Skip to main content

Advertisement

Log in

Mechanistic implications of altered protein expression in rheumatic heart disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Rheumatic heart disease (RHD) is a major cause of cardiovascular morbidity and mortality in low- and middle-income countries, where living conditions promote spread of group A β-haemolytic streptococcus. Autoimmune reactions due to molecular mimicry of bacterial epitopes by host proteins cause acute rheumatic fever (ARF) and subsequent disease progression to RHD. Despite knowledge of the factors that predispose to ARF and RHD, determinants of the progression to valvular damage and the molecular events involved remain incompletely characterised. This review focuses on altered protein expression in heart valves, myocardial tissue and plasma of patients with RHD and pathogenic consequences on RHD. Proteins mainly involved in structural organization of the valve matrix, blood homeostasis and immune response were altered due to RHD pathogenesis. Study of secreted forms of these proteins may aid the development of non-invasive biomarkers for early diagnosis and monitoring outcomes in RHD. Valve replacement surgery, the single evidence-based strategy to improve outcomes in severe RHD, is costly, largely unavailable in low- and middle-income countries (LMIC) and requires specialised facilities. When diagnosed early, penicillin prophylaxis may be used to delay progression to severe valvular damage. Echocardiography and cardiovascular magnetic resonance and the standard imaging tools recommended to confirm early diagnosis remain largely unavailable and inaccessible in most LMIC and both require expensive equipment and highly skilled persons for manipulation as well as interpretation of results. Changes in protein expression in heart valves and myocardium are associated with progressive valvular deformation in RHD. Understanding these protein changes should shed more light on the mechanisms of pathogenicity, while secreted forms of these proteins may provide leads towards a biomarker for non-invasive early detection of RHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carapetis JR, Beaton A, Cunningham MW, Guilherme L, Karthikeyan G, Mayosi BM, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim [Internet]. 2016 Jan 14;2:15084. Available from: https://doi.org/10.1038/nrdp.2015.84

  2. Marijon E, Mirabel M, Celermajer DS, Jouven X (2012) Rheumatic heart disease. Lancet [Internet] 379(9819):953–964. https://doi.org/10.1016/S0140-6736(11)61171-9

    Article  Google Scholar 

  3. Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine. Front Immunol [Internet]. 2013;4(October):1–6. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2013.00352/abstract

  4. Carapetis JR, Steer AC, Mulholland EK, Weber M (2005) The global burden of group A streptococcal diseases. Lancet Infect Dis 5(11):685–694

    PubMed  Google Scholar 

  5. Lee JL, Naguwa SM, Cheema GS, Gershwin ME (2009) Acute rheumatic fever and its consequences: a persistent threat to developing nations in the 21st century. Autoimmun Rev [Internet] 9(2):117–123. https://doi.org/10.1016/j.autrev.2009.04.002

    Article  Google Scholar 

  6. Carapetis JR (2015) The stark reality of rheumatic heart disease. Eur Heart J 36(18):1070–1073

    PubMed  Google Scholar 

  7. Guilherme L, Köhler KF, Pommerantzeff P, Spina G, Kalil J (2013) Rheumatic heart disease: key points on valve lesions development. J Clin Exp Cardiol S 3:2

    Google Scholar 

  8. Mukherjee S, Jagadeeshaprasad MG, Banerjee T, Ghosh SK, Biswas M, Dutta S, et al. Proteomic analysis of human plasma in chronic rheumatic mitral stenosis reveals proteins involved in the complement and coagulation cascade. Clin Proteomics [Internet]. 2014;11(1):35. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4193131&tool=pmcentrez&rendertype=abstract

  9. Zühlke LJ, Steer AC (2013) Estimates of the global burden of rheumatic heart disease. Glob Heart [Internet] 8(3):189–195. https://doi.org/10.1016/j.gheart.2013.08.008

    Article  Google Scholar 

  10. Sliwa K, Carrington M, Mayosi BM, Zigiriadis E, Mvungi R, Stewart S (2010) Incidence and characteristics of newly diagnosed rheumatic heart disease in urban African adults: insights from the heart of Soweto study. Eur Heart J 31(6):719–727

    PubMed  Google Scholar 

  11. Zühlke LJ, Engel ME, Watkins D, Mayosi BM (2015) Incidence, prevalence and outcome of rheumatic heart disease in South Africa: a systematic review of contemporary studies. Int J Cardiol [Internet]. 199(April 2014):375–383. https://doi.org/10.1016/j.ijcard.2015.06.145

    Article  PubMed  Google Scholar 

  12. Engel ME, Haileamlak A, Zühlke L, Lemmer CE, Nkepu S, van de Wall M, Daniel W, Shung King M, Mayosi BM (2015) Prevalence of rheumatic heart disease in 4720 asymptomatic scholars from South Africa and Ethiopia. Heart [Internet] 101(17):1389–1394. https://doi.org/10.1136/heartjnl-2015-307444

    Article  Google Scholar 

  13. Beaton A, Okello E, Lwabi P, Mondo C, McCarter R, Sable C (2012) Echocardiography screening for rheumatic heart disease in Ugandan schoolchildren. Circulation. 125(25):3127–3132

    PubMed  Google Scholar 

  14. Damasceno A, Mayosi BM, Sani M, Ogah OS, Mondo C, Ojji D, Dzudie A, Kouam CK, Suliman A, Schrueder N, Yonga G, Ba SA, Maru F, Alemayehu B, Edwards C, Davison BA, Cotter G, Sliwa K (2012) The causes, treatment, and outcome of acute heart failure in 1006 Africans from 9 countries: results of the sub-Saharan Africa survey of heart failure. Arch Intern Med 172(18):1386–1394

    PubMed  Google Scholar 

  15. Otto H, Saether SG, Banteyrga L, Haugen BO, Skjaerpe T (2011) High prevalence of subclinical rheumatic heart disease in pregnant women in a developing country: an echocardiographic study. Echocardiography [Internet] 28(10):1049–1053. https://doi.org/10.1111/j.1540-8175.2011.01520.x

    Article  Google Scholar 

  16. Zuhlke LJ, Beaton A, Engel ME, Hugo-Hamman CT, Karthikeyan G, Katzenellenbogen JM, et al. Group A Streptococcus, acute rheumatic fever and rheumatic heart disease: epidemiology and clinical considerations. Curr Treat Options Cardiovasc Med. 2017;19(2)

  17. Guzman-Cottrill JAU, Jaggi P, Shulman ST (2004) Acute rheumatic fever: clinical aspects and insights into pathogenesis and prevention. Clin Appl Immunol Rev 4(4):263–276

    Google Scholar 

  18. Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease--an evidence-based guideline. Nat Rev Cardiol [Internet]. 2012;9(5):297–309. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22371105

  19. Sika-paotonu D, Beaton A, Raghu A, Steer A, Carapetis J. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Prim [Internet]. 2016;15085. Available from: http://www.nature.com/articles/nrdp201585

  20. Cunningham MW (2000) Pathogenesis of group a streptococcal infections. Clin Microbiol Rev 13(3):470–511

    PubMed  PubMed Central  Google Scholar 

  21. Mccarthy KP, Ring L, Rana BS (2010) Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur J Echocardiogr 11:3–9

    Google Scholar 

  22. Lee JKT, Franzone A, Lanz J, Siontis GCM, Stortecky S, Gräni C, Roost E, Windecker S, Pilgrim T Early detection of subclinical myocardial damage in chronic aortic regurgitation and strategies for timely treatment of asymptomatic patients. Circulation [Internet] 2018;137(2):184–96. Available from: http://circ.ahajournals.org/lookup/doi/10.1161/CIRCULATIONAHA.117.029858

  23. Carabello BA (2005) Modern management of mitral stenosis. Circulation. 112(3):432–437

    PubMed  Google Scholar 

  24. Gewitz MH, Baltimore RS, Tani LY, Sable CA, Shulman ST, Carapetis J, Remenyi B, Taubert KA, Bolger AF, Beerman L, Mayosi BM, Beaton A, Pandian NG, Kaplan EL, American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young (2015) Revision of the Jones criteria for the diagnosis of acute rheumatic fever in the era of Doppler echocardiography a scientific statement from the American heart association. Circulation. 131(20):1806–1818

    PubMed  Google Scholar 

  25. Remenyi B, Elguindy A, Smith SC, Yacoub M, Holmes DR (2016) Valvular aspects of rheumatic heart disease. Lancet. 387(10025):1335–1346

    PubMed  Google Scholar 

  26. Ntusi NA, Piechnik SK, Francis JM, Ferreira VM, Rai AB, Matthews PM, et al. Subclinical myocardial inflammation and diffuse fibrosis are common in systemic sclerosis – a clinical study using myocardial T1-mapping and extracellular volume quantification. J Cardiovasc Magn Reson [Internet] 2014;16(21):1–12. Available from: http://jcmr-online.com/content/16/1/21

  27. Moosa S, Ntusi NAB, Town C, Africa S, Africa S, Hospital GS et al (2016) Role of cardiovascular magnetic resonance in the evaluation of cardiomyopathy. SA J Radiol:1–10

  28. Butcovan D, Arsenescu C, Georgescu GI, Borza C, Tinica G, Sandica E, et al. Morphological evaluation of the surgically removed aortic and mitral valves. Rev Med Chir Soc Med Nat Iasi. 2004;108(Romania PT-Journal Article LG-English OVID MEDLINE UP 20081216):66–73

  29. Boudoulas KD, Borer JS, Boudoulas H. Etiology of valvular heart disease in the 21st century. Cardiology [Internet] 2013;126(3):139–52. Available from: http://www.karger.com?doi=10.1159/000354221

  30. Cunningham MW (2012) Streptococcus and rheumatic fever. Curr Opin Rheumatol 24(4):408–416

    PubMed  PubMed Central  Google Scholar 

  31. McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science 319: 5868:1405-1408. Available from: https://doi.org/10.1126/science.1154470

  32. Guilherme L, Kalil J (2010) Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol 30(1):17–23

    PubMed  Google Scholar 

  33. Sridhar S, CPharm DH, Gee TW, Hua J, Butcher J. Monocytes and macrophages in heart valves: uninvited guests or critical performers? Autex Res J [Internet]. 2009;9(3):74–81. Available from: https://doi.org/10.1016/j.cobme.2018.02.003, 2018

  34. Salhiyyah K, Yacoub MH, Chester AH (2011) Cellular mechanisms in mitral valve disease. J Cardiovasc Transl Res 4(6):702–709

    PubMed  Google Scholar 

  35. Dweck MR, Boon NA, Newby DE (2012) Calcific aortic stenosis: a disease of the valve and the myocardium. J Am Coll Cardiol [Internet]. 60(19):1854–1863. https://doi.org/10.1016/j.jacc.2012.02.093

    Article  PubMed  Google Scholar 

  36. Zhang W, Mondo C, Okello E, Musoke C, Kakande B, Nyakoojo W, Kayima J, Freers J Presenting features of newly diagnosed rheumatic heart disease patients in Mulago Hospital: a pilot study. Cardiovasc J Afr [Internet] 2013;24(2):28–33. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3734881&tool=pmcentrez&rendertype=abstract

  37. de CO M, Santos KS, Ferreira FM, Teixeira PC, PMA P, CMA B et al (2014) Distinct mitral valve proteomic profiles in rheumatic heart disease and Myxomatous degeneration. Clin Med Insights Cardiol 8:79–86

    Google Scholar 

  38. de CO M, Demarchi L, Ferreira FM, PMA P, Brandao C, Sampaio RO et al (2017) Rheumatic heart disease and myxomatous degeneration: differences and similarities of valve damage resulting from autoimmune reactions and matrix disorganization. PLoS One 12(1):1–12

    Google Scholar 

  39. Fae KC, Diefenbach da Silva D, AMB B, Tanaka AC, PMA P, Kiss MH et al (2008) PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun 31(2):136–141

    PubMed  Google Scholar 

  40. Saikia UN, Kumar RM, Pandian VKGRP, Gupta S, Dhaliwal RS, Talwar KK (2012) Adhesion molecule expression and ventricular remodeling in chronic rheumatic heart disease: a cause or effect in the disease progression - a pilot study. Cardiovasc Pathol [Internet]. 21(2):83–88. https://doi.org/10.1016/j.carpath.2011.01.005

    Article  PubMed  Google Scholar 

  41. Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis:549–574

  42. Kehat I, Molkentin J (2010) Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 122:2727–2735

    PubMed  Google Scholar 

  43. Solaro RJ (2010) Sarcomere control mechanisms and the dynamics of the cardiac cycle. J Biomed Biotechnol 2010:1–8

    Google Scholar 

  44. Gaasch WH, Meyer TE. Left ventricular response to mitral regurgitation implications for management. Vol. 118, Circulation. 2008. p. 2298–303

  45. Enriquez-sarano M, Basmadjian A, Rossi A, Bailey KR, Seward JB, Tajik AJ (1999) Progression of mitral regurgitation a prospective Doppler echocardiographic study. J Am Coll Cardiol [Internet] 34(4):1137–1144. https://doi.org/10.1016/S0735-1097(99)00313-7

    Article  Google Scholar 

  46. Maganti K, Rigolin VH, Enriquz S, Bonow RO. Valvular heart disease: diagnosis and management. Mayo Clin Proc @BULLET May [Internet] 2010;85(5):483–500. Available from: www.mayoclinicproceedings.com

  47. Banerjee T, Mukherjee S, Ghosh S, Biswas M, Dutta S, Pattari S, et al. Clinical significance of markers of collagen metabolism in rheumatic mitral valve disease. PLoS One. 2014;9(3)

  48. Banerjee T, Mukherjee S, Biswas M, Dutta S, Chatterjee S, Ghosh S, Pattari S, Nanda NC, Bandyopadhyay A Circulating carboxy-terminal propeptide of type I procollagen is increased in rheumatic heart disease. Int J Cardiol [Internet] 2012;156(1):117–9. Available from: https://doi.org/10.1016/j.ijcard.2012.01.026

  49. Aoki A, Ashizawa T, Ebata A, Nasu Y, Fujii T (2014) Group A Streptococcus pharyngitis outbreak among university students in a judo club. J Infect Chemother [Internet] 20(3):190–193. https://doi.org/10.1016/j.jiac.2013.10.004

    Article  Google Scholar 

  50. Kaplan EL (2005) Pathogenesis of acute rheumatic fever and rheumatic heart disease: evasive after half a century of clinical, epidemiological, and laboratory investigation. Heart. 91(1):3–4

    PubMed  PubMed Central  Google Scholar 

  51. Guilherme L, Kalil J, Cunningham MM (2006) Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 39(1):31–39

    PubMed  Google Scholar 

  52. Guilherme L, Kohler K, Kalil J (2011) Rheumatic heart disease: mediation by complex immune events. Adv Clin Chem 53(11):31–50

    PubMed  Google Scholar 

  53. Guilherme L, Weidebach W, Kiss M, Snitcowsky R, Kalil J (1991) Association of human leukocyte class II antigens with rheumatic fever or rheumatic heart disease in a Brazilian population. Circulation. 83(6):1995–1998

    PubMed  Google Scholar 

  54. Gomaa MH, Ali SS, Fattouh AM, Hamza HS (1624) MBL2 gene polymorphism rs1800450 and rheumatic fever with and without rheumatic heart disease: an Egyptian pilot study. Paediatr Rheumatol 2018:1–7

    Google Scholar 

  55. Schafranski MD, Stier A, Nisihara R, Messias-Reason IJT (2004) Significantly increased levels of mannose-binding lectin (MBL) in rheumatic heart disease: a beneficial role for MBL deficiency. Clin Exp Immunol 138(3):521–525

    PubMed  PubMed Central  Google Scholar 

  56. Ramasawmy R, Spina GS, Fae KC, Pereira AC, Nisihara R, Reason IJM et al (2008) Association of mannose-binding lectin gene polymorphism but not of mannose-binding serine protease 2 with chronic severe aortic regurgitation of rheumatic etiology. Clin Vaccine Immunol 15(6):932–936

    PubMed  PubMed Central  Google Scholar 

  57. dos SJS C, ABW B, Beltrame MH, Nisihara RM, Schafranski MD, de Messias-Reason IJ (2014) Association of MASP2 polymorphisms and protein levels with rheumatic fever and rheumatic heart disease. Hum Immunol [Internet] 75(12):1197–1202. https://doi.org/10.1016/j.humimm.2014.10.003

    Article  Google Scholar 

  58. Ellis NMJ, Li Y, Hildebrand W, Fischetti VA, Cunningham MW. T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease. J Immunol [Internet] 2005;175(8):5448–56. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.175.8.5448

  59. Tandon R, Sharma M, Chandrashekhar Y, Kotb M, Yacoub MH, Narula J. Revisiting the pathogenesis of rheumatic fever and carditis. Nat Rev Cardiol. 2013;10(3)

  60. Dinkla K, Rohde M, Jansen WTM, Carapetis JR, Chhatwal GS, Talay SR (2003) Streptococcus pyogenes recruits collagen via surface-bound fibronectin: a novel colonization and immune evasion mechanism. Mol Microbiol 47(3):861–869

    PubMed  Google Scholar 

  61. Dinkla K, Talay SR, Mörgelin M, Graham RMA, Rohde M, Nitsche-Schmitz DP et al (2009) Crucial role of the CB3-region of collagen IV in PARF-induced acute rheumatic fever. PLoS One 4(3):1–8

    Google Scholar 

  62. Terao Y. The virulence factors and pathogenic mechanisms of Streptococcus pyogenes. J Oral Biosci [Internet] 2012;54(2):96–100. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1349007912000497

  63. Freedman BR, Bade ND, Riggin CN, Zhang S, Haines PG, Ong KL, Janmey PA (2015) The ( dys ) functional extracellular matrix. Biochim Biophys Acta [Internet] 1853(11):3153–3164. https://doi.org/10.1016/j.bbamcr.2015.04.015

    Article  Google Scholar 

  64. Guilherme L, Cury P, Demarchi LMF, Lopez AP, Oshiro SE, Aliotti S, et al. Rheumatic heart disease proinflammatory cytokines play a role in the progression and 2004;165(5):1583–91

  65. Guilherme L, Faé KC, Oshiro SE, Tanaka AC (2005) Rheumatic fever how S. pyogenes–primed peripheral. T cells 140:132–140

    Google Scholar 

  66. Roberts S, Kosanke S, Dunn ST, Jankelow D, Duran CMG, Cunningham MW. Pathogenic mechanisms in rheumatic carditis: focus on valvular endothelium. J Infect Dis [Internet] 2001;183(3):507–11. http://jid.oxfordjournals.org/content/183/3/507.abstract

  67. Guilherme L, Köhler KF, Kalil J. Rheumatic heart disease: genes, inflammation and autoimmunity. Rheumatol Curr Res [Internet] 2012;S4(01):1–5. Available from: https://www.omicsonline.org/rheumatic-heart-disease-genes-inflammation-and-autoimmunity-2161-1149.S4-001.php?aid=6690

  68. Fae K, Kalil J, Toubert A, Guilherme L (2004) Heart infiltrating T cell clones from a rheumatic heart disease patient display a common TCR usage and a degenerate antigen recognition pattern. Mol Immunol 40(14–15):1129–1135

    PubMed  Google Scholar 

  69. Guilherme L, Kalil J (2007) Rheumatic fever: from innate to acquired immune response. Ann N Y Acad Sci 1107:426–433

    PubMed  Google Scholar 

  70. Bas HD, Baser K, Yaniz E, Bolayir HA, Yaman B, Unlu S et al (2014) A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J Investig Med 62(January):1–6

    Google Scholar 

  71. Mukhopadhyay S, Varma S, Kumar HNM, Yusaf J, Goyal M, Mehta V et al (2016) Circulating level of regulatory T cells in rheumatic heart disease: an observational study. Indian Heart J 8:2–8

    Google Scholar 

  72. Bilik MZ, Kaplan I, Polat N, Akil MA, Akyuz A, Acet H et al (2016) Serum levels of IL-17 and IL-23 in patients with rheumatic mitral stenosis. Medicine (Baltimore) 95(18):1–5

    Google Scholar 

  73. Polat N, Yildiz A, Yuksel M, Bilik MZ, Aydin M, Acet H, et al. Association of neutrophil–lymphocyte ratio with the presence and severity of rheumatic mitral valve stenosis. Clin Appl Thromb. 2014;

  74. Li W, Zeng Z, Gui C, Zheng H, Huang W, Wei H, et al. Proteomic analysis of mitral valve in Lewis rat with acute rheumatic heart disease. Int J Clin Exp Pathol [Internet]. 2015;8(11):14151–60. Available from: internal-pdf://245.162.168.204/Li-2015-Proteomic analysis of mitral valve in.pdf%0Ahttp://www.ncbi.nlm.nih.gov/pubmed/26823728http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4713514/pdf/ijcep0008-14151.pdf

  75. Mayr M, Zhang J, Greene AS, Gutterman D, Perloff J, Ping P (2006) Proteomics-based development of biomarkers in cardiovascular disease: mechanistic, clinical, and therapeutic insights. Mol Cell Proteomics 5(10):1853–1864

    PubMed  Google Scholar 

  76. Challa AA, Stefanovic B (2011) A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol [Internet] 31(18):3773–3789. https://doi.org/10.1128/MCB.05263-11

    Article  Google Scholar 

  77. Bella J. Collagen structure: new tricks from a very old dog. 2016;4:1001–25

  78. Seiffert D. Constitutive and regulated expression of vitronectin. Histol hostopathology. 1991;12(1 997):787–97

  79. Ringer P, Colo G, Fässler R, Grashoff C. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol [Internet]. 2017;64:6–16. Available from: https://doi.org/10.1016/j.matbio.2017.03.004, 2017

  80. Lu Q, Sun Y, Duan Y, Li B, Xia J, Yu S et al (2018) Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease. BMC Cardiovasc Disord 18(53):1–12

    Google Scholar 

  81. Jiang X, Zhang J, Huang Y (2015) Tetraspanins in cell migration. Cell Adhes Migr 9(July):406–415

    Google Scholar 

  82. Powner D, Kopp PM, Monkley SJ, Critchley DR, Berditchevski F. Tetraspanin CD9 in cell migration. Biochem Soc Trans [Internet] 2011;39(2):563–7. Available from: http://biochemsoctrans.org/lookup/doi/10.1042/BST0390563

  83. Wieten L, Van Der Zee R, Spiering R, Wagenaar-Hilbers J, Van Kooten P, Broere F et al (2010) A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. Arthritis Rheum 62(4):1026–1035

    PubMed  Google Scholar 

  84. Zheng D, Xu L, Sun L, Feng Q, Wang Z, Shao G et al (2014) Comparison of the ventricle muscle proteome between patients with rheumatic heart disease and controls with mitral valve prolapse: HSP 60 may be a specific protein in RHD. Biomed Res Int 2014:1–9

    Google Scholar 

  85. Tontsch D, Pankuweit S, Marburg P. Autoantibodies in the sera of patients with rheumatic heart disease: characterization of myocardial antigens by two-dimensional immunoblotting and N-terminal sequence analysis 2000;270–4

  86. Yuan C, Solaro RJ. Myofilament proteins: from cardiac disorders to proteomic changes. Vol. 2, Proteomics - Clinical Applications. 2008. p. 788–99

  87. Gupta S, Knowlton AA. HSP60, Bax, apoptosis and the heart. Vol. 9, Journal of Cellular and Molecular Medicine. 2005. p. 51–8

  88. Kumar RK, Tandon R (2013) Rheumatic fever & rheumatic heart disease: the last 50 years. Indian J Med Res 137(4):643–658

    PubMed  PubMed Central  Google Scholar 

  89. Tian J, Guo X, Liu XM, Liu L, Weng QF, Dong SJ, Knowlton AA, Yuan WJ, Lin L (2013) Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc Res 98(3):391–401

    PubMed  Google Scholar 

  90. Wang Y, Chen L, Hagiwara N, Knowlton AA (2010) Regulation of heat shock protein 60 and 72 expression in the failing heart. J Mol Cell Cardiol [Internet] 48(2):360–366. https://doi.org/10.1016/j.yjmcc.2009.11.009

    Article  Google Scholar 

  91. Monreal G, Nicholson LM, Han B, Joshi MS, Phillips AB, Wold LE, Bauer JA, Gerhardt MA (2008) Cytoskeletal remodeling of desmin is a more accurate measure of cardiac dysfunction than fibrosis or myocyte hypertrophy. Life Sci [Internet] 83(23–24):786–794. https://doi.org/10.1016/j.lfs.2008.09.026

    Article  Google Scholar 

  92. Agnetti G, Halperin VL, Kirk JA, Chakir K, Guo Y, Lund L, Nicolini F, Gherli T, Guarnieri C, Caldarera CM, Tomaselli GF, Kass DA, van Eyk JE (2014) Desmin modifications associate with amyloid-like oligomers deposition in heart failure. Cardiovasc Res 102(1):24–34

    PubMed  PubMed Central  Google Scholar 

  93. Rainer PP, Dong P, Sorge M, Fert-bober J, Holewinski RJ, Wang Y et al (2018) Desmin phosphorylation triggers preamyloid oligomers formation and myocyte dysfunction in acquired heart failure. Circ Res 122(10):75–83

    Google Scholar 

  94. Gunning P, Weinberger R, Jeffery P. Actin and tropomyosin isoforms in morphogenesis. 1997;311–315

  95. Kyriakides TR, Bornstein P (2003) Matricellular proteins as modulators of wound healing and the foreign body response. Thromb Haemost 90(6):986–992

    PubMed  Google Scholar 

  96. Gao G, Xuan C, Yang Q, Liu X, Liu Z, He G. Identification of altered plasma proteins by proteomic study in valvular heart diseases and the potential clinical significance. 2013;8(8)

  97. de Messias IJ, Cavalcanti E, Radominski SC (1995) Increased frequency of the C4A*6 rare allele in rheumatic heart disease. Scand J Rheumatol 24(3):164–168

    PubMed  Google Scholar 

  98. Wu X, Yue Q, Jia W, Zhang J, Ouyang H, Xin D, et al. A novel approach for characterizing variations in serum peptides in rheumatic heart disease. 2017;(March):365–72

  99. Schwochau GB, Nath KA, Rosenberg ME (1998) Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Kidney Int 53(6):1647–1653

    PubMed  Google Scholar 

  100. Zhang H, Kim JK, Edwards CA, Xu Z, Taichman R, Wang CY (2005) Clusterin inhibits apoptosis by interacting with activated Bax. Nat Cell Biol 7(9):909–915

    PubMed  Google Scholar 

  101. Wen Y, Zeng Z, Gui C, Li L, Li W (2015) Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc Pathol [Internet] 24(6):382–387. https://doi.org/10.1016/j.carpath.2015.07.006

    Article  Google Scholar 

  102. Alyan O, Metin F, Kacmaz F, Ozdemir O, Maden O, Topaloglu S, Demir AD, Karahan Z, Karadede A, Ilkay E (2009) High levels of high sensitivity C-reactive protein predict the progression of chronic rheumatic mitral stenosis. J ournal Thrombolysis 28:63–69

    Google Scholar 

  103. Stastny J, Fosslien E, Robertson AL (1986) Human aortic intima protein composition during initial stages of atherogenesis. Atherosclerosis. 60(2):131–139

    PubMed  Google Scholar 

  104. Putri R, Suwarniaty R, Fitri L, Nugroho S, Rahman M. Prominently increased of mannose binding lectin (MBL) and myeloperoxidase (MPO) levels in severe valve regurgitation and heart failure of rheumatic heart disease. J Trop Life Sci [Internet] 2017;7(2):108–14. Available from: http://jtrolis.ub.ac.id/index.php/jtrolis/article/view/615

  105. Cagli K, Basar N, Cagli K, Armutcu F, Aylak F, Yalcinkaya A, Erden G, Kadirogullari E (2010) Association of serum fetuin-A with valvular calcium concentration in rheumatic mitral valve disease. J Heart Valve Dis 19(5):636–643

    PubMed  Google Scholar 

  106. Lopez B, Gonzalez A, Ravassa S, Beaumont J, Moreno MU, San Jose G et al (2015) Circulating biomarkers of myocardial fibrosis: the need for a reappraisal. J Am Coll Cardiol 65(22):2449–2456

    PubMed  Google Scholar 

  107. Sarkar S, Rastogi M, Chaudhary P, Kumar R, Arora P, Sagar V et al (2017) Association of rheumatic fever & rheumatic heart disease with plausible early & late-stage disease markers. Indian J Med Res 145(June):758–766

    PubMed  PubMed Central  Google Scholar 

  108. Meel R, Nethononda R, Libhaber E, Dix-Peek T, Peters F, Essop R (2018) Assessment of myocardial fibrosis by late gadolinium enhancement imaging and biomarkers of collagen metabolism in chronic rheumatic mitral regurgitation. Cardiovasc J Afr 29(October 2014):1–5

    Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Ivana Parker for useful discussion.

Funding

ENL is funded by the National Research Foundation (NRF) of South Africa (DST-NRF) free standing innovation postdoctoral fellowship and an early career development fellowship from the Carnegie Corporation of New York to the University of Cape Town. SS thanks the NRF Blue Skies for support. JMB thanks the NRF for a South African Research Chair. NNAB gratefully acknowledges support from the NRF, SA-MRC and the Ernst and Lily Hausmann Trust.

Author information

Authors and Affiliations

Authors

Contributions

ENL and NNAB contributed to conceptualisation, ENL and NNAB wrote the first draft, NNAB, JMB and SS supervised the work and all the authors contributed to review and editing and approved the final manuscript.

Corresponding author

Correspondence to Evelyn N. Lumngwena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lumngwena, E.N., Skatulla, S., Blackburn, J.M. et al. Mechanistic implications of altered protein expression in rheumatic heart disease. Heart Fail Rev 27, 357–368 (2022). https://doi.org/10.1007/s10741-020-09993-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09993-1

Keywords

Navigation