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Abstract

We describe an effective algorithm for exploring the 4-OPT neighborhood for the
Traveling Salesman Problem. 4-OPT moves change a tour into another by replacing
four of its edges. The best move can be found by a ©(n*) algorithm by complete
enumeration, but a ©(n>) dynamic programming algorithm exists in the literature.
Furthermore a ©(n?) algorithm also exists for a particular subset of symmetric 4-
OPT moves. In this work we describe a new procedure which behaves, on average,
slightly worse than a quadratic algorithm over all moves (estimated at O (n%)) and
like a quadratic algorithm on the symmetric moves. Computational results are reported
which show the effectiveness of our strategy compared to other algorithms for finding
the best 4-OPT move, and discuss the strength of the 4-OPT neighborhood compared
to 2- and 3-OPT.

Keywords Traveling salesman problem - 4-OPT - Local search

1 Introduction

The Traveling Salesman Problem (TSP) consists in finding the shortest Hamiltonian
cycle in a complete graph G = (V, E) of n nodes, weighted on the edges (Applegate
etal. 2007). In this paper we consider its symmetric version, i.e., the graph is undirected
and the distance between two nodes is the same, irrespective of the direction in which
an edge is traversed. Let us denote by c(i, j) = c¢(j, i) the distance between any two
nodes i and j. Each solution of the problem, called a tour, is identified by a permutation
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(v1, ..., vy) of the vertices. We call {v;, vi+1}, fori =1,...,n — 1, and {v,, v} the
edges of the tour. The length of a tour T, denoted by ¢(T), is the sum of the lengths
of the edges of the tour. More generally, for any set F of edges, we denote by c(F)
the value ), 5 c(e).

A large number of applications over the years have shown that local search is often
a very effective way to tackle hard combinatorial optimization problems. The idea
of local search has been around for a very long time and it is difficult to attribute it
to any particular author. Examples of its use are reported in standard textbooks on
combinatorial optimization, such as Papadimitriou and Steiglitz (1982), or devoted
surveys, such as Aarts and Lenstra (1997). Suppose we seek to minimize an objective
function f(x) over a set X of feasible solutions. Given a map N : X — 2% which
associates to every solution x € X aset N (x) called its neighborhood, the basic idea is
the following: start at any solution xY, set s := xY, and look for a solution x! € N (s)
better than s. If one is found, replace s with x! and iterate the same search, looking
for x2. Continue this way until a local optimum is reached, i.e., a solution s such that
f(s) = min{ f (x)|x € N(s)}. Replacing x’ with x'*! is called performing a move of
the search, and N (xi) is the set of all solutions reachable with a move from x‘. The
total number of moves performed to get from x° to the final local optimum is called
the length of the convergence. If x is a solution reachable with a move from x?, and
f(x) < f(x"), we say that the move is an improving move and x is an improving
solution. When searching in the neighborhood of x we can adopt two main strategies,
namely first-improvement and best-improvement. In the first-improvement strategy, we
set x! 1 to be the first solution that we find in N (x?) such that f(x't1) < f(x?). In
best-improvement, we set x' ! := argmin Ny S (x). Generally speaking, an iteration
of first-improvement is easier (faster) than one of best-improvement, but the difference
in the time requested by the two types of moves tends to become smaller and smaller
the closer one gets to the local optimum. Furthermore, the length of the convergence
with first-improvement is generally larger than with best-improvement, so that the
overall time required for convergence in the two cases is comparable.

Over time, many local search variants have been proposed, to make it more effective
by avoiding to get stuck in local optima. Namely, some times a non-improving move
must be performed to keep the search going. Examples of these techniques are tabu
search (Glover and Laguna 1997) and simulated annealing (Kirkpatrick et al. 1983).

1.1 The k-OPT neighborhood for the TSP

Let k > 2 be an integer constant. A k-OPT move on a tour 7' consists in first removing
a set R of k edges and then inserting a set I of k edges so as (T \ R) U [ is still a
tour. A tour locally optimal for the k-OPT neighborhood will be called k-optimal. A
k-OPT move is improving if c((T \ R) UI) < ¢(T), i.e.,c(I) < c(R). An improving
move is best-improving if c(R) — c¢(I) is the maximum over all possible choices of
R, I. For k > 3 we include in the definition the case that R N I # (. This implies that
the k’-OPT moves are a subset of the k-OPT moves for each k' < k.

The first use of k-OPT dates back to 1958 with the introduction of 2-OPT in Croes
(1958). In 1965 Lin (1965) described the 3-OPT neighborhood, and experimented
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with a complete enumeration algorithm, of complexity © (rn?), which finds the best
3-OPT move by trying all possibilities. He also introduced a heuristic step fixing some
edges of the solution (at risk of being wrong) with the goal of increasing the size of
the instances that could be tackled (which, at the time, were fairly small, like a few
dozen nodes). Later in 1968, Steiglitz and Weiner (1968) described an improvement
over Lin’s method which made it 2 or 3 times faster (although still cubic).

The exploration of the k-OPT neighborhood, in search of its best move, might be
considered “fast” from a theoretical point of view, since the most obvious algorithm
(complete enumeration) is © (n%), i.e., polynomial for fixed k. However, despite being
polynomial, the complete enumeration algorithm cannot be used in practice already
for k = 3 (if n is large enough, like 3, 000 or more). For instance, for a given tour of
n = 6, 000 nodes, the time required to evaluate all 3-OPT moves, on a reasonably fast
desktop computer as of 2023, is more than one hour, let alone converging to a local
optimum.

In a previous work (Lancia and Dalpasso 2020), we have described some algorith-
mic ideas to speed-up the exploration of the 3-OPT neighborhood in order to lower
its complexity and make it practical. The result is a procedure which appears to take
a subcubic time to find the best 3-OPT move. Similar ideas were successfully applied
to the problem of finding the largest triangle in an edge-weighted undirected graph
(Lancia and Vidoni 2020), where it is in fact mathematically proved that the proce-
dure finds the optimal solution by looking, on average, only at O (n?) triangles out of
emd).

In the current paper, we are going to describe a similar strategy for the 4-OPT
neighborhood, in order to make it practical for graphs on which it could have never
been applied before. Our goal is to beat the best approaches in the literature, which
already provided faster solutions to this problem than the standard ® (n*) enumeration
algorithm. In particular, de Berg et al. (2020) have described a dynamic programming
procedure to find the best 4-OPT move in time © (n>). While this is already a huge
improvement over the ® (n*) complete enumeration, still the cubic complexity is not
practical for large values of n. In another paper, Glover (1996) has described a On?)
algorithm for finding the best 4-OPT move, but valid only for three particular types
of 4-OPT moves (notice that, as we will describe later on, there are 25 possible types
of 4-OPT moves overall, determined by how we reattach the tour segments once four
edges have been removed).

In the computational results section we will show how our procedure consistently
behaves better than the cubic dynamic programming procedure, on all possible moves.
Furthermore, we obtain a better performance than Glover’s procedure, on the only
three types of 4-OPT moves on which the latter can be applied, for graphs of up to
1,000 nodes. For larger graphs, we show how to combine our approach with Glover’s
algorithm to obtain an improvement also in this case.

Notice that our paper is focused on making the optimization of the 4-OPT neigh-
borhood practical, but it does not try to assess the performance of such neighborhood
in finding good-quality tours. Indeed, the TSP problem is today very effectively
solved, even to optimality, by using sophisticated mathematical programming based
approaches, such as Concorde (Applegate et al. 2007). No matter how ingenious,
heuristics can hardly be competitive with these approaches when the latter are given
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enough running time. It is clear that simple heuristics, such as 3-OPT and 4-OPT local
search, are even less effective than some more involved heuristics such as, e.g., Lin
and Kernighan’s procedure (Lin and Kernighan 1973). For a very good chapter com-
paring various heuristics for the TSP, see Johnson and The traveling salesman problem
(1997). At any rate, there are reasons which justify the utility of a fast procedure for
finding the best 4-OPT move also with respect to existing heuristics. For instance, it
could provide a test of 4-optimality for any solution found by a solver. Indeed, current
heuristic solvers from the literature only look for 4-OPT moves in a greedy, limited,
way, and are not guaranteed to end at a 4-optimal solution. By making sure that if an
improving 4-OPT move exists we do not miss it, we can unblock from the impasse a
heuristic which could not find a way to improve its current solution (this is the case,
e.g., of a particular step of Lin and Kernighan’s procedure that we will discuss at the
end of Sect. 5.3). Another good reason for using 4-OPT in place, e.g., of simple heuris-
tics which limit their search to 2- or 3-optimal solutions, is that there are 4-optimal
solutions which have a much better objective value, and could be obtained, given the
effectiveness of our 4-OPT procedure, in the same amount of time (see Sect.5.4 in
which we have run a series of tests to compare the strength of the 4-OPT neighbor-
hood to that of 3-OPT and 2-OPT). As a final advantage of looking for the best 4-OPT
move by using our approach, we point out that the method becomes faster in finding
the best-improving move, or just an improving move, the closer the tour gets to a local
optimum. Both brute force and dynamic programming, on the other hand, take roughly
constant time (for a fixed n) at each iteration. This fact can be exploited by using our
procedure within an iterated local search strategy which, instead of starting each time
from a random tour, starts from a random small perturbation of the last local optimum
(Lourengo et al. 2019).

1.2 Paper organization

The remainder of the paper is organized as follows. In Sect. 2 we introduce the basic
notation and define selections and reinsertion schemes. We also discuss some sym-
metries which allow us to group similar moves into classes called orbits. In Sect. 3 we
describe, at a top level, the main ideas underlying our strategy. Section4 illustrates the
procedures in more detail, also providing pseudo-code for most of them. Section5 is
devoted to computational experiments and comparisons. Some conclusions are drawn
in Sect. 6.

2 Selections, schemes and moves

Let G = (V, E) be a complete graph on n nodes, and ¢ : E — R* be a cost

function for the edges. Without loss of generality, we assume V = {0, 1, ..., n},
where n := n — 1. Furthermore, we always assume the current tour to be the tour
0—-1—---—>0n—0.
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We will be using modular arithmetic frequently. For convenience, for each x € V
and t € N we define

x®t:=(x+1) modn, x6t:=((x—1t) modn.

When moving from x to x @ 1, x @ 2 etc. we say that we are moving clockwise, or
forward. In going from x to x © 1,x & 2, ... we say that we are moving counter-
clockwise, or backward.

A 4-OPT move is fully specified by two sets, i.e., the set of removed and the set
of inserted edges. We call a removal set any set of four tour edges, i.e., four edges
of type {i, i @& 1}. A removal set is identified by a quadruple S = (i1, i2, i3, i4) with
0 <i1 < iy < i3 < ig < n, where the edges removed are R(S) := {{i;,i; ® 1} :
j = 1,...,4}. We call any such quadruple S a selection. A selection is complete
ifi, ®1 ¢ {i1,...,ia} foreach h = 1,...,4 (i.e., if the move never removes two
consecutive edges of the tour), otherwise we say that S is a partial selection. We denote
the set of all complete selections by S.

Complete selections should be distinguished from partial 4-OPT selections, since
the number of choices required to determine a partial selection is actually lower than
four. For instance, there is only a cubic number of selections in which iy = i3 @ 1
since we can choose i1, iy and i3 but the value of i4 is forced. Clearly, if we do not
impose any special requirements on the selection then there are (’Z) selections. The
exact number of complete 4-OPT selections will be given in Sect.2.1.

Let S be a selection and I C E with |[I| = 4. If (T\R(S)) U I is still a tour
then [ is called a reinsertion set. Given a selection S, a reinsertion set I is pure if
I N R(S) = ¥, and degenerate otherwise. Finding the best 4-OPT move when the
reinsertions are constrained to be degenerate is O (n?) (in fact, 4-OPT degenerates to
either 2-OPT or 3-OPT in this case). Therefore, the most computationally expensive
task is to determine the best move when the selection is complete and the reinsertion
is pure. We refer to this kind of moves as true 4-OPT. Thus, in the remainder of the
paper we will focus on true 4-OPT moves.

2.1 Reinsertion schemes

Let S be a complete 4-OPT selection. When the edges R(S) are removed from a tour,
the tour gets broken into four segments which we label by {1, ..., 4}.For/ =1, ...,4,
the segment labeled / is the path that has ; as its last vertex. In particular, the segments
are (is ®1,...,01), (1 D1,...,i2), > ®1,...,i3)and (i3 1, ..., i4). Since the
selection is pure, each segment contains at least one edge. A reinsertion set patches
back these segments into a new tour. If we adopt the convention to start always a tour
with segment 1 traversed clockwise, the reinsertion set: (i) determines a new ordering
in which the segments are visited along the tour and (ii) may cause some segments
to be traversed counterclockwise. In order to represent this fact, instead of listing the
edges of a reinsertion set we can use an alternative notation called a reinsertion scheme.
A reinsertion scheme is a signed permutation of {2, 3, 4}. The permutation specifies
the order in which the segments 2, 3, 4 are visited after the move. The signing —s
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i3 i3

< +4,-2,-3 > < —4,+2,-3 > < —=3,—4,+2 >

Fig.1 Three 4-OPT moves and the corresponding reinsertion schemes

tells that segment s is traversed counterclockwise, while +s tells that it is traversed
clockwise. For example, the reinsertion set depicted in Fig. 1(left) is also represented
by the reinsertion scheme < +4, —2, —3 > since from the end of segment 1 we jump
to the beginning of segment 4 and traverse the segment forward. We then move to the
last element of segment 2 and proceed backward to its first element. We then jump
to the end of segment 3 and proceed backward to its beginning. Finally, we close the
cycle by going back to the first element of segment 1.

Clearly, there is a bijection between reinsertion schemes and reinsertion sets. If r
is a reinsertion scheme, we denote by / (r) the corresponding reinsertion set, while if
I is a reinsertion set, we denote by r (/) the corresponding reinsertion scheme.

Because of the equivalence between reinsertion sets and reinsertion schemes, in
the following we will be using either of them, at our convenience, for the sake of
simplicity.

There are potentially 23 x 3! reinsertion schemes for 4-OPT, but for many of these
the corresponding reinsertion sets are degenerate. A scheme for a pure reinsertion must
not start with +2, nor end with “+4”, nor contain consecutive elements “+¢, + (¢ +1)”
or“—t,—(t — 1)’ forany tinl,..., 4.

Proposition 1 There are 25 pure reinsertion schemes for 4-OPT.

Proof We prove the claim by listing the schemes, since we will be needing them when
we discuss how to find the best true 4-OPT move. The pure schemes, classified by a
permutation 7 of {2, 3, 4} first and then the signing, are the following:

— m = (2,3,4): Signing +2 is forbidden, and also +4 is forbidden.
This leaves only two possibilities

r=<-2,-3,-4> rnp=<-2,43,—4 >

— 1 = (2,4, 3): Signing +2 is forbidden. Also the sequence —4, —3 is forbidden.
This leaves three possibilities

r3 =< —2,—4,43 > rg =< —2,+4, -3 > rs =< —2,+4, +3 >
— 1 = (3,2,4): Signing +4 is forbidden. Also the sequence —3, —2 is forbidden.

This leaves three possibilities
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re =< —3,42, -4 > r;=<+43,-2,—-4 > rg =< 43,42, -4 >

— 1w = (3,4, 2): The sequence +3, +4 is forbidden.
This leaves six possibilities

ro=<-3,—4,-2> rig=<-3,-4,42> r=<-3,+4,-2>
rp=<-3,4+4,+2> r3z=<+43,-4,-2> ru=<+43,-4+2>

— m = (4,2, 3): The sequence +2, 43 is forbidden.
This leaves six possibilities

ris =< —4,-2,-3 > re =< +4, -2, -3 > ri7 =< —4,-2,4+3 >
rig =< +4, =2, 43 > ro =< —4,42, -3 > o =< +4, +2, -3 >

— m = (4,3, 2): The sequence —4, —3 is forbidden as well as the sequence —3, —2.
This leaves five possibilities

rm =< —4,43, -2 > ryp =< —4, 43,42 > 3 =< +4, -3, 42 >
ry =< +4,+3, -2 > rs =< +4, 43,42 >

O

By looking at a graphical representation of 4-OPT moves such as the one used in Fig. 1,
we can see that there are different reinsertion schemes (i.e., different moves) that in
fact, loosely speaking, “have the same shape”. We can then define an equivalence
relation between moves. Namely, two moves are equivalent if the (unlabeled) drawing
of one of them can be turned into the one of the other by some rotations of 7/2
radians, and/or by flipping it vertically, horizontally or with respect to the diagonals
x = y or x = —y. For instance, in Fig.1 we can see that < +4, —2, —3 > and
< —3, —4, +2 > are equivalent, since we can turn one drawing into the other by a
rotation of /2 radians.

The relation that we have informally just described can be made formal by using the
algebra of rotations and reflections in the plane (the so called optic group of operators).
We think that this discussion, whose substance is quite simple, would be distracting
here, and we refer the reader to Lancia and Dalpasso (2023) for all technical details.
The important thing to remark here is that the relation is indeed an equivalence, and we
can use it to partition the set of all 4-OPT moves into orbits (i.e., classes of equivalent
moves). Note that, after we have partitioned the reinsertion schemes into orbits, then
it is enough to explain our method for one reinsertion scheme of each orbit, called the
orbit’s representative. In fact, then the explanation applies to each reinsertion scheme
r in the orbit, once we change the selection indices according to the transformation
that turns the drawing of the representative into that of ». With a case analysis, we
have then determined all orbits for the pure reinsertion schemes. By convention, we
have chosen as the representative the smallest (in lexicographic order) scheme of the
orbit. In Fig. 2 we illustrate the representatives of the 7 orbits.
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5 710 725

Fig.2 Orbits of 4-OPT

Proposition 2 The pure reinsertion schemes for 4-OPT are partitioned in 7 orbits
O01,...,07.

Proof We have

- 01 =0(@r) ={r1, r4, 123, rn}.

- Oy =0(r2) = {r2, r21}.

- O3 =0(r3) = {r3, r7, 113, 117}

— Oy = O(rg) = {ra, r19, r11, r6}.

— Os = O(rs) = {rs, r20, 114, '15, 12, '18, 19, '8}
- O = O(r10) = {r10, r16}-

- 07 = O(r25) = {rs}.

O

Let S be the set of all complete selections. For S € S, let us denote by Z(S) the set of
all pure reinsertion sets for S. Then, the set of all true 4-OPT moves is

{(R($).1):S €S8, 1eI(S))} (1)

and the total number of true 4-OPT moves is ) ¢ |Z(S)| = 25 |S|. An exact count
can be obtained by first recalling a theorem that we proved in Lancia and Dalpasso
(2020).

Theorem 1 Foreachk =2, ..., |n/2] the number Py of complete k-OPT selections

in an n-nodes graph is
P — n—k+1 _ n—k—l'
k k—2
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Table 1 The number of true k-OPT moves for k = 2, 3, 4 and various n

n 2-OPT 3-OPT 4-OPT

50 1175 69, 000 4,434,375
100 4,850 608, 000 86, 509, 375
200 19, 700 5096000 1,521,081, 250
500 124,250 81, 840, 000 62,788,171, 875
1000 498, 500 660, 630, 000 1,023, 027, 906, 250
2000 1,997, 000 5,309, 360, 000 16,517, 112, 062, 500
5000 12,492, 500 83, 183, 400, 000 648, 700, 702, 031, 300
10,000 49, 985, 000 666, 066, 800, 000 10, 397, 927, 810, 310, 000

From the theorem, we derive the following

Corollary 1 The number of true 4-OPT moves in an n-nodes graph is

n—>3 n—>5 n* — 1813 + 10712 — 210n
25 Py =25 — =25 2
' (( 4 > ( 2 )) ( 2 > @

In Table 1 we report the number of moves for various values of n, giving a striking
example of why the exploration of the 3-OPT and 4-OPT neighborhoods would be
totally impractical unless some effective strategies were adopted.

3 Speeding-up the search: the basic idea

Our method can be used to find either the best-improving selection (i.e., for a Best-
Improvement local search) or any improving selection (i.e., for a First-Improvement
local search). In the rest of the paper we will focus on the best-improvement case,
since it is the harder of the two. The changes needed in order to adopt the method for
a First-Improvement local search are trivial, and they are left to the reader.

The seven 4-OPT orbits partition the set of all reinsertion schemes. Denote by r/
the representative of the j-th orbit. Then, for each selection S the set Z(S) of all the
reinsertion sets for S'is Z(S) = U;=1 {I(r):r € O@7)} and R(S) x Z(S) is the set of
all true 4-OPT moves for S. If we denote by pu* the best among all true 4-OPT moves
(initially set to "undefined”), the overall strategy to determine u* could be as follows:

1. Consider, in turn, each orbit j =1, ..., 7.

2. Consider each element r € O(r/) (where each such r is obtained by ¥ by means
of rotations and/or reflections).

3. Givenr, consider (implicitly or explicitly) all complete selections S = (i1, ..., i4),
obtaining the moves defined by © := (R(S), I(r)). Each time u is better than p*
update pu* 1= .
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The cost of step 3 by complete enumeration of all selections is ® (n*), where the code
is a nested-for procedure such as

for (i1 =0;i1 <n—06;i1++)
for(ir=i1+2;ir <n—4—1[i1 =07]; ir++)
for(iz=ir+2;i3<n—2-—1[ii =07]; i3++)
for (ig =iz +2;i4 <n—1[i; =07]; ig++)
evaluateMove(iy, iz, i3, i4, r'); [* possibly update best *]

(where the expression [A?], given a predicate A, returns 1 if A is true and 0 otherwise).

In the remainder of the paper we will focus on a method for significantly lowering
the complexity of step 3, not only with respect to its © (n*) enumerative implementa-
tion, but also with respect to the ® (n3) implementation of the dynamic programming
procedure presented in de Berg et al. (2020).

Our idea for speeding-up the search is based on the following consideration. Sup-
pose there exists an oracle which has access to all the optimal selections, but can look
at only two indices at a time. We can inquire the oracle by specifying two indices i,
ip (e.g.,a =2 and b = 4, etc.) and the oracle, in time O (1) returns us a pair of values
Vg, Up € V such that there exists at least one best-improving 4-OPT move in which
the two specified indices have those particular values. We call such a pair a pivot for a
move. Let’s say that we make a first call with the pair of labels i1 and i, and obtain the
pivot (v1, v2). Now we would keep calling the oracle with labels i3 and i4, asking for
each pivot (v3, v4) (we assume the oracle never repeats the same answer to the same
question, so, after at most G)(nz) calls, it might tell us “no more pivots"). We would
then determine the best solution among all the quadruples {vy, vz, v3, v4} which do in
fact represent feasible selections (i.e., vy < vy < v3 < v4 and (vy, v2, V3, v4) € S). If
the number of best-improving selections is considerably smaller than n?, this proce-
dure would take less than © (n2) time. As a matter of fact, the number of best selections
is in general much smaller than n? (many times the best selection is unique, in which
case we would determine it in time O(1) with two calls). Let us say that there are B
best selections overall. Then the above approach would take time O (B). It is safe to
say that B is in general a very small number (it can almost be considered a constant),
as we will show in our computational experiments. This is particularly true if we are
close to the end of the convergence to a local optimum, so that there are very few ways
to improve the current tour.

The bulk of our work has then been to simulate, heuristically, a similar oracle,
i.e., a data structure that can be queried to return two out of the four indices of a best-
improving selection much in a similar way as described above. In our heuristic version,
the oracle, rather than returning a pair of indices that are certainly in a best-improving
solution, returns a pair of indices that are likely to be in a best-improving solution. As
we will see, this can already greatly reduce the number of possible selections candidate
to be best-improving. In order to assess the likelihood of two specific indices to be in
a best solution, we will use suitable two-argument functions.

The fundamental quantities t* and v~

We define two functions of V x V into R fundamental for our work. Loosely
speaking, these functions will be used to determine, for each pair of indices of a
selection, the contribution of that pair to the value of a move. The rationale is that,
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the higher the contribution, the higher the probability that a particular pair is in a best
selection.

For each a, b € {0, ..., 7}, we define T (a, b) to be the difference between the
cost from a to its successor and the cost from a to the successor of b, i.e.,

tta,b)y=cla,a® 1) —cla,bd1)

and we define ™ (a, b) to be the difference between the cost from a to its predecessor
and the cost from a to the predecessor of b, i.e.,

T (a,b)=cla,ael)—c(a,bo1).

Clearly, each of these quantities can be computed in time O (1), and computing their
values for a subset of possible pairs can never exceed time O (n?).

4 Searching the 4-OPT neighborhood

Let » be a reinsertion scheme (we can assume that 7 is the representative of an orbit,
since each scheme can always be reduced to a representative by a proper change of
indices). For each selection S = (i1, i2, i3, i4), we denote by A, (i1, i2, i3, i4) the
value of the move (R(S), I(r)), i.e., the difference between the cost of the removed
edges R(S) = {{i1, i1 & 1}, {i2, i2 & 1}, {i3, i3 ® 1}, {i4, i4 & 1}} and the cost of the
reinsertion set (7).

We will use an approach analogous to the one we introduced in Lancia and Dalpasso
(2020) for the 3-OPT case, starting by showing how to break up the function A, (),
that has 4 parameters (and hence ® (n*) possible arguments), into a sum of functions
of two parameters each. In particular, we have

Ar(in, iz, i3,i8) = [ iz, ix @)+ £ 3 in@) 17 o) ie @)+ 0 (3), io@)

3
for suitable functions f,1 0, fr2 0, f,3 0, f,4 (), each representing the contribution of two
specific indices to the value of the move, and permutations 7, o of the set {1, 2, 3, 4}.
The domains of these functions are, respectively, Sz(1)x(2), Sr3)r@)> So(1)o(2) and
So3)o (4), Which are subsets of {0, ..., n} x {0, ..., n} that limit the valid input pairs
to values obtained from two specific elements of a selection. In particular, for a, b €
{1, 2, 3,4}, we define

Sap = {(x, ¥) : I(vy, v2, v3,v4) € S with v, = x and vy = y}. @)
Theorem2 For every 4-OPT reinsertion scheme r there exist functions
10, £20, £20, f20 : Z x Z +— R, and permutations w and o of the set {1,2,3, 4}

such that for each selection (i1, i, i3, i4) it is

A (i1, 02,13, 14)
= iy, in@) + £2(xG), in@) + £ o), io@) + FHi0G), ioc@)-
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Proof Let us consider a bipartite graph B with 4 vertices on top and 4 on bottom. The
top vertices are the tour edges R = {ey, e2, €3, e4} removed by the selection, where
er = {ir, iy ® 1} fort = 1,2, 3, 4. The bottom edges are the edges I = {e}, ¢}, €5, ¢/}
inserted by the reinsertion scheme. In B there is an edge ee’ between every two pair
of vertices e € R and ¢’ € I such that e N ¢’ # @. It is immediate to see that every
node has degree 2, and, in fact, B consists of a length-8 cycle. As an example, in the
figure below we depict B for the reinsertion scheme 1] =< —3, +4, =2 >.

{i1,i1 ® 1} {iz, i ® 1} {i3, i3 @ 1} {is, is ® 1}

{i1, i3} {i2, is} {iH®1,is® 1} {bl,izd 1}

The cycle is the disjoint union of two perfect matchings. From each one of them we
can obtain the functions £!(), £2(), £2(), £*(). We adopt the convention to use the
matching that contains the edge e e}, where, w.1.o.g., i1 € €. In the example above,
the matching is

er < (i1, i3}, ex < {iz2,is}, e3> {2®1,iz®1}, ea<={i1D1,isD1})

From each edge of the matching we derive either a T™ or a T~ expression as follows.
Assume the edge is exe’, with x € {1,2,3,4}. If ¢’ = {i,, i,} then

clex) —c(€) = cliy, iy ® 1) — c(ix, iy)
=cliy,iy ®1) —clix, (y© 1) D) =1 (iy,iy O ).

Otherwise, itis ¢/ = {iy ® 1, iy} and

clex) —c(e) =cliy,ix ®1) —c(ix D1, iy)
=c(ixy®1,ix) —cliy ®1, (iy ehel)=1 (i, d1, iy @e1).

The sum of these values, for x = 1, 2, 3, 4, is then the cost of the move. For instance,
in the move above it is

Ay(iy, 02,103, 04)
=t 30 )+t (i D+ T (3®1,®2) +1 (1@ 1,i1 ©2).

Let us call Ayq,..., As the four addends of the sum thus obtained (e.g., A} =
(i1, i3 © 1), etc.) It remains to show that Ay, ..., A4 can always be rearranged
so as all four type of indices appear in the first two (which implies that they also
appear in the second two).

For x € {l1,2, 3,4} let us call a “type-x addend” an addend in which one of the
two arguments is either iy, iy © 1, iy @ 1 or i, @ 2. Notice that each addend is type-x
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and type-y for some x # y and that there are exactly two type-x addends for each
x € {1,2,3,4}. Assume A is type-a and type-b. There remain three addends, and
two of them are not type-a or a would be overrepresented. Furthermore, these two
cannot both be type-b or b would be overrepresented. So there is an addend which is
neither type-a nor type-b. Swap that addend with A;. Then the first two addends now
range over all four indices. By reading the order in which the various types of indices
appear in A and A, we get the permutation 7 of the theorem statement. Similarly,
we get o from A3 and A4. O

In the above example, Aj is type-1 and type-3, while A; is type-2 and type-4. The
permutations 7 and o are 7 = (1, 3,2,4) and 0 = (3, 2, 4, 1). Furthermore,

1. flx,y) :=tH(x,y ©1), with domain Si3
2. f2(x,y) := 17 (x,y ©1), with domain Sp4
3. f2(x,y) =1 (x® 1,y ®2), with domain Sz,
4. fHx,y) =1 (x @1,y ®2), with domain Sy

Notice how the theorem implies that each function fi(x, y) is eithera t¥ ora ¢~ in

which each argument is offset by a constant in {—1, 0, 1, 2}. By using Theorem 2, we
can give the functions

1 4
[ fs

and the permutations m and o such that A,(iy,i2,i3,i4) = f,1 (zy, in) +
FPinys in@y) + 2oy o) + [0 (), is(a)) for the representatives of all orbits,
as reported in Table 2. We recall that the permutations define also the domains of
the functions £, ..., £, which are, respectively, Sz (1)z(2)> Sw(3)w)> So(1)o(2) and
So3)o4)- (For a list of the inserted edges of each scheme, look at Fig.2. For sim-
plicity in checking the table vs the figure, we have called i, j, k, h the elements that
will occupy, respectively, positions 1, 2, 3, 4 in the selection. That is S;3 = {(i, k) :
iy, ig with (i, i2, k, i) € S}, Sap = {(h, j) : Jiy, i3 with (iy, j, i3, h) € S}, etc.).
The procedure to find the best selection

Given a reinsertion scheme r, assume we want to find the best selection and the
current “champion” (the best selection found so far) is $* = (vy, V2, U3, U4) of value
V = A,(S%) (in the beginning, we may assume S* is undefined and its value is
V := 0). We make the trivial observation that for a selection (i1, iy, i3, i4) to beat S*
it must be

) ) : : Vv
(frl (ix (1), ix@) + fFiz@3), in) > 5)

. . [ j V
v (frs(lo(l)’ i02) + ;o). is ) > 5) ©

These are not exclusive, but possibly overlapping conditions.

We set up a two-phase algorithm, which we call SMARTFORCE. In the first (second)
phase, we restrict our search to the selections (i1, i2, i3, i4) which satisfy the first
(respectively, second) half of (5). Just for the sake of example, assume & = (1, 3,2, 4)
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Procedure 1 COMBINEHEAPS (H 0 Hl d)
Input: heaps HO H! permutation ¢ of {1, 2, 3, 4}, coefficient « € [0, 1]
Local: arrays A°, A!

0 1

1. max" <« maxval(HO); max <—maxval(H1);

2. fori < 0,1

3. c <« 0;

4. while (maxval(H') + max'~ > aV)

5. (x,y) < extractMax(Hi);

6. Allc++] < (x, y,val); [* where val := fyi(x,y) */

7. po, pl < 1; /* the part of Al still to use goes from pi to size(A’) */

8. while (p° < size(A%)) A (p! < size(d)) A (ApOlval + Al[pllval > aV)
9. if Ao[po]‘val > Al[pl].val then mst = 0 else mst = 1;

10. slv < 1 — mst;

11. Cc <« pSl”;

12. while (¢ < size(A%Y)) A (AV[c]val + A" [p™!]val > aV)

13. (i1, in, i3, i4) < decodeIndices(A™[p™].(x,y), Al [c].(x, y), ¢);
14. if (i1, i2,13,i4) € S A Ay(iy, ip,i3,i4) > V then

15. §* < (i1, 02,13, 4);

16. V <« Ap(i1,i2,103,14);

17. c<«c+1;

18. pmst « pmxl +1;

and o = (1, 4, 2, 3). To find the optimal selection, we go through two phases. In the
first phase we look for all selections (i, j, k, k) such that f,1 (i, k)+ f,2 (j,h) > % and
then check if indeed A, (i, j, k, h) > V. In second phase, we look for all selections
such that (i, h) + f*(j.k) > % and then check if indeed A, (i, j, k., h) > V.
Whenever we improve the champion, we immediately update V, thus making the
condition more difficult to satisfy and, consequently, reducing the search space for the
remaining selections.

In order to sample only selections that can satisfy the above conditions, we make
use of two max-heaps. A heap is perfect for taking the highest-valued elements from a
set, in decreasing order. It can be built in linear time with respect to the number of its
elements and has the property that the largest element can be extracted in logarithmic
time, while still leaving a heap. The heap is implemented by an array H with three
fields; x and y, which represent two indices of a selection (i.e., a pivot) and val which
is anumerical value, i.e., the key to sort the heap. By using the standard implementation
of a heap (Cormen et al. 2022), the array corresponds to a binary tree, whose nodes are
stored in consecutive entries from 1 to H.STIZE. The left son of node H|[t] is H[2¢],
while the right son is H[2¢ + 1]. The father of node H[t] is H[t.div.2]. A max-heap
is such that the key of each node H 7] is the largest among all the keys of the subtree
rooted at H|[¢].

The procedure for each phase, given in Procedure COMBINEHEAPS (Procedure 1),
has in input two heaps H’ and H” and a permutation ¢ of {1, 2, 3, 4} (for code-reuse,
we added an input coefficient « to represent the fraction of V that the sum of the heaps
needs to achieve. In general it is « = 1/2 but in the next paragraph we will describe
a special case where it is convenient to set « = 1). The heap H' contains pivots in
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the domain Sy (1)s(2) while H” contains pivots in the domain Sy 3)¢(2). Each heap,
built as in Procedure 4 BUILDHEAP, corresponds to one of the addends of (3) and
is sorted according to the value fy(x, y) of its pivots (x, y) (where fy() is one of
frl, ceey fr4). The goal of the phase is to form all quadruples of value > «V, where
a = 1/2, by picking one element from each heap. This is achieved by running a loop
which identifies all pairs (x, y), (z, w) of pivots, taken from H’ and H” respectively,
such that fg/ (x, y) + fg~(z, w) > aV. The loop terminates as soon as the sum of the
maxima of the two heaps is < aV. To perform this search effectively, given that the
maximum of H’ is (x, y;) of value fy'(x1, y1), we first extract from H” all elements
(z¢, we) such that fy/(x1, y1) + fur(zc, we) > aV. Note that this way we have in
fact created a sorted array of those elements from H”, i.e., H” now can be replaced
by an array A” = [(z1, w1), - .., (zg, wp)] such that

fur @z, w) = - = far(zg, wo) > aV — fu(x1, y1).

Creating this array has cost O (Q log n). In a similar way, in time O (P log n) we create
a sorted array A’ = [(x1, ¥1), ..., (xp, yp)] containing all the elements of H' such
that

fwx,y1) == fu(xp,yp) > aV — fyr(z1, w).

Now we combine elements from the first array and the second array to form all
quadruples of value > « V. For doing so we keep two pointers a and b, one per array.
Initiallya = b = 1. If fy/ (x4, ya) = frur(2p, wp) we say that a is the master and b is
the slave, otherwise b is the master and a the slave. We then run a double loop which
ends as soon as [y (x4, Ya) + fur(zp, wp) < aV. At each iteration, a pointer runs
through all the elements from the slave down, as long as the sum of their values and the
master’s value is still > o V. For example, if the master is a, then we would consider
all elements ¢ = b, b+ 1,b + 2, ... such that fy' (x4, o) + fur(ze, we) > aV.
For each quadruple (x4, y4, Z¢, we) thus obtained we would, in time O(1) sort the
indices so as to obtain values i, j, k, h withi < j < k < h (this is done by calling a
subroutine decodeIndices(xq, Ya, Z¢, We, ¢), in line 13.). Then we would check
if indeed (i, j, k, h) is a valid pure selection and A, (i, j, k, h) > V. In that case, we
would update the current champion and its value V.

Notice that once a quadruple is formed there is nothing more to do than compute its
value, in time O (1). If the total number of quadruples evaluated is L, the complexity of
the loop 8.—18. is O (L) so that, overall, the procedure takes time O ((P+ Q) logn+L)
where P = size(A”) and O = size(A'). As we will discuss in the section on
experimental results, this procedure behaves, in practice, like 0 (n)

Perfect splits

If we look at Table 2 we see that there are three cases in which {7 (1), 7(2)} =
{o(1),0(2)} (so that, also, {r(3), 1(4)} = {0 (3), 0(4)}). We call such a situation a
perfect split of the indices, and it occurs for the orbits O,, Og and O7 which, altogether,
contain five reinsertion schemes out of 25. The reinsertion schemes with perfect split
can be treated differently than the other cases, with a method that, as shown in the
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Procedure 2 FIND4- OPTMOVE

S* <~ undef; V «0;
fori < 1,...7
forr € O;
SMARTFORCE(r);
if (V = 0) then
return (“There are no improving moves”);

else

PNAN R LN =

return move S* of value V;

computational experiments section, allows us to get a further 10% speedup over the
general procedure described so far.

The key observation is that if r has a perfect split we can define two functions g! ()
and g2()as g' = f' + f3and g2 = f2 + f*, so that (3) becomes

Ar(i1, i, 13, i4) = & i (1)s in@) + &2 Gin(3)s in(a))-

The domain of g! is Sy(1)r(2) while the domain of g2 is Sy (3)z(4). In particular, for
the representatives of the above three orbits we have

r n &0 270

o (1,2,3,4) T, jeD+t (®1,i®2) tTk,he)+t=h® 1, kd2)
o (1,3,2,4) T ko) +t k@ 1,i®2) TG, h) + T, )

725 (1,3,2,4) G k) + T (ki) (b + Tk, )

In order to find the best selection for a scheme with perfect split, we prepare two heaps,
one sorted by the values gr1 () with pivots over Sy (1)z(2) and the other by the values
gf () with pivots over Sz (3)z(4). We then run a unique phase of search, analogous to
the procedure COMBINEHEAPS (Procedure 1) but with the difference that instead of
computing quadruples of value > V /2, we compute quadruples of value > V and stop
at the first of such quadruples which turns out to be a feasible selection (since, because
of the ordering of the values, it is necessarily the best selection). This is obtained by
calling COMBINEHEAPS with o = 1.

Overall procedure

The final procedure to find the best move is FIND4-OPTMOVE (Procedure 2), which
calls the subroutine SMARTFORCE (Procedure 3) to find the best selection for a given
reinsertion scheme.

Notice that we are considering the reinsertion schemes in a precise order. This is
somewhat arbitrary, since any other ordering would have been valid as well. In the
computational experiments we have tested also other orders and found out that the
running times are pretty much independent on the ordering chosen. In practice, we
suggest to randomize the order in which the reinsertion schemes are considered, since
there is no real reason to prefer an ordering over another. We also note that if one
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Procedure 3 SMARTFORCE (r)
Input: reinsertion scheme r € {Oy, ..., O7}
Local: heaps H', H"

Let 7 and o be the permutations corresponding to r in Theorem 2;
if 7 and o are not a perfect split
H' < buildHeap(n(l), 7(2), £10);
H" < buildHeap(n(3), 7(4), frz());
combineHeaps(H', H”, «, %);
H' < buildHeap(o(1),0(2), f30);
H" < buildHeap(o(3),04), f10);
combineHeaps(H', H, o, %);
else /* perfect split */
H' < buildHeap(z(1), 7(2), f10+ £20);
H" < buildHeap(r(3), 7(4), f,2() + f,4());
combineHeaps(H', H", m, 1);

—— =
e e Y N

would choose to optimize over only some of the reinsertion schemes but not on all, it
is enough to remove from the procedure the calls relative to the reinsertion schemes
that one does not want to use.

For completeness, we give also the code for the heap procedures, including HEAPIFY
and EXTRACTMAX (Procedures 5 and 6), although they are the standard procedures for
implementing heaps and can be found on any textbook on data structures. To simplify
the code, we allow H|[t].val to be defined also for t >H.SIZE, with value —oo.
The procedure HEAPIFY(H, t) assumes that the subtree rooted at ¢ respects the heap
structure at all nodes, except, perhaps, at the root. The procedure then adjusts the keys
so that the subtree rooted at t becomes indeed a heap. The cost of HEAPIFY is linear in
the height of the subtree. The loop of lines 11-13 in procedure BUILDHEAP turns an
unsorted array H into a heap, working its way bottom-up, in time O (H.SIZE). The
procedure EXTRACTMAX returns the element of maximum value of the heap (which
must be in the root node, i.e., H[1]). It then replaces the root with a leaf and, by
calling heapify(H, 1), it moves it down along the tree until the heap property is
again fulfilled. The cost of this procedure is O (log (H.SIZE)).

5 Computational results

All programs were coded in C, and run on an Intel(R) Core(TM) i7-7700 CPU at
3.60GHz with 16GB RAM, with operating system Ubuntu 16.04 and compiled under
gcc version 5.4.0 with optimization option -02.

We have run extensive tests to assess the effectiveness of our method. First, we
have determined the best version of our procedure, and then we have compared it to
the algorithms in the literature. The experiments were run on randomly generated data
as well as on instances from public repositories. Randomly generated data are of two
types, called UNI and GEO. UNI instances are complete graphs in which the edge
costs are drawn uniformly at random in the interval (0, 1). GEO instances are complete
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Procedure 4 BUILDHEAP (a, b, f())
Input: integers a, b € {1, 2, 3, 4}, function f()
Output: Heap H

1. ¢« 0;

2. for (x,y) € Sup

3 if (f(x,y) > V/4) then

4. c<~c+1;

5. Hlc]l.x < x;

6 Hlcly < y;

7 Hlcl.val < f(x,y);
8. H.SIZE <« c;

9. fort « L@J,...,Z, 1 /* turns the array into a heap */
0. heapify(H,1t);

1. return H

Procedure 5 HEAPIFY (H, t)
Input: array H, integer ¢t € {1,... H.SIZE}

Is < 2t; /* left son */

rs <=2t +1; /* right son */

if (H[Is].val > H[t].val) then
large < Is;

else
large < t;

if (H[rs].val > H[large].val) then
large < rs;

if (large # t) then
H[t] <> Hl[large]; /* swaps H|[t] with the largest of its sons */
heapify(H,large);

O XA N R LN =

—
)

Procedure 6 EXTRACTMAX (H)
Input: heap H

Output: the pivot (x, y) of maximum value in H

(x,y) < (H[1].x, H[1].y); /* extracts the max element (x, y) */
H[1] < H[H.SIZE];

H.SIZE < H.SIZE — 1;

heapify(H, 1); /* restores the heap */

return (x, y);

A e

graphs whose nodes are random points in the unit square and whose edge lengths are
the Euclidean distances between the nodes. Finally, we used instances from the public
repository TSPLIB for further experiments.
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5.1 Determining the best version of our code

In this section we compare our smart-force algorithm without (ISFO) and with (ISF1)
perfect split. Our tests consist in running local search up to conclusion starting from
random tours. We considered graphs of size n = 50m, with m = 2,...,10. At
each step, we find the best 4-OPT-move over all the 7 orbits. For each value of n we
generated 10 instances (the same 10 for each algorithm). In these, as well as in the
similar tests described in the next sections, all runs with different algorithms were
double-checked to make sure that they took the same number of steps and ended at the
same local optima. Indeed, although extremely rare, there is the possibility that more
than one move are optimal at a certain step, and therefore that two algorithms may
make a different choice and become incomparable after such a move. We intended to
remove these runs from the comparisons, but, as a matter of fact, they never happened.

The results, reported in Table 3, are averages over all 10 runs. We report the total
running time to reach a local optimum (“Time per search”), the time required to
determine each move (“Time per step”), the number of moves evaluated to find each
best (“Move evals per step”) and the length of the convergence (“# steps”). Some
results are rounded and shown with 4 significant figures. We use the suffix K for 103
From the table it appears that ISF1 grants an extra saving of about 12% over ISFO,
and therefore hereafter we will be using ISF1 in comparing our algorithm to other
approaches in the literature.

Another interesting information that we can derive from the table is that GEO
instances appear to require less work than UNI instances, both in finding the best
move at each step than in the number of steps overall required for convergence. With
respect to the length of the convergence, we notice that it grows, approximately, like
®(nlogn). In Sect. 5.3 we will be using this estimate to improve over Glover’s algo-
rithm for the orbits 6 and 7.

In a second experiment, we looked at the growth of the running time of ISF1 for
a single step, in order to infer, empirically, a reasonable time complexity function for
our algorithm. In particular, we considered the first step, i.e., finding the best move on
a random tour. Notice that a random tour is just a special case of the tour to which a
local search must be applied, and, indeed, the vast majority of tours on which a move
is determined will be quite non-random, since they are the result of all the improving
moves applied in the steps before the current one. We will be addressing again this
aspect in Sect. 5.3. Here we choose to study the time to find the best move on a random
tour since it is the simplest case to assess, given that random tours are very easy to
generate, while tours of medium- or high- quality would be much more difficult to
generate in a quantity large enough for statistical purposes.

In Table 4 we report the running times, in seconds, to find the best move on a graph
of n = 100, 200, ..., 2000 nodes, both for UNI and for GEO instances. Values are
averages over 10 instances for each n. The values from the table are also shown as
dots in Fig. 3. From the plots we can see a very good fit with an interpolating function
© (%) in both cases.
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Table 3 Comparing ISFO and ISF1 in finding a 4-optimal tour starting from a random tour. Values are

averages over 10 instances for each n. Times in seconds

Time per L.S. Time per step Move evals per step # Steps

Type n ISFO ISF1 ISFO ISF1 ISFO ISF1

UNI 100 0.38 0.33 0.007 0.006 29.1K 239K 53.7
150 1.32 1.14 0.016 0.013 65.3K 53.6K 82.3
200 3.76 3.26 0.031 0.027 143.3K 117.3K 119.2
250 7.55 6.49 0.050 0.043 212.4K 174.1K 148.8
300 13.82 11.99 0.076 0.065 317.5K 259.6K 181.8
350 23.16 20.34 0.105 0.092 435.1K 356.0K 220.3
400 34.87 30.52 0.140 0.123 562.4K 459.8K 247.6
450 53.31 46.98 0.185 0.163 701.2K 573.8K 287.3
500 86.53 74.60 0.268 0.231 974.0K 794.5K 322.0

GEO 100 0.32 0.27 0.006 0.005 26.3K 22.3K 48.6
150 1.05 0.91 0.014 0.012 54.0K 46.3K 72.7
200 2.73 242 0.027 0.024 108.1K 93.0K 99.9
250 5.67 4.99 0.043 0.038 157.8K 135.3K 130.2
300 10.21 8.91 0.064 0.056 227.8K 195.2K 157.9
350 16.40 14.48 0.088 0.077 286.6K 245.1K 186.3
400 24.94 22.11 0.117 0.103 366.5K 313.9K 213.2
450 37.61 33.46 0.153 0.136 450.8K 384.9K 244.8
500 56.73 50.63 0.208 0.186 536.5K 459.0K 271.9

Table 4 Times (secs) to find the best move on a random tour for uniform and geometric instances. Values

are averages over 10 trials

n UNI GEO n UNI GEO n UNI GEO n UNI  GEO
100 0.007  0.004 600 041 035 1100 2.01 1.73 1600  5.17  4.64
200 0.023  0.019 700 0.62  0.50 1200 248  2.19 1700  6.17  5.39
300 0.061  0.046 800 0.89 0.74 1300 3.06 271 1800 7.05 6.23
400  0.113  0.094 900 1.21 1.01 1400 3.77  3.30 1900 785  7.12
500 0.233  0.195 1000 1.56 1.32 1500 450 397 2000 9.08  8.08
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Fig. 3 Plots of the average time to find best move on a random tour. Left: UNI instances, fit=« n%5 with

« =5 x 1078 Right: GEO instances, fit= 8 n2-5, with 8 = 4.5 x 10~8

5.2 Comparing our code with other algorithms

In this and in the next section we compare our algorithm to the best procedures in
the literature for 4-OPT local search. In particular, the most important comparison
will be versus de Berg’s et al. O n3) procedure (de Berg et al. 2020), which can find
the best 4-OPT move over all the possible orbits. Of secondary importance, but still
interesting, is the comparison versus Glover’s © (n%) procedure (Glover 1996), which
can find the best 4-OPT move for only two very peculiar orbits. Indeed, the 4-OPT
moves considered by Glover are, in a sense, special combinations of 2-OPT moves,
which is the reason why it is possible to optimize them in quadratic time. As a matter
of fact, de Berg’s at al have proven in their paper that, if an important conjecture in
graph theory holds, it is impossible that a worst-case better than cubic algorithm exists
for finding the best k-OPT move (over all orbits) for £ > 3 (de Berg et al. 2020).

Our comparisons were made mostly for the time required by a convergence to a
local optimum, from which we can derive the average time required to find the best
move at each step. Notice that, given the particular logic behind our procedure, we
might expect that finding the best move on a uniformly random tour, or on a tour
obtained after a few improving moves have already been made, or on a tour close to
a local optimum might take a quite different time. We will see that this behavior is
particularly clear for the special moves to which Glover’s algorithm can be applied.
By averaging over all tours of the local search we then have a much better estimate
of the time required to find a 4-OPT move than if we were to consider only random
tours.
Vs De Berg et al.’s algorithm

In a first test, we compared the time of a local search convergence for our algorithm
and De Berg et al.’s dynamic program (DYP), when the best move is determined over
all seven orbits. For a description of DYP implementation refer to de Berg et al. (2020);
Lancia and Dalpasso (2023). We considered random uniform and geometric instances
of size n going from 100 to 500 with increments of 25. The results are reported in Table
5. From the table we can see that ISF1 outperforms DYP on all instances, with speed-
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Fig.4 Avg time to find best move on a random tour. Left UNI instances, right GEO instances. Fitting (DYN,
UNI/GEO): 4.6 x 1078 n3 —9 x 1075 n% 4 1073 n. Fitting (ISF1, UNI): 4.1 x 10~8 n2-5, (ISF1, GEO):
3.3 x 1078 123

ups going from about 4 x up to about 20 x. We should expect even bigger speed-ups
for n > 500, but these comparisons were not done since DYP would have required
too much time to run all experiments. In Fig. 4, the average times for finding the best
4-OPT move with the two algorithms, taken from Table 5, are plotted and fitted with,
repectively, a ©(n3) for DYN and a © (n2-) function for ISF1.

In a final test, we selected at random thirty TSPLIB instances with 100 < n < 1000,
i.e., sizes neither too small to be instantly solved by both algorithms, nor too big to
require unsuitably large times for our experiments. For each instance we ran a full local
search, starting from three random tours, and computed the average of: (i) the time for
the whole search; (ii) the time for finding the best move; (iii) the convergence length.
The results are reported in Table 6. Even in this case, we can see that ISF1 outperforms
DYP on all instances, with speed-ups between 20x and 30 for the largest instances
considered.

5.3 Comparison with Glover’s algorithm

In a final experiment, we compared our procedure with Glover’s ®(n?) algorithm
(named GLO hereafter). For a description of GLO implementation, refer to Glover
(1996); Lancia and Dalpasso (2023). As we already remarked, the scope of GLO is
restricted to two very symmetric orbits (covering just 3 out of 25 reinsertion schemes)
which, for convenience, we report in Fig.5. This implies that, even if GLO would
have turned out to be better than ISF1 on these three schemes, we could still have an
improvement over the state-of-the-art algorithms for the entire 4-OPT neighborhood
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Table5 Comparing De Berg’s
et al. Dynamic Programming
and ISF1 in finding a 4-optimal Type

Time per search

Time per step

tour starting from a random tour.
Ya]ues are averages over 10 UNI
instances for each n

n DYP ISF1 DYP ISF1 # Steps
100 1.20 0.34 0.022  0.006 53.7
125 3.11 0.69 0.045 0.010 68.8
150 6.50 1.14 0.079  0.013 82.3
175 12.54 1.99 0.128  0.020 97.6
200 23.87 3.29 0.200  0.027 119.2
225 39.03 4.74 0.295  0.036 131.9
250 62.63 6.81 0.420  0.045 148.8
275 92.63 8.74 0.561  0.052 165.1
300 13470 11.97 0.740  0.065 181.8
325 188.82  15.23 0.964  0.077 195.8
350 277.32  20.30 1.258  0.092 220.3
375 35334  24.94 1.536  0.108 230.0
400 469.66  30.53 1.896  0.123 247.6
425 631.02  41.56 2308  0.152 273.3
450 801.31  47.22 2789  0.164 287.3
475  1037.90  61.60 3.407  0.202 304.6
500 1288.60 74.83 4.002 0.232 322.0
GEO 100 1.09 0.27 0.022  0.005 48.6
125 2.67 0.55 0.044  0.009 59.7
150 5.68 0.92 0.078  0.012 72.7
175 11.29 1.56 0.127  0.017 88.3
200 20.19 2.42 0.202  0.024 99.9
225 33.83 3.70 0.290  0.031 116.6
250 53.69 4.96 0412 0.038 130.2
275 81.99 6.81 0.570  0.047 143.6
300 118.36 8.90 0.749  0.056 157.9
325 165.81  11.33 0.967  0.066 171.4
350 233.21 14.34 1.251  0.077 186.3

Times in seconds
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Table 5 continued ] K
Time per search Time per step

Type n DYP ISF1 DYP ISF1 # Steps

375 305.89  17.65 1.546  0.089 197.8
400 400.78  22.13 1.879  0.103 213.2
425 535.14  26.83 2332 0.117 229.4
450 692.85  33.47 2.830 0.136 244.8
475 871.14  40.09 3389 0.156 257.0
500 1100.60  50.12 4.047 0.184 271.9

Times in seconds

Fig.5 Orbits for Glover’s
algorithm

Al
NI

O¢ O7

by a hybrid algorithm which uses GLO for 3 schemes and ISF1 on the remaining 22
schemes.

Indeed, it is impossible to beat GLO from a worst-case complexity point of view,
since it determines the best move for these special 4-OPT orbits in time © (n?), which
is in fact the time needed to just read the input (i.e., the cost matrix c[i, j]). We still ran
a comparison to see if at least we were not too worse, considering that our algorithm
might behave differently for these peculiar type of orbits than for the other orbits.

We therefore generated random uniform and geometric instances of size n going
from 200 to 1500 with increments of 100. The results are reported in Table 7 (left-half
part, labeled “FULL CONVERGENCE”), in which we can see the average time for
a convergence, the average time to find the best move and the average length of the
convergence (over 10 instances for each value of n). From the table we can see that
ISF1 is actually better than GLO for n < 1000, while GLO becomes increasingly
better than ISF1 for n > 1000. For these values, however the time differences are not
big, in particular considering that these are fairly large instances for 4-OPT.

Another interesting observation that we can make by looking at the table is that, for
these special schemes, finding the best move for GEO instances and UNI instances
requires pretty much the same time, and the only difference is that the convergence
length is slightly longer for GEO instances (which is the opposite of what happens
when we search over all reinsertion schemes).

By a closer inspection of the time needed to find the best move at each step, we
observed that our algorithm is sensitive to the quality of the tour it is applied to, and
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Table 6 Comparing De Berg et al’s DYP with ISF1 for TSPLIB instances with 100 < n < 1000. Times in
seconds, averaged over three runs for each instance

Time per search

Time per step

Instance n DYP ISF1 DYP ISF1 # Steps
gr120 120 2.25 0.63 0.039 0.011 56.6
ch130 130 3.25 0.71 0.050 0.011 64.6
prl36 136 3.59 0.81 0.057 0.013 62.3
grl37 137 3.88 0.86 0.057 0.012 67.0
prl44 144 5.03 1.71 0.067 0.023 73.0
ch150 150 5.84 0.89 0.078 0.012 74.3
kroA150 150 5.78 0.88 0.077 0.011 75.0
kroB150 150 5.75 0.92 0.077 0.012 74.3
ul59 159 7.12 1.17 0.091 0.015 713
sil75 175 10.28 1.47 0.126 0.018 81.3
brg180 180 10.44 1.08 0.138 0.014 76.0
rat195 195 17.42 1.81 0.176 0.018 99.0
kroA200 200 21.20 2.32 0.201 0.022 105.3
kroB200 200 20.83 2.31 0.198 0.022 105.0
ts225 225 31.08 3.42 0.277 0.030 111.0
tsp225 225 31.26 3.74 0.279 0.033 112.0
2r229 229 35.42 7.36 0.294 0.061 120.3
gil262 262 65.71 5.66 0.487 0.042 134.6
a280 280 79.00 6.10 0.557 0.042 143.0
pr299 299 107.34 8.54 0.693 0.055 154.6
lin318 318 146.89 11.76 0.895 0.071 164.0
rd400 400 409.69 21.87 1.896 0.101 216.0
pcb442 442 574.65 28.68 2.542 0.127 225.6
ali535 535 1494.50 244.80 5.094 0.834 293.3
pas61 561 1598.50 72.84 5.615 0.254 286.0
us74 574 2015.80 104.94 6.359 0.331 317.0
rat575 575 2067.20 71.07 6.555 0.244 315.3
gro66 666 3725.70 423.14 9.970 1.132 373.6
u724 724 5667.70 204.53 13.948 0.503 406.3
rat783 783 8394.40 248.19 19.035 0.562 441.0
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Fig.6 Plot of time to find best 0.14

-~ GLO
move along the convergence, 012 —ISF1

orbits 6 and 7, n = 800, GLO vs
ISF1 0.1

0 50 100 150 200 250 300 350 400 450 500

step of convergence

finding the best move on a random tour is different than finding it on tours closer to a
local optimum. In particular, we noticed that while our algorithm is quite slower than
Glover’s algorithm on the starting random tour, it becomes progressively faster as the
search proceeds, and, at some point it becomes definitely faster than GLO. In Fig. 6 we
can see an example of this phenomenon on a random medium-size instance from our
experiments, but this behavior was observed over all instances. In this case, n = 800,
the convergence takes between 450 and 500 steps and, around step 140, ISF1 starts to
become faster than GLO in finding the best move, and it stays such until the end.

Having made this observation, we suggest a hybrid approach which indeed behaves
better than both GLO and ISF1 on all instances of our experiments. In particular, given
n, we set a step s(n) and run GLO for the first s(n) steps, then we switch to ISF1 and
use ISF1 until we reach the local optimum. In order to fix a value for s(n), we looked
at plots such as that of Fig.6 and observed that, more or less, the point when ISF1
starts to be faster than GLO is around 1/3rd of the convergence. We then gave a rough
estimate of the convergence length as /(n) := 0.06 nlogn and set s(n) := [(n)/3.

In the right half of Table 7 (labeled “FINAL PART OF CONVERGENCE”) we
report the averages of total time and time per move for GLO and ISF1 in the second
part of the convergence, i.e., over steps s(n), s(n) 4+ 1, .... By looking at the time
needed to find the best move, we can see that ISF1 on this part is much smaller than
it was on the whole convergence, and it is always smaller than GLO’s time. In the
last column (labeled HYB) we report the average time of the hybrid algorithm over
the whole convergence. It can be seen, by comparison with the two corresponding
columns from the left half of the table, that HYB is better than both GLO and ISF1
over all instances in the experiment.

A final remark can be made about the use of the orbit O; (the “double bridge”
move) within Lin and Kernighan’s heuristic (Lin and Kernighan 1973). Indeed, as
also pointed out in Glover and Pesch (1997), this move cannot be constructed by the
LK procedure, but it becomes useful to keep the search going when no other good
moves can be found. This opens up to the possibility of using our approach (or the
hybrid approach) for finding the double bridge moves within LK procedure.
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5.4 Comparing 4-OPT with 3-OPT (and 2-OPT)

Since we did not find in the literature any clear assessment of the effectiveness of
the 4-OPT neighborhood, in comparison with 3-OPT and 2-OPT, in standard best-
improvement local search algorithms, we made some experiments with randomly-
generated graphs, already described as UNI in this paper. The results are reported in
Table 8.

For various values of n (column 1), we have generated 5 instances, corresponding
to which we report three main results, labeled “most” (the instance on which the gain
of 4-OPT over 3-OPT was the highest) “least” (the instance on which the gain was
the smallest) and “avg” (the average gain over the 5 instances). The gain is given by
the percentage reduction in the value of the solution found by 4-OPT with respect to
the value of the best solution found by 3-OPT. On each instance, a sequence of best-
improvement 4-OPT (inclusive of 3- and 2-OPT moves) convergences, from a random
tour to a local optimum, was run, until the cumulative time ¢ (checked at the end of
the each convergence) exceeded a limit of 1s. Note that for n large enough, this small
time limit results in only one convergence of 4-OPT. Then, a set of best-improvement
convergences from random tours, of either 2-OPT alone or 3-OPT (inclusive of 2-
OPT) was run for a time 7. This way we are ensured that 2- and 3-OPT have as much
time as 4-OPT, and indeed they can run many convergences to beat the single one (or
very few) allowed to 4-OPT. In columns 3, 4 and 7, we report how many convergences
of 2-OPT, 3-OPT and 4-OPT were run in the time ¢. In columns 5 and 8 we report the
percentage value (with respect to the best value found by 2-OPT) of the best solution
found by 3-OPT and 4-OPT, respectively. Furthermore, in column 6 we report the
percentage gain of the 3-OPT solution versus the 2-OPT solution, and in column 9
the percentage gain of the 4-OPT solution versus the 3-OPT solution. In column 10
we report how many of the 3-optimal solutions generated over all convergences and
all instances were in fact also 4-optimal. Finally, in column 11, we report how many
times the best 3-optimal solution of each instance was also 4-optimal.

The table is full of interesting data, confirming and extending some of the results
observed by Lin (1965) (e.g., that 3-OPT is much better than 2-OPT, and that it finds
very good solutions for small n). The most important value reported is the average
improvement that can be gained by using 4-OPT in place of 3-OPT, which has been
written in bold (see column 9). It is clear how 4-OPT does not add anything (or
very little) to the power of 3-OPT for small graphs (i.e., n < 100), consistently with
Lin’s observations. However, by increasing n the advantage in using 4-OPT vs 3-OPT
becomes evident and substantial. This value grows with n and it soons becomes quite
large (e.g., for n = 2000 it is around 30%).

While for n < 50 many 3-optimal solutions are also 4-optimal, and the best 3-
optimal solution of the selected instances is always 4-optimal, this property ceases to
hold pretty soon. Indeed, out of the 601 3-optimal solutions found overall forn > 100,
only 6 were 4-optimal, and this statistics worsens to none for n > 200.

Finally, with respect to the running times, as we said there was no increase since we
allowed the same time to both 4-OPT and 3-OPT (even if, for n > 200, this meant that
we only allowed one convergence for 4-OPT). In running the 3-OPT optimization, we
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used our procedure (Lancia and Dalpasso 2020) which is better than the standard cubic
enumeration. It can be seen that the ratio between 3-OPT convergences and 4-OPT
convergences (see columns 4 and 7) is not too high, thereby showing that the increase
of time from 3-OPT to 4-OPT with our method is not as bad as the one observed by
Lin (1965).

In addition to the above tests, we did some more experiments with some medium-
to-large instances from the public repository TSPLIB, that are very far from being
random and are often taken from real-life problems. For each considered problem,
we (i) found local optimal tours using the 3-OPT neighborhood (from five different
random starting tours); (ii) for each such 3-optimal tour, we looked for the best 4-OPT
move trying to get an even better tour. The goal was to show that these 3-optimal
solutions are almost certainly not 4-optimal, and it proved to hold in all the cases we
considered, namely for the following problems: gr666, u724, rat783, dsj1000, d2103,
pcb3038, 115934 and pla7397 (note that the number of nodes can be deduced from
each instance name. E.g., d2103 has 2103 nodes).

6 Conclusions

In this paper we have described a new algorithm for finding the best 4-OPT move within
a local search strategy for the TSP. Since not only the ® (n*) enumerative algorithm,
but also the ©(n?) algorithm DYP of de Berg et al. (2020) are too slow even for
relatively small values of n, the application of 4-OPT best-improvement local search
to the TSP has never been really possible before. Furthermore, the fastest algorithm in
the literature, i.e., GLO (Glover 1996), could only be applied to three type of moves
out of the 25 possible.

Building on our previous works (Lancia and Dalpasso 2020; Lancia and Vidoni
2020), we have proposed a strategy based on picking halves of the selection starting
from the most promising, and combining them into forming full selections. In order
for this process to be fast, we employed sorted heaps to store the half selections, and
described an effective master-servant cycle to combine them. The results is a procedure
which can be used over all 4-OPT moves, and whose average complexity to find the
best move on a random tour is fitted well by a @ (n>->) function. Extensive experiments
have shown how our procedure outperforms DYP on all instances considered, which
included both random instances (uniform and geometric) and instances from the public
repository TSPLIB. Furthermore, our procedure is also better than GLO on graphs of
size n < 1000, while a hybrid combination of our procedure with GLO is better than
GLO alone over all instances considered in our experiments.

Among the future developments of our work, we can list: (i) experimenting the effect
of the addition of best-improving 4-OPT moves to existing local search algorithms
which were not using them. Also, experimenting with first-improvement other than
best-improvement, since our algorithm can be easily adapted to stop as soon as it
finds any improving move; (ii) applying these or similar ideas to other optimization
problems, besides the TSP, in which local search is based on a k-OPT scheme, i.e.,
swapping k elements of the solution with some other k; (iii) studying the computational
complexity of our algorithm from a theoretical point of view, and proving that it takes
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On3?) expected time to find the best move on a random tour. Of these, point (iii)
appears, by far, to be the most challenging.
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