Skip to main content

Advertisement

Log in

Cardiovascular magnetic resonance for the diagnosis and management of heart failure with preserved ejection fraction

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is characterized by an impaired ventricular filling resulting in the development of dyspnea and other HF symptoms. Even though echocardiography is the cornerstone to demonstrate structural and/or functional alterations of the heart as the underlying cause for the clinical presentation, cardiovascular magnetic resonance (CMR) represents the noninvasive gold standard to assess cardiac morphology, function, and tissue changes. Indeed, CMR allows quantification of biventricular volumes, mass, wall thickness, systolic function, and intra- and extracardiac flows; diastolic functional indices include transmitral and pulmonary venous velocities, left ventricular and left atrial filling velocities from volumetric changes, strain analysis from myocardial tagging, tissue phase contrast, and feature tracking. Moreover, CMR allows superior tissue characterization of the myocardium and the pericardium, which are crucial for a noninvasive etiological and histopathological assessment of HFpEF: conventional T1-weighted, T2-weighted, and post-contrast sequences are now complemented by quantitative mapping sequences, including T1 and T2 mapping as well as extracellular volume quantification. Further experimental sequences comprise diffusion tensor analysis, blood oxygenation-dependent sequences, hyperpolarized contrast agents, spectroscopy, and elastography. Finally, artificial intelligence is beginning to help clinicians deal with an increasing amount of information from CMR exams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200m

    Article  PubMed  Google Scholar 

  2. Flachskampf FA, Biering-Sørensen T, Solomon SD, Duvernoy O, Bjerner T, Smiseth OA (2015) Cardiac imaging to evaluate left ventricular diastolic function. JACC Cardiovasc Imaging 8:1071–1093. https://doi.org/10.1016/j.jcmg.2015.07.004

    Article  PubMed  Google Scholar 

  3. Aquaro GD, Camastra G, Monti L, Lombardi M, Pepe A, Castelletti S, Maestrini V, Todiere G, Masci P, di Giovine G, Barison A, Dellegrottaglie S, Perazzolo Marra M, Pontone G, di Bella G, On behalf of the working group “Applicazioni della Risonanza Magnetica” of the Italian Society of Cardiology (2017) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging 45:1055–1067. https://doi.org/10.1002/jmri.25450

    Article  PubMed  Google Scholar 

  4. Lin E, Alessio A (2009) What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr 3:403–408. https://doi.org/10.1016/j.jcct.2009.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bluemke DA, Kronmal RA, Lima JAC, Liu K, Olson J, Burke GL, Folsom AR (2008) The relationship of left ventricular mass and geometry to incident cardiovascular events. The MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 52:2148–2155. https://doi.org/10.1016/j.jacc.2008.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hartiala JJ, Mostbeck GH, Foster E, Fujita N, Dulce MC, Chazouilleres AF, Higgins CB (1993) Velocity-encoded cine MRI in the evaluation of left ventricular diastolic function: measurement of mitral valve and pulmonary vein flow velocities and flow volume across the mitral valve. Am Heart J 125:1054–1066. https://doi.org/10.1016/0002-8703(93)90114-O

    Article  PubMed  CAS  Google Scholar 

  7. Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, Vido D, Biederman RWW (2008) Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson 10:36. https://doi.org/10.1186/1532-429X-10-36

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151. https://doi.org/10.1016/j.jcmg.2009.11.006

    Article  PubMed  Google Scholar 

  9. Di Bella G, Minutoli F, Pingitore A et al (2011) Endocardial and epicardial deformations in cardiac amyloidosis and hypertrophic cardiomyopathy. Circ J 75:1200–1208. https://doi.org/10.1253/circj.CJ-10-0844

    Article  PubMed  Google Scholar 

  10. Lima JAC, Jeremy R, Guier W, Bouton S, Zerhouni EA, McVeigh E, Buchalter MB, Weisfeldt ML, Shapiro EP, Weiss JL (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue tagging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21:1741–1751. https://doi.org/10.1016/0735-1097(93)90397-J

    Article  PubMed  CAS  Google Scholar 

  11. Paelinck BP, De Roos A, Bax JJ et al (2005) Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol 45:1109–1116. https://doi.org/10.1016/j.jacc.2004.12.051

    Article  PubMed  Google Scholar 

  12. Petersen SE, Jung BA, Wiesmann F, Selvanayagam JB, Francis JM, Hennig J, Neubauer S, Robson MD (2006) Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826. https://doi.org/10.1148/radiol.2383041992

    Article  PubMed  Google Scholar 

  13. Knight DS, Steeden JA, Moledina S, Jones A, Coghlan JG, Muthurangu V (2015) Left ventricular diastolic dysfunction in pulmonary hypertension predicts functional capacity and clinical worsening: a tissue phase mapping study. J Cardiovasc Magn Reson 17:116. https://doi.org/10.1186/s12968-015-0220-3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ambale-Venkatesh B, Armstrong AC, Liu CY, Donekal S, Yoneyama K, Wu CO, Gomes AS, Hundley GW, Bluemke DA, Lima JA (2014) Diastolic function assessed from tagged MRI predicts heart failure and atrial fibrillation over an 8-year follow-up period: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging 15:442–449. https://doi.org/10.1093/ehjci/jet189

    Article  PubMed  Google Scholar 

  15. Nelson MD, Szczepaniak LS, Wei J, Haftabaradaren A, Bharadwaj M, Sharif B, Mehta P, Zhang X, Thomson LE, Berman DS, Li D, Bairey Merz CN (2014) Diastolic dysfunction in women with signs and symptoms of ischemia in the absence of obstructive coronary artery disease: a hypothesis-generating study. Circ Cardiovasc Imaging 7:510–516. https://doi.org/10.1161/CIRCIMAGING.114.001714

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S (2016) Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging 9:e004077. https://doi.org/10.1161/CIRCIMAGING.115.004077

    Article  PubMed  Google Scholar 

  17. Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ (2010) Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:65. https://doi.org/10.1186/1532-429X-12-65

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thomas L, Hoy M, Byth K, Schiller NB (2008) The left atrial function index: a rhythm independent marker of atrial function. Eur J Echocardiogr 9:356–362. https://doi.org/10.1016/j.euje.2007.06.002

    Article  PubMed  Google Scholar 

  19. Truong VT, Palmer C, Wolking S, Sheets B, Young M, Ngo TNM, Taylor M, Nagueh SF, Zareba KM, Raman S, Mazur W (2020) Normal left atrial strain and strain rate using cardiac magnetic resonance feature tracking in healthy volunteers. Eur Heart J Cardiovasc Imaging 21:446–453. https://doi.org/10.1093/ehjci/jez157

    Article  PubMed  Google Scholar 

  20. Habibi M, Chahal H, Opdahl A, Gjesdal O, Helle-Valle TM, Heckbert SR, McClelland R, Wu C, Shea S, Hundley G, Bluemke DA, Lima JAC (2014) Association of CMR-measured LA function with heart failure development: results from the MESA study. JACC Cardiovasc Imaging 7:570–579. https://doi.org/10.1016/j.jcmg.2014.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta S, Matulevicius SA, Ayers CR, Berry JD, Patel PC, Markham DW, Levine BD, Chin KM, de Lemos JA, Peshock RM, Drazner MH (2013) Left atrial structure and function and clinical outcomes in the general population. Eur Heart J 34:278–285. https://doi.org/10.1093/eurheartj/ehs188

    Article  PubMed  Google Scholar 

  22. Habibi M, Lima JAC, Khurram IM, Zimmerman SL, Zipunnikov V, Fukumoto K, Spragg D, Ashikaga H, Rickard J, Marine JE, Calkins H, Nazarian S (2015) Association of left atrial function and left atrial enhancement in patients with atrial fibrillation cardiac magnetic resonance study. Circ Cardiovasc Imaging 8:e002769. https://doi.org/10.1161/CIRCIMAGING.114.002769

    Article  PubMed  Google Scholar 

  23. Grassedonio E, Todiere G, La Grutta L et al (2015) Assessment of atrial diastolic function in patients with hypertrophic cardiomyopathy by cine magnetic resonance imaging. Radiol Med 120:714–722. https://doi.org/10.1007/s11547-015-0497-1

    Article  PubMed  Google Scholar 

  24. Di Bella G, Minutoli F, Madaffari A et al (2016) Left atrial function in cardiac amyloidosis. J Cardiovasc Med 17:113–121. https://doi.org/10.2459/JCM.0000000000000188

    Article  CAS  Google Scholar 

  25. Kanagala P, Arnold JR, Cheng ASH, Singh A, Khan JN, Gulsin GS, Yang J, Zhao L, Gupta P, Squire IB, Ng LL, McCann GP (2020) Left atrial ejection fraction and outcomes in heart failure with preserved ejection fraction. Int J Card Imaging 36:101–110. https://doi.org/10.1007/s10554-019-01684-9

    Article  Google Scholar 

  26. Axell RG, Hoole SP, Hampton-Till J, White PA (2015) RV diastolic dysfunction: time to re-evaluate its importance in heart failure. Heart Fail Rev 20:363–373. https://doi.org/10.1007/s10741-015-9472-0

    Article  PubMed  CAS  Google Scholar 

  27. Amsallem M, Kuznetsova T, Hanneman K, Denault A, Haddad F (2016) Right heart imaging in patients with heart failure: a tale of two ventricles. Curr Opin Cardiol 31:469–482

    Article  PubMed  PubMed Central  Google Scholar 

  28. Melenovsky V, Hwang S-J, Lin G, Redfield MM, Borlaug BA (2014) Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J 35:3452–3462. https://doi.org/10.1093/eurheartj/ehu193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Aschauer S, Kammerlander AA, Zotter-Tufaro C, Ristl R, Pfaffenberger S, Bachmann A, Duca F, Marzluf BA, Bonderman D, Mascherbauer J (2016) The right heart in heart failure with preserved ejection fraction: insights from cardiac magnetic resonance imaging and invasive haemodynamics. Eur J Heart Fail 18:71–80. https://doi.org/10.1002/ejhf.418

    Article  PubMed  Google Scholar 

  30. Mohammed SF, Hussain I, Abou Ezzeddine OF et al (2014) Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 130:2310–2320. https://doi.org/10.1161/CIRCULATIONAHA.113.008461

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rommel KP, Von Roeder M, Oberueck C et al (2018) Load-independent systolic and diastolic right ventricular function in heart failure with preserved ejection fraction as assessed by resting and handgrip exercise pressure–volume loops. Circ Heart Fail 11:e004121. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004121

    Article  PubMed  Google Scholar 

  32. von Roeder M, Kowallick JT, Rommel KP, Blazek S, Besler C, Fengler K, Lotz J, Hasenfuß G, Lücke C, Gutberlet M, Thiele H, Schuster A, Lurz P (2020) Right atrial–right ventricular coupling in heart failure with preserved ejection fraction. Clin Res Cardiol 109:54–66. https://doi.org/10.1007/s00392-019-01484-0

    Article  Google Scholar 

  33. Sicari R (2018) Right atrial function: a blind spot in a blind spot. Int J Cardiol 255:212

    Article  PubMed  Google Scholar 

  34. Richter MJ, Fortuni F, Wiegand MA, Dalmer A, Vanderpool R, Ghofrani HA, Naeije R, Roller F, Seeger W, Sommer N, Gall H, Ghio S, Tello K (2020) Association of right atrial conduit phase with right ventricular lusitropic function in pulmonary hypertension. Int J Card Imaging 36:633–642. https://doi.org/10.1007/s10554-019-01763-x

    Article  Google Scholar 

  35. Gorter TM, van Melle JP, Rienstra M, Borlaug BA, Hummel YM, van Gelder IC, Hoendermis ES, Voors AA, van Veldhuisen DJ, Lam CSP (2018) Right heart dysfunction in heart failure with preserved ejection fraction: the impact of atrial fibrillation. J Card Fail 24:177–185. https://doi.org/10.1016/j.cardfail.2017.11.005

    Article  PubMed  Google Scholar 

  36. Schuster A, Backhaus SJ, Stiermaier T, Navarra JL, Uhlig J, Rommel KP, Koschalka A, Kowallick JT, Bigalke B, Kutty S, Gutberlet M, Hasenfuß G, Thiele H, Eitel I (2020) Impact of right atrial physiology on heart failure and adverse events after myocardial infarction. J Clin Med 9:210. https://doi.org/10.3390/jcm9010210

    Article  PubMed Central  CAS  Google Scholar 

  37. Jain S, Kuriakose D, Edelstein I, Ansari B, Oldland G, Gaddam S, Javaid K, Manaktala P, Lee J, Miller R, Akers SR, Chirinos JA (2019) Right atrial phasic function in heart failure with preserved and reduced ejection fraction. JACC Cardiovasc Imaging 12:1460–1470. https://doi.org/10.1016/j.jcmg.2018.08.020

    Article  PubMed  Google Scholar 

  38. Vöhringer M, Mahrholdt H, Yilmaz A, Sechtem U (2007) Significance of late gadolinium enhancement in cardiovascular magnetic resonance imaging (CMR). Herz 32:129–137. https://doi.org/10.1007/s00059-007-2972-5

    Article  PubMed  Google Scholar 

  39. Kanagala P, Cheng ASH, Singh A, McAdam J, Marsh AM, Arnold JR, Squire IB, Ng LL, McCann GP (2018) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction—implications for clinical trials. J Cardiovasc Magn Reson 20:4. https://doi.org/10.1186/s12968-017-0424-9

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, Iguchi K, Nakachi T, Fukui K, Futaki M, Iwasawa T, Taguri M, Kimura K, Umemura S (2015) Prognostic significance of quantitative assessment of focal myocardial fibrosis in patients with heart failure with preserved ejection fraction. Int J Cardiol 191:314–319. https://doi.org/10.1016/j.ijcard.2015.05.048

    Article  PubMed  Google Scholar 

  41. Radenkovic D, Weingärtner S, Ricketts L, Moon JC, Captur G (2017) T1 mapping in cardiac MRI. Heart Fail Rev 22:415–430

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bulluck H, Maestrini V, Rosmini S, Abdel-Gadir A, Treibel TA, Castelletti S, Bucciarelli-Ducci C, Manisty C, Moon JC (2015) Myocardial T1 mapping. Circ J 79:487–494. https://doi.org/10.1253/circj.CJ-15-0054

    Article  PubMed  Google Scholar 

  43. Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, Lachmann RH, Murphy E, Mehta A, Hughes DA, McKenna WJ, Taylor AM, Hausenloy DJ, Hawkins PN, Elliott PM, Moon JC (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441. https://doi.org/10.1136/heartjnl-2012-302346

    Article  PubMed  Google Scholar 

  44. Ugander M, Oki AJ, Hsu L-Y, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33:1268–1278. https://doi.org/10.1093/eurheartj/ehr481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Su MYM, Lin LY, Tseng YHE, Chang CC, Wu CK, Lin JL, Tseng WYI (2014) CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging 7:991–997. https://doi.org/10.1016/j.jcmg.2014.04.022

    Article  PubMed  Google Scholar 

  46. Doeblin P, Hashemi D, Tanacli R, Lapinskas T, Gebker R, Stehning C, Motzkus LA, Blum M, Tahirovic E, Dordevic A, Kraft R, Zamani SM, Pieske B, Edelmann F, Düngen HD, Kelle S (2019) CMR tissue characterization in patients with HFmrEF. J Clin Med 8:1877. https://doi.org/10.3390/jcm8111877

    Article  PubMed Central  CAS  Google Scholar 

  47. Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, Panzenböck A, Jakowitsch J, Bangert C, Laimer D, Schreiber C, Karakus G, Hülsmann M, Pacher R, Lang IM, Maurer G, Bonderman D (2013) Cardiac magnetic resonance postcontrast t1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging 6:1056–1065. https://doi.org/10.1161/CIRCIMAGING.113.000633

    Article  PubMed  Google Scholar 

  48. Rommel KP, Von Roeder M, Latuscynski K et al (2016) Extracellular volume fraction for characterization of patients with heart failure and preserved ejection fraction. J Am Coll Cardiol 67:1815–1825. https://doi.org/10.1016/j.jacc.2016.02.018

    Article  PubMed  Google Scholar 

  49. Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A, Miller CA, Ugander M, Maanja M, Kellman P, Shah DJ, Abebe KZ, Simon MA, Quarta G, Senni M, Butler J, Diez J, Redfield MM, Gheorghiade M (2017) Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: association with baseline disease severity and subsequent outcome. JAMA Cardiol 2:995–1006. https://doi.org/10.1001/jamacardio.2017.2511

    Article  PubMed  PubMed Central  Google Scholar 

  50. Barison A, Aquaro GD, Pugliese NR, Cappelli F, Chiappino S, Vergaro G, Mirizzi G, Todiere G, Passino C, Masci PG, Perfetto F, Emdin M (2014) Measurement of myocardial amyloid deposition in systemic amyloidosis: insights from cardiovascular magnetic resonance imaging. J Intern Med 277:605–614. https://doi.org/10.1111/joim.12324

    Article  PubMed  Google Scholar 

  51. Banypersad SM, Sado DM, Flett AS, Gibbs SDJ, Pinney JH, Maestrini V, Cox AT, Fontana M, Whelan CJ, Wechalekar AD, Hawkins PN, Moon JC (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6:34–39. https://doi.org/10.1161/CIRCIMAGING.112.978627

    Article  PubMed  Google Scholar 

  52. Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36:244–251. https://doi.org/10.1093/eurheartj/ehu444

    Article  PubMed  Google Scholar 

  53. Martinez-Naharro A, Kotecha T, Norrington K, Boldrini M, Rezk T, Quarta C, Treibel TA, Whelan CJ, Knight DS, Kellman P, Ruberg FL, Gillmore JD, Moon JC, Hawkins PN, Fontana M (2019) Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging 12:810–819. https://doi.org/10.1016/j.jcmg.2018.02.006

    Article  PubMed  Google Scholar 

  54. Patel RB, Li E, Benefield BC, Swat SA, Polsinelli VB, Carr JC, Shah SJ, Markl M, Collins JD, Freed BH (2020) Diffuse right ventricular fibrosis in heart failure with preserved ejection fraction and pulmonary hypertension. ESC Heart Fail 7:253–263. https://doi.org/10.1002/ehf2.12565

    Article  PubMed  PubMed Central  Google Scholar 

  55. Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV (2011) Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 4:269–278. https://doi.org/10.1016/j.jcmg.2010.09.023

    Article  PubMed  PubMed Central  Google Scholar 

  56. Arcari L, Hinojar R, Engel J, Freiwald T, Platschek S, Zainal H, Zhou H, Vasquez M, Keller T, Rolf A, Geiger H, Hauser I, Vogl TJ, Zeiher AM, Volpe M, Nagel E, Puntmann VO (2020) Native T1 and T2 provide distinctive signatures in hypertrophic cardiac conditions—comparison of uremic, hypertensive and hypertrophic cardiomyopathy. Int J Cardiol 306:102–108. https://doi.org/10.1016/j.ijcard.2020.03.002

    Article  PubMed  Google Scholar 

  57. Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, Knight DS, Zumbo G, Rosmini S, Maestrini V, Bulluck H, Rakhit RD, Wechalekar AD, Gilbertson J, Sheppard MN, Kellman P, Gillmore JD, Moon JC, Hawkins PN, Fontana M (2018) Myocardial edema and prognosis in amyloidosis. J Am Coll Cardiol 71:2919–2931. https://doi.org/10.1016/J.JACC.2018.03.536

    Article  PubMed  Google Scholar 

  58. Positano V, Meloni A, Santarelli MF, Gerardi C, Bitti PP, Cirotto C, de Marchi D, Salvatori C, Landini L, Pepe A (2015) Fast generation of T2* maps in the entire range of clinical interest: application to thalassemia major patients. Comput Biol Med 56:200–210. https://doi.org/10.1016/j.compbiomed.2014.10.020

    Article  PubMed  Google Scholar 

  59. Lota AS, Gatehouse PD, Mohiaddin RH (2017) T2 mapping and T2* imaging in heart failure. Heart Fail Rev 22:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schwitter J, Arai AE (2011) Assessment of cardiac ischaemia and viability: role of cardiovascular magnetic resonance. Eur Heart J 32:799–809

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, al-Saadi N, Ahlstrom H, Dill T, Larsson HBW, Flamm SD, Marquardt M, Johansson L (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29:480–489. https://doi.org/10.1093/eurheartj/ehm617

    Article  PubMed  Google Scholar 

  62. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schönberg SO, Luchner A, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T, for the MR-IMPACT Investigators (2013) MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative. Eur Heart J 34:775–781. https://doi.org/10.1093/eurheartj/ehs022

    Article  PubMed  Google Scholar 

  63. Nagel E, Greenwood JP, McCann GP, Bettencourt N, Shah AM, Hussain ST, Perera D, Plein S, Bucciarelli-Ducci C, Paul M, Westwood MA, Marber M, Richter WS, Puntmann VO, Schwenke C, Schulz-Menger J, Das R, Wong J, Hausenloy DJ, Steen H, Berry C, MR-INFORM Investigators (2019) Magnetic resonance perfusion or fractional flow reserve in coronary disease. N Engl J Med 380:2418–2428. https://doi.org/10.1056/NEJMoa1716734

    Article  PubMed  Google Scholar 

  64. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, Ellmer A, Dreysse S, Fleck E (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    Article  CAS  PubMed  Google Scholar 

  65. Kwong RY, Ge Y, Steel K, Bingham S, Abdullah S, Fujikura K, Wang W, Pandya A, Chen YY, Mikolich JR, Boland S, Arai AE, Bandettini WP, Shanbhag SM, Patel AR, Narang A, Farzaneh-Far A, Romer B, Heitner JF, Ho JY, Singh J, Shenoy C, Hughes A, Leung SW, Marji M, Gonzalez JA, Mehta S, Shah DJ, Debs D, Raman SV, Guha A, Ferrari VA, Schulz-Menger J, Hachamovitch R, Stuber M, Simonetti OP (2019) Cardiac magnetic resonance stress perfusion imaging for evaluation of patients with chest pain. J Am Coll Cardiol 74:1741–1755. https://doi.org/10.1016/j.jacc.2019.07.074

    Article  PubMed  PubMed Central  Google Scholar 

  66. Feng D, Glockner J, Kim K, Martinez M, Syed IS, Araoz P, Breen J, Espinosa RE, Sundt T, Schaff HV, Oh JK (2011) Cardiac magnetic resonance imaging pericardial late gadolinium enhancement and elevated inflammatory markers can predict the reversibility of constrictive pericarditis after antiinflammatory medical therapy: a pilot study. Circulation 124:1830–1837. https://doi.org/10.1161/CIRCULATIONAHA.111.026070

    Article  PubMed  CAS  Google Scholar 

  67. Aquaro GD, Barison A, Cagnolo A, Todiere G, Lombardi M, Emdin M (2015) Role of tissue characterization by cardiac magnetic resonance in the diagnosis of constrictive pericarditis. Int J Card Imaging 31:1021–1031. https://doi.org/10.1007/s10554-015-0648-4

    Article  Google Scholar 

  68. Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341:373–374. https://doi.org/10.1056/NEJM199907293410515

    Article  PubMed  CAS  Google Scholar 

  69. Thavendiranathan P, Verhaert D, Walls MC, Bender JA, Rajagopalan S, Chung YC, Simonetti OP, Raman SV (2012) Simultaneous right and left heart real-time, free-breathing CMR flow quantification identifies constrictive physiology. JACC Cardiovasc Imaging 5:15–24. https://doi.org/10.1016/j.jcmg.2011.07.010

    Article  PubMed  PubMed Central  Google Scholar 

  70. Haley JH, Tajik AJ, Danielson GK, Schaff HV, Mulvagh SL, Oh JK (2004) Transient constrictive pericarditis: causes and natural history. J Am Coll Cardiol 43:271–275

    Article  PubMed  Google Scholar 

  71. Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS (2020) Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium-based contrast agent: a systematic review and meta-analysis. JAMA Intern Med 180:223–230. https://doi.org/10.1001/jamainternmed.2019.5284

    Article  PubMed  CAS  Google Scholar 

  72. Giorgetti A, Masci PG, Marras G, Rustamova YK, Gimelli A, Genovesi D, Lombardi M, Marzullo P (2013) Gated SPECT evaluation of left ventricular function using a CZT camera and a fast low-dose clinical protocol: comparison to cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging 40:1869–1875. https://doi.org/10.1007/s00259-013-2505-9

    Article  PubMed  Google Scholar 

  73. Emdin M, Aimo A, Rapezzi C, Fontana M, Perfetto F, Seferović PM, Barison A, Castiglione V, Vergaro G, Giannoni A, Passino C, Merlini G (2019) Treatment of cardiac transthyretin amyloidosis: an update. Eur Heart J 40:3699–3706. https://doi.org/10.1093/eurheartj/ehz298

    Article  PubMed  CAS  Google Scholar 

  74. Arora R, Ferrick KJ, Nakata T, Kaplan RC, Rozengarten M, Latif F, Ng K, Marcano V, Heller S, Fisher JD, Travin MI (2003) I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10:121–131. https://doi.org/10.1067/mnc.2003.2

    Article  PubMed  Google Scholar 

  75. Knuuti J, Wijns W, Achenbach S et al (2020) 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477

    Article  PubMed  Google Scholar 

  76. Schwaiger M, Hicks R (1991) The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 32:565–578

    PubMed  CAS  Google Scholar 

  77. Gambhir SS, Schwaiger M, Huang SC, Krivokapich J, Schelbert HR, Nienaber CA, Phelps ME (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 30:359–366

    PubMed  CAS  Google Scholar 

  78. Rossi A, Merkus D, Klotz E, Mollet N, de Feyter PJ, Krestin GP (2014) Stress myocardial perfusion: imaging with multidetector CT. Radiology 270:25–46. https://doi.org/10.1148/radiol.13112739

    Article  PubMed  Google Scholar 

  79. Bandula S, White SK, Flett AS, Lawrence D, Pugliese F, Ashworth MT, Punwani S, Taylor SA, Moon JC (2013) Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 269:396–403. https://doi.org/10.1148/radiol.13130130

    Article  PubMed  Google Scholar 

  80. Khalique Z, Ferreira PF, Scott AD et al (2019) Diffusion tensor cardiovascular magnetic resonance imaging: a clinical perspective. JACC Cardiovasc Imaging

  81. Friedrich MG, Karamitsos TD (2013) Oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reson 15:43. https://doi.org/10.1186/1532-429X-15-43

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lewis AJM, Tyler DJ, Rider O (2020) Clinical cardiovascular applications of hyperpolarized magnetic resonance. Cardiovasc Drugs Ther 34:231–240. https://doi.org/10.1007/s10557-020-06942-w

    Article  PubMed  PubMed Central  Google Scholar 

  83. Arani A, Arunachalam SP, Chang ICY, Baffour F, Rossman PJ, Glaser KJ, Trzasko JD, McGee KP, Manduca A, Grogan M, Dispenzieri A, Ehman RL, Araoz PA (2017) Cardiac MR elastography for quantitative assessment of elevated myocardial stiffness in cardiac amyloidosis. J Magn Reson Imaging 46:1361–1367. https://doi.org/10.1002/JMRI.25678

    Article  PubMed  PubMed Central  Google Scholar 

  84. Goyal N, Mor-Avi V, Volpato V, Narang A, Wang S, Salerno M, Lang RM, Patel AR (2020) Machine learning based quantification of ejection and filling parameters by fully automated dynamic measurement of left ventricular volumes from cardiac magnetic resonance images. Magn Reson Imaging 67:28–32. https://doi.org/10.1016/j.mri.2019.12.004

    Article  PubMed  Google Scholar 

  85. Raisi-Estabragh Z, Izquierdo C, Campello VM, Martin-Isla C, Jaggi A, Harvey NC, Lekadir K, Petersen SE (2020) Cardiac magnetic resonance radiomics: basic principles and clinical perspectives. Eur Heart J Cardiovasc Imaging 21:349–356. https://doi.org/10.1093/ehjci/jeaa028

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bustin A, Fuin N, Botnar RM, Prieto C (2020) From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front Cardiovasc Med 7:17. https://doi.org/10.3389/fcvm.2020.00017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research is partly funded by the Young Researcher Project (GR-2016-02361586) of the Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Barison.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest or financial ties to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barison, A., Aimo, A., Todiere, G. et al. Cardiovascular magnetic resonance for the diagnosis and management of heart failure with preserved ejection fraction. Heart Fail Rev 27, 191–205 (2022). https://doi.org/10.1007/s10741-020-09998-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09998-w

Keywords

Navigation