < 0.001) and a 35% RR reduction of
hospitalizations for HF (2.7% vs. 4.1%, HR 0.65; 95% CI 0.5–
0.85, p = 0.002) which was consistent across predefined sub-
groups, including patients with and without a previous history
of HF. The placebo and the empagliflozin pooled group had
similar baseline eGFR (73.8 ± 21.1 ml/min/1.73 m2 vs 74.2 ±
21.6 m/min/m2), but secondary renal EPs were significantly
improved by empagliflozin. There was a 39% reduction of
the established renal outcome such as progression of albumin-
uria, doubling of serum creatinine or ESRD, or renal death [54].
The rate of renal replacement therapy (RRT) was also lower in
patients treated with empagliflozin compared with placebo
(0.3% vs 0.6%, HR 0.45, 95% CI 0.21–0.97, p = 0.04). In sum-
mary, in this trial, treated patients presented a significantly low-
er risk of CV events, but also of acute kidney injury compared
with the placebo group [55]. Subsequently, it was shown that a
major effect of empagliflozin consisted in an acute reduction of
eGFR and albuminuria, followed by long-term stability and
preservation of eGFR, compared with the doubling of eGFR
deterioration in the placebo group over the same period of time
(3.1 years of median follow-up) [56]. Renal benefits provided
by empagliflozin was observed even in patients with compro-
mised renal function, independently from baseline HbA1c and
achieved regardless of concomitant medications interacting
with renal function [57, 58].

The CANVAS trial [51] enrolled 10,142 T2DM patients,
66% with an established ACVD and 34% with multiple risk
factors without an established ACVD. Canagliflozin showed a
14% RR reduction of the primary composite outcome (the
same of the EMPA-REG) versus placebo, but with a signifi-
cant effect only on HF hospitalizations (33% RRR; 5.5% vs.
8.7%; HR 0.67; 95% CI 0.52–0.87), independently of the
previous history of HF [51].

Even in the CANVAS trial, mean eGFR was similar in the
placebo and canagliflozin groups (76.2 ± 20 ml/min/1.73 m2

vs 76.7 ± 20.3 ml/min/1.73 m2). The secondary endpoint of a
sustained 40% reduction in eGFR, death from renal cause, or
the need for renal replacement therapy (RRT) was significant-
ly reduced by canagliflozin (HR 0.60; 95% CI 0.47–0.77)
[59]. Interestingly, the effect on CV and renal outcomes did
not differ according to the presence of baseline CKD (defined
as eGFR < 60 ml/min/1.73 m2), albuminuria, eGFR, or BMI
[58].

The third trial DECLARE-TIMI 58 [52] enrolled 17,160
T2DM patients and assessed the effects of dapagliflozin vs.
placebo on CV outcomes. The majority of enrolled patients
were without an established ACVD (59%). Differently from
the previous trials, DECLARE-TIMI 58 had a different design
with two co-primary endpoints: MACE (CV death, MI, ische-
mic stroke) and CV death plus HF hospitalization. Indeed,
noticing the unexpected beneficial effect on HF hospitaliza-
tion both in EMPA-REG outcome and in CANVAS, it was
decided to promote HF hospitalization as the primary end-
points. Despite a neutral effect on the MACE outcome,
dapagliflozin was significantly superior to placebo in reducing
CV death or HF hospitalization with a 17% reduction of the

Table 1 Summary of renal data from renal and CV trials with SGLT2 inhibitors (specific references from the text are mentioned)

Patients
(n.)

Drug Mean FU
(years)

Mean eGFR Renal endpoint HR/p value

EMPA-REG
OUTCOME
[50]

7020 Empagliflozin 3,1 74.2 ml/min/1.73 m2 Rate of renal replacement therapy p = 0.004

CANVAS Trial
[51]

10,142 Canaglflozin 2,4 76.7 ml/min/1.73 m2 40% reduction in eGFR, death from renal
cause or the need for renal
replacement therapy

HR 0.6 95% IC
0.47–0.77)

DECLARE-TIMI
58 [52]

17,160 Dapagliflozin 4.2 85.4 ml/min/1.73 m2 Decrease in eGFR by at least 40%, CV or
renal death and ESRD

HR 0.76 p < 0.001

DAPA-HF [5] 4744 Dapagliflozin 1,6 66.0 ml/min/1.73 m2 Sustained ≥ 50% reduction in eGFR,
ESRD, or death from renal causes

HR 0.71 CI 0.44–1.16
p = 0.17

CREDENCE trial
[6]

4401 Canagliflozin 2,6 56.3 ml/min/1.73 m2 Composite of ESRD (dialysis,
transplantation, or a sustained eGFR
less than 15 ml/min/1.73 m2), a
doubling of the serum creatinine level,
or death from renal or cardiovascular
cause

HR 0.70; 95% CI
0.59–0.82,
p = 0.00001

Zelniker et al.
meta-analysis
[53]

34,322 Reduced the risk of renal disease
progression

HR 0.55 IC 0.48–0.64
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RR (4.7% vs. 5.8%; HR 0.83; 95%, CI 0.73–0.95, p = 0.005)
[52]. When considered alone, the benefit was significant only
for HF hospitalization (RRR 27%; HR 0.73; 95% CI 0.61–
0.88) in patient with or without a previous history of HF [52].
In the DECLARE-TIMI 58, the mean eGFR was 85.4 ±
15.8 ml/min/1.73 m2 in the dapagliflozin group and 85.1 ±
16.0 ml/min/1.73 m2 in the placebo group. An analysis of this
trial focused on secondary renal outcome has been reported
[60], and it was showed that dapagliflozin reduced the risk of
the composite cardiorenal outcome represented by sustained
decrease in eGFR by at least 40% and CV or renal death and
ESRD by 24% (HR 0.76; 95% CI 0.67–0.87, p < 0.001). The
subgroup analyses revealed that the effect of dapagliflozin on
CV outcomes was similar according to urinary albumin-to-
creatinine ratio (UAC) < or > of 30 mg/mmol and to eGFR
< or > of 60 ml/min/1.73 m2 [52, 60].

Taking into consideration the results from EMPA-REG,
CANVAS, and DECLARE-TIMI 58, Zelniker et al. have re-
cently published a meta-analysis [53] on 34,322 patients show-
ing that SGLT2i reduced the risk of renal disease progression
by 45% (HR 0.55; 95% CI 0.48–0.64, p < 0·0001), with a sim-
ilar benefit in those with and without established ACVD.
Nevertheless, an interaction between baseline renal function
and the clinical effects of SGLT2i was noted. The authors di-
vided patients in three groups according to the values of eGFR
of less than 60 ml/min/1.73 m2, between 60 and 90 ml/min/
1.73m2, and equal or above 90 ml/min/1.73 m2. Reduction of
the standardized composite endpoint of renal outcomes includ-
ing worsening eGFR, ESRD, or renal death was observed
across all baseline eGFR values but was more relevant in the
group with eGFR > 90 ml/min/1.73 m2 [59]. By contrast, the
more pronounced risk reduction for HF hospitalization was
reported in patients with eGFR values of less than 60 ml/min/
1.73 m2 [53]. The potential reasons for these results are a topic
of active investigation: possibly, the nephroprotective effects
induced by SGLT2i and described in our review, in particular
the natriuretic effect, could explain the benefits enlightened in
patients with worse baseline eGFR, a category at higher risk for
HF hospitalization, whereas the greatest reduction of renal com-
posite outcome in those with baseline preserved renal function
could be explained by a more pronounced long-term protection
of a preserved renovascular structure compared with the pro-
tection of SGLT2i obtained in a stage of mild or moderate renal
dysfunction, when the damage is only partially reversible.
Another recent meta-analysis [61] focused on the effects of both
SGLT2i and glucagon-like peptide 1 receptor agonists (GLP1-
RA) on CV and renal outcomes. The authors demonstrated that
both GLP1-RA (HR 0.82; 95% CI 0.75–0.89; p < 0.001) and
SGLT2i (HR 0.62; 95% CI 0.58–0.67, p < 0.001) reduced the
r isk of progression of kidney disease including
macroalbuminuria, but only SGLT2i reduced the risk of wors-
ening eGFR, end-stage kidney disease, or renal death (HR 0.55;
95% CI 0.48–0.64, p < 0.001) [61].

DAPA-HF [5] was the first RCT on SGLT2i dedicated to HF
patients irrespective of diabetic status. It enrolled 4744 HFrEF
patients to receive dapagliflozin or placebo on top of standard of
care therapy for HFrEF. The primary outcome was a composite
of CV death plus HF hospitalization or an urgent visit for wors-
ening HF. After a median follow-up of 18.2 months,
dapagliflozin significantly reduced the primary EP of 26%
(HR 0.74; 95% CI 0.65–0.85, p = 0.00001) [5]. The different
components of the primary EP were all significantly reduced:
CV mortality by 18% (HR 0.82; 95% CI 0.69–0.98, p = 0.029)
and first hospitalization for HF or urgent visit for HF by 30%
(HR 0.70; 95% CI 0.59–0.83, p = 0.00003) [5]. Moreover, also
all the secondary endpoints were significantly reduced: CVmor-
tality and first hospitalization for HF (HR 0.75; 95% CI 0.65–
0.85, p = 0.00002), CV mortality and all the hospitalizations for
HF (HR 0.75; 95% CI 0.65–0.88, p = 0.0002), and all-cause
mortality (HR 0.83; 95% CI 0.71–0.97, p = 0.022) [5].

The most remarkable result was the reduction of the prima-
ry endpoints also in non-diabetic patients, as documented by
the prespecified subgroup analyses which did not show any
difference regarding the reduction or primary endpoints be-
tween diabetic patients (HR 0.75; 95% CI 0.63–0.90) and
non-diabetic patients (HR 0.73; 95% CI 0.60–0.88) [5]. In
particular, non-diabetic patients had a RR reduction of 27%
of the primary endpoint.

Regarding the renal outcome, DAPA-HF enrolled a popu-
lation with a mean eGFR of 66.0 and 65.5 ml/min/1.73 m2 in
treated and placebo groups, respectively. However, differently
from the previous RCTs, 40.6% and 40.7% in dapagliflozin
and placebo groups had an eGFR ≥ 30 and < 60 ml/min/
1.73 m2, whereas the previous 3 RCTs excluded patients with
an eGFR < 60 ml/min/1.73 m2. In this population with a more
severe CKD, dapagliflozin vs placebo showed no differences
regarding the incidence of the secondary endpoint “worsening
renal function,” a composite of sustained ≥ 50% reduction in
eGFR, ESRD, or death from renal causes (HR 0.71; 95% CI
0.44–1.16, p = 0.17) but showed a trend of benefit for
dapagliflozin group (worsening renal function occurred in
1.2% of the dapagliflozin group vs 1.6% of controls) [58].
Noteworthy, the prespecified subgroup analysis did not de-
tected any difference regarding the reduction of primary EP
in patients with an eGFR ≥ 60 ml/min/1.73 m2 with respect to
the patient with an eGFR < 60 ml ml/min/1.73 m2 [5].

In summary, the previously mentioned 3 RCTs were fo-
cused on CVD prevention in T2DM, and they were not orig-
inally designed to explore primarily the role of SGLT2i on
renal outcome. In fact, they included a limited number of
patients with mild CKD, with the consequence of observing
a small number of renal events such as dialysis, renal trans-
plantation, or renal death: however, the unexpected magnitude
of beneficial effect on secondary kidney outcome gained at-
tention, increasing the expectation for the results of the trials
with renal endpoints as primary target.
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The CREDENCE trial

The first of the SGLT2i RCT with a primary cardiorenal com-
posite endpoint was the CREDENCE trial [6]. This trial ran-
domized 4401 patients with TD2M and albuminuric CKD,
defined as values of eGFR ≥ 30 and < 90 ml/min/1.73 m2

and UAC between 300 and 5000 mg/g, to receive either
100 mg daily of canagliflozin or placebo; all patients were
treated with RAAS blockade and 50% had a history of CV
disease. The primary outcome was a composite endpoint of
ESRD (defined as dialysis, transplantation, or a sustained
eGFR less than 15 ml/min/1.73 m2), a doubling of the serum
creatinine level, or death from renal or cardiovascular cause.

The trial was stopped early, with a median follow-up of
2.6 years, after a planned ad interim analysis. At that time,
the event rate of the primary endpoint was significantly re-
duced in the canagliflozin group compared with placebo, with
a RR reduction of 30% (HR 0.70; 95% CI 0.59–0.82, p =
0.00001) [6]. In addition, patients randomized to canagliflozin
presented a significant RRR of 34% (HR 0.66; 95% CI 0.53–
0.8, p < 0.001) for the renal composite outcome of ESRD,
doubling of the serum creatinine level, or renal death [6]; the
nephroprotective role of canagliflozin was consistent also for
the single components of composite endpoint ESRD (HR
0.68; 95% CI 0.54–0.86, p = 0.002) and for the exploratory
outcome of dialysis, kidney transplantation, or renal death
(HR 0.72; 95% CI 0.54 to 0.97) [6].

Once more, after the first weeks of treatment, there was an
initial greater reduction of eGFR in the canagliflozin than in the
placebo group (− 3.72 ± 0.25 vs. − 0.55 ± 0.25 ml/min/1.73 m2;
95%CI, − 3.87 to − 2.47) [6]; afterwards, the reduction of eGFR
was slower in the canagliflozin group than in the placebo group
(− 1.85 ± 0.13 vs. − 4.59 ± 0.14 ml/min/1.73 m2 per year; 95%
CI, 2.37 to 3.11) [6]. Several secondary CV outcomes were
tested in a hierarchical fashion: canagliflozin reduced the relative
risk of the composites of CV death or hospitalization for HF (HR
0.69; 95% CI 0.57.0.83, p< 0.001), CV death, myocardial in-
farction, or stroke (HR 0.80; 95% CI 0.67–0.95, p = 0.01), and
hospitalization for HF(HR 0.61; 95% CI 0.47–0.80, p < 0.001)
[6]. These findings strongly support the concept that
canagliflozin may have clear and relevant effects for both renal
and CV protection in patients with T2DM and CKD; further-
more, the authors suggested that the benefits observed in the
CREDENCE trial were also consistent regardless of baseline
diuretic use, different levels of hypertension or glucose control,
and weight loss [62].

Conclusions

Despite that SGLT2i were originally thought and developed as
glucose-lowering drugs, unexpectedly, they documented a sig-
nificative reduction of death and CV events even in the absence

of diabetes and demonstrated a cardiorenal protective effects.
Whereas different trials mainly focused on prevention of CV
outcomes in TD2M patients, there was a clear benefit on HF that
was initially explored only as secondary endpoint. Later on, the
DAPA-HF trial proved a clear benefit on CV mortality and
worsening HF both in diabetic and in non-diabetic patients but
also in patients with a moderate to severe CKD. Likewise, there
was an unforeseen benefit in renal outcomes—initially evalu-
ated only in patients with a mild CKD—that taken to-
gether with HF hospitalization dragged most of the ben-
efit in the 3 RCTs dedicated to CVD prevention
[50–52].

The CREDENCE trial demonstrated the role of
canagliflozin in reducing the risk of kidney failure, analyzed
as primary outcome, and CV events in patients with T2DM
and CKD, and thanks to the CREDENCE trial, the European
Medicines Agency’s (EMA) Committee for Medicinal
Products for Human Use (CHMP) has adopted a positive
opinion to extend the indication of canagliflozin (at the lower
dose of 100 mg day) to include important renal outcomes.

In line with the CREDENCE trial, in patients with T2DM
post hoc analysis [63] of two registration trials with
ertugliflozin, a new drug in the class with high selectivity for
SGLT2, confirmed that over 104 weeks of treatment, eGFR
values were higher and UAC reduced compared with non-
SGLT2i treatment, even though changes in HbA1c did not
differ between the groups; with respect to this drug, data from
the CV safety VERTIS trial, recently presented at the
American Diabetes Association, including secondary com-
posite renal endpoints are eagerly awaited.

The effects in the kidney derived from SGLT2 inhibition
are likely to be multifactorial, with different direct and indirect
mechanisms. Additional studies will clarify the potential clin-
ical role of SGLT2i on kidney function in patients without
T2DM: at this stage, we have data generated following a very
short period of time (6 weeks) of treatment with dapagliflozin,
the DIAMOND trial [64], in which patients with non-
diabetes-related CKD did not show a beneficial effect on pro-
teinuria when compared with the placebo group. The effects
of a longer period of treatments are warranted.

In the meantime, taking into consideration the bidirectional
nature of the heart-kidney interplay, the susceptibility of
T2DM patients to develop HF and CKD, and the results of
the CVD safety trails, of the CREDENCE trial and of DAPA-
HF, we believe that this class of drugs has already become a
milestone therapy for cardiorenal protection in patients with
T2DM and in patients with HF.
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