Skip to main content
Log in

Physiological consequences of the TRα1 aporeceptor state

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Many patients have been characterized harboring a mutation in thyroid hormone receptor (TR) β. Surprisingly none has yet been identified carrying a mutation in TRα1. To facilitate the identification of such patients, several animal models with a mutant TRα1 have been generated. While some phenotypic characteristics, such as an adult euthyroidism, are similar in the mutant mice, other aspects such as metabolism are quite variable. This review summarizes the most important consequences of a mutation in TRα1 in mice focusing on the TRα1-R384C mutation, and projects the insights from the animal models to a putative phenotype of patients with a mutated TRα1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    CAS  PubMed  Google Scholar 

  2. de Escobar GM, Obregon MJ, del Rey FE (2007) Iodine deficiency and brain development in the first half of pregnancy. Public Health Nutr 10:1554–1570. doi:10.1017/S1368980007360928

    PubMed  Google Scholar 

  3. Porterfield SP, Hendrich CE (1993) The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr Rev 14:94–106. doi:10.1210/er.14.1.94

    CAS  PubMed  Google Scholar 

  4. Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract 3:249–259

    Article  CAS  Google Scholar 

  5. Yen PM, Ando S, Feng X et al (2006) Thyroid hormone action at the cellular, genomic and target gene levels. Mol Cell Endocrinol 246:121–127. doi:10.1016/j.mce.2005.11.030

    Article  CAS  PubMed  Google Scholar 

  6. O’Shea PJ, Williams GR (2002) Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol 175:553–570. doi:10.1677/joe.0.1750553

    Article  PubMed  Google Scholar 

  7. Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466. doi:10.1146/annurev.physiol.62.1.439

    Article  CAS  PubMed  Google Scholar 

  8. Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90. doi:10.1038/ng0598-87

    Article  CAS  PubMed  Google Scholar 

  9. Flamant F, Poguet AL, Plateroti M et al (2002) Congenital hypothyroid Pax8(-/-) mutant mice can be rescued by inactivating the TRalpha gene. Mol Endocrinol 16:24–32

    Article  CAS  PubMed  Google Scholar 

  10. Mittag J, Friedrichsen S, Heuer H et al (2005) Athyroid Pax8-/- mice cannot be rescued by the inactivation of thyroid hormone receptor alpha1. Endocrinology 146:3179–3184. doi:10.1210/en.2005-0114

    Article  CAS  PubMed  Google Scholar 

  11. Gothe S, Wang Z, Ng L et al (1999) Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes Dev 13:1329–1341. doi:10.1101/gad.13.10.1329

    Article  CAS  PubMed  Google Scholar 

  12. Refetoff S, DeWind LT, DeGroot LJ (1967) Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab 27:279–294

    Article  CAS  PubMed  Google Scholar 

  13. Refetoff S, Weiss RE, Usala SJ (1993) The syndromes of resistance to thyroid hormone. Endocr Rev 14:348–399. doi:10.1210/er.14.3.348

    CAS  PubMed  Google Scholar 

  14. Bassett JH, Nordstrom K, Boyde A et al (2007) Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 21:1893–1904

    Article  CAS  PubMed  Google Scholar 

  15. Esaki T, Suzuki H, Cook M et al (2003) Functional activation of cerebral metabolism in mice with mutated thyroid hormone nuclear receptors. Endocrinology 144:4117–4122. doi:10.1210/en.2003-0414

    Article  CAS  PubMed  Google Scholar 

  16. Esaki T, Suzuki H, Cook M et al (2004) Cardiac glucose utilization in mice with mutated alpha- and beta-thyroid hormone receptors. Am J Physiol 287:E1149–E1153

    CAS  Google Scholar 

  17. Itoh Y, Esaki T, Kaneshige M et al (2001) Brain glucose utilization in mice with a targeted mutation in the thyroid hormone alpha or beta receptor gene. Proc Natl Acad Sci USA 98:9913–9918. doi:10.1073/pnas.171319498

    Article  CAS  PubMed  Google Scholar 

  18. Kaneshige M, Suzuki H, Kaneshige K et al (2001) A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 98:15095–15100. doi:10.1073/pnas.261565798

    Article  CAS  PubMed  Google Scholar 

  19. Liu YY, Heymann RS, Moatamed F et al (2007) A mutant thyroid hormone receptor alpha antagonizes peroxisome proliferator-activated receptor alpha signaling in vivo and impairs fatty acid oxidation. Endocrinology 148:1206–1217. doi:10.1210/en.2006-0836

    Article  CAS  PubMed  Google Scholar 

  20. Liu YY, Schultz JJ, Brent GA (2003) A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice. J Biol Chem 278:38913–38920. doi:10.1074/jbc.M306120200

    Article  CAS  PubMed  Google Scholar 

  21. Liu YY, Tachiki KH, Brent GA (2002) A targeted thyroid hormone receptor alpha gene dominant-negative mutation (P398H) selectively impairs gene expression in differentiated embryonic stem cells. Endocrinology 143:2664–2672. doi:10.1210/en.143.7.2664

    Article  CAS  PubMed  Google Scholar 

  22. O’Shea PJ, Bassett JH, Sriskantharajah S et al (2005) Contrasting skeletal phenotypes in mice with an identical mutation targeted to thyroid hormone receptor alpha1 or beta. Mol Endocrinol 19:3045–3059

    Article  PubMed  CAS  Google Scholar 

  23. Quignodon L, Vincent S, Winter H et al (2007) A point mutation in the activation function 2 domain of thyroid hormone receptor alpha1 expressed after CRE-mediated recombination partially recapitulates hypothyroidism. Mol Endocrinol 21:2350–2360

    Article  CAS  PubMed  Google Scholar 

  24. Sjogren M, Alkemade A, Mittag J et al (2007) Hypermetabolism in mice caused by the central action of an unliganded thyroid hormone receptor alpha1. EMBO J 26:4535–4545. doi:10.1038/sj.emboj.7601882

    Article  PubMed  CAS  Google Scholar 

  25. Tavi P, Sjogren M, Lunde PK et al (2005) Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha1. J Mol Cell Cardiol 38:655–663. doi:10.1016/j.yjmcc.2005.02.008

    Article  CAS  PubMed  Google Scholar 

  26. Tinnikov A, Nordstrom K, Thoren P et al (2002) Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J 21:5079–5087. doi:10.1093/emboj/cdf523

    Article  CAS  PubMed  Google Scholar 

  27. Venero C, Guadano-Ferraz A, Herrero AI et al (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19:2152–2163. doi:10.1101/gad.346105

    Article  CAS  PubMed  Google Scholar 

  28. Wallis K, Sjogren M, van Hogerlinden M et al (2008) Locomotor deficiencies and aberrant development of subtype-specific GABAergic interneurons caused by an unliganded thyroid hormone receptor alpha1. J Neurosci 28:1904–1915. doi:10.1523/JNEUROSCI.5163-07.2008

    Article  CAS  PubMed  Google Scholar 

  29. Ying H, Araki O, Furuya F et al (2007) Impaired adipogenesis caused by a mutated thyroid hormone alpha1 receptor. Mol Cell Biol 27:2359–2371. doi:10.1128/MCB.02189-06

    Article  CAS  PubMed  Google Scholar 

  30. Portman MA (2008) Thyroid hormone regulation of heart metabolism. Thyroid 18:217–225. doi:10.1089/thy.2007.0257

    Article  CAS  PubMed  Google Scholar 

  31. Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509. doi:10.1056/NEJM200102153440707

    Article  CAS  PubMed  Google Scholar 

  32. Schwartz HL, Strait KA, Ling NC et al (1992) Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 267:11794–11799

    CAS  PubMed  Google Scholar 

  33. Delange F (2000) The role of iodine in brain development. Proc Nutr Soc 59:75–79

    CAS  PubMed  Google Scholar 

  34. DeLong GR, Stanbury JB, Fierro-Benitez R (1985) Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol 27:317–324

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the Swedish Science Council, the Swedish Cancer Society, the EMBO, and the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Vennström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittag, J., Wallis, K. & Vennström, B. Physiological consequences of the TRα1 aporeceptor state. Heart Fail Rev 15, 111–115 (2010). https://doi.org/10.1007/s10741-008-9119-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-008-9119-5

Keywords

Navigation