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Abstract

We present a Satisfiability (SAT)-based approach for building Mixed Covering Arrays
with Constraints of minimum length, referred to as the Covering Array Number prob-
lem. This problem is central in Combinatorial Testing for the detection of system
failures. In particular, we show how to apply Maximum Satisfiability (MaxSAT)
technology by describing efficient encodings for different classes of complete and
incomplete MaxSAT solvers to compute optimal and suboptimal solutions, respec-
tively. Similarly, we show how to solve through MaxSAT technology a closely related
problem, the Tuple Number problem, which we extend to incorporate constraints. For
this problem, we additionally provide a new MaxSAT-based incomplete algorithm.
The extensive experimental evaluation we carry out on the available Mixed Covering
Arrays with Constraints benchmarks and the comparison with state-of-the-art tools
confirm the good performance of our approaches.
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1 Introduction

The Combinatorial Testing (CT) problem (Nie and Leung 201 1) addresses the question
of how to efficiently verify the proper operation of a system, where a system can be a
program, a circuit, a package that integrates several pieces of software, a GUI interface,
a cloud application, etc. This problem requires exploring the parameter space of the
system by iteratively testing different settings of the parameters to detect errors, bugs
or faults. If we consider the system parameters as variables, a setting can be described
as a full assignment to these parameters.

Exploring all the parameter space exhaustively, i.e., the set of all possible full
assignments, is, in general, out of reach. Notice that if a system has a set of parameters
P, the number of different full assignments is [],.p g, = O (g'1), where g, is
the cardinality of the domain of parameter p and g is the cardinality of the greatest
domain.

The good news is that, in practice, there is no need to explore all the parameter
space to detect errors, bugs or faults. We just need to cover a portion of the possible
parameter combinations (Kuhn et al. 2004). For example, most software errors (75%-
80%) are caused by certain individual parameters or by the interaction of just two of
them.

To cover that portion of parameter combinations exhaustively, Covering Arrays
(CAs) play an important role in CT. Given a set of parameters P and a strength
t, a Covering Array CA(N; ¢, P) is a test suite of N tests that guarantee to cover
all the possible interactions of ¢ parameters (referred as ¢-tuples). Since executing
a test in the system has a cost, we are interested in working with relatively small
covering arrays. We refer to the minimum N for which a CA(N; t, P) exists as the
Covering Array Number, denoted by CAN (¢, P). In particular, we are interested in
building an optimal CA, i.e., a covering array of length CAN (¢, P). Notice that it is
guaranteed that the number of tests required to cover all 7-way parameter combinations,
for fixed ¢, grows logarithmically in the number of parameters (Colbourn 2004), which
indicates that optimal or near-optimal covering arrays can be used in practical terms.
The computational challenge is to build optimal CAs in a reasonable time frame.

In this paper, we focus on Mixed Covering Arrays with Constraints (MCACs). The
term Mixed refers to the possibility of having parameter domains of different sizes.
The term Constraints refers to the existence of some parameter interactions that are not
allowed in the system. These forbidden interactions are usually implicitly described
by a set of constraints. The problem of computing an MCAC of minimum length,
to which we refer in this paper as the Covering Array Number problem, is NP-hard
(Maltais and Moura 2010).

There exist several greedy approaches that tackle the problem of building minimum
MCAC:s, such as PICT (Czerwonka 2006), based on the OTAT framework (Bryce et al.
2005), and ACTS (Borazjany et al. 2012), based on the IPOG algorithm (Duan et al.
2017). One downside of these approaches is that they become more inefficient as
the hardness of the set of forbidden interactions increases. Therefore, we are more
interested in constraint programming approaches, which are better suited for handling
constraints. For example, CALOT (Yamada et al. 2015) is a tool for building MCACs
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based on Satisfiability (SAT) technology (Biere et al. 2009) that can handle constraints
efficiently.

Within constraint programming techniques (Rossi et al. 2006), SAT technology
provides a highly competitive generic problem approach for solving decision prob-
lems. In particular, the decision problem to be solved is translated into a SAT instance
(a propositional formula) and a SAT solver is used to determine whether there is a
solution. In this paper, we will review in detail the CALOT tool, which essentially
solves a sequence of SAT instances to compute an optimal MCAC. Each SAT instance
in the sequence encodes the decision query of whether there exists an MCAC of a
certain length. By iteratively bounding the length, the optimum can be determined.

Since the problem of computing minimum MCACs is, in essence, an optimiza-
tion problem, we also consider its reformulation into the Maximum Satisfiability
(MaxSAT) problem (Biere et al. 2009), which is an optimization version of the SAT
problem.

We show empirically that MaxSAT approaches outperform ACTS and CALOT (the
state-of-the-art) once the suitable MaxSAT encodings are used. We evaluate both com-
plete or exact MaxSAT solvers (certify optimality) and incomplete MaxSAT solvers
(provide suboptimal solutions). In particular, we show that while complete MaxSAT
solvers perform similar to CALOT (substantially in contrast to previously reported
experiments with MaxSAT solvers (Yamada et al. 2015)), incomplete MaxSAT solvers
obtain better suboptimal solutions and faster than ACTS and CALOT on many
instances. This confirms the practical interest of incomplete MaxSAT approaches
because, in real environments, we are mainly concerned with obtaining the best pos-
sible solution within a given budget of runtime.

Having confirmed the good performance of MaxSAT approaches for computing
minimum MCACs, we explore another related problem, the Tuple Number (TN) Prob-
lem. Informally, the TN problem is to determine the minimum set of missing z-tuples
in a test suite of NV tests, or the maximum set of #-tuples that these N tests cover. This
problem is related to the Optimal Shortening Covering Arrays (OSCAR) problem
(Carrizales-Turrubiates et al. 2011) (which is NP-hard), where given a matrix of tests
the goal is to find a submatrix of a fixed number of tests and parameters that maximizes
the number of covered 7-tuples. These shortened covering arrays have been used to
improve the initialization of metaheuristic approaches for Covering Arrays (without
SUT constraints).

In this paper, we explore (for the first time) the Mixed and with Constraints variants
of the TN problem, assessing the performance of complete and incomplete MaxSAT
approaches. Obviously, this problem is of interest when N < CAN (¢, P).! We addi-
tionally present another incomplete approach based on MaxSAT technology to which
we refer as MaxSAT Incremental Test Suite (Maxsat ITS), that incrementally builds
the test suite with the help of a MaxSAT query that aims to maximize the coverage of
allowed tuples at every step.

The Covering Array Number problem is concerned with reporting solutions with
the least number of tests. From a practical point of view, whether we are satisfied with

I For N = CAN(t, P), the Tuple Number problem essentially corresponds to determine the number of
allowed tuples in the corresponding MCAC problem.
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suboptimal solutions will depend on the cost of the tests. This cost basically includes
the cost of generating the tests (computational resources) and the cost of testing the
system. In particular, when the cost is too prohibitive in terms of our budget, and we are
satisfied with covering a statistically significant portion of the tuples, we aim to solve
(even suboptimally) the Tuple Number problem. Therefore, there exist real-world
scenarios where all the approaches described in this paper are of practical interest.
The rest of the paper is structured as follows: Sect. 2 introduces definitions on CAs,
SAT/MaxSAT instances, constraints and SAT solvers. For computing MCACs of a
given length, Sect. 3 defines different SAT encodings and Sects. 4 and 5 describe tech-
niques to make the SAT encodings more efficient. Section 6 introduces the incremental
SAT algorithm CALOT for computing minimum MCACs. Subsequently, Sect. 7
defines MaxSAT encodings and Sect. 8 describes how to efficiently apply MaxSAT
solvers. For the Tuple Number problem, Sect. 9 defines a MaxSAT encoding and
Sect. 10 presents a new incomplete approach using MaxSAT solvers. To assess the
impact of the presented approaches, Sect. 11 reports on an extensive experimental
investigation on the available MCAC benchmarks. Finally, Sect. 12 concludes the

paper.

2 Preliminaries

We first introduce the definitions related to Systems Under Test and Covering Arrays.

Definition 1 A System Under Test (SUT) model is a tuple (P, ¢), where P is a finite
set of variables p of finite domain, called SUT parameters, and ¢ is a set of constraints
on P, called SUT constraints, that implicitly represents the parameterizations that the
system accepts. We denote by d(p) and g, respectively, the domain and the domain
cardinality of p. For the sake of clarity, we will assume that the system accepts at least
one parameterization.

In the following, we assume S = (P, ¢) to be a SUT model. We will refer to P as
Sp,and to ¢ as S,.

Example 1 As an example of SUT model, we focus on the domain of autonomous
driving. Table 1 shows the parameters and values, Sp, and the SUT constraints, Sy:

Definition 2 An assignment is a set of pairs (p, v) where p is a variable and v is a
value of the domain of p. A test case for § is a full assignment A to the variables in
Sp such that A entails S, (i.e. A = Sy) . A parameter tuple of S is a subset 7 C Sp.
A value tuple of S is a partial assignment to Sp; in particular, we refer to a value tuple
of length 7 as a ¢-tuple.

Example 2 Consider the SUT presented in Example 1. An example of test case is

{(L,dy), (E, hw), (S, ca), (M, cb)}.
{L, E} is a parameter tuple and {(L, dy), (E, hw)} a value tuple for t = 2.
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Table 1 Example of autonomous driving system under test

PeSp Abbrv. Values

Luminosity L Day (dy), Night (ni)

Environment E Highway (hw), Urban (ur), Country (co)
Motor M Combustion (cb), Electric (el)

Sensor S Camera (ca), Radar (ra), Lidar (li)

590

(L =ni) A(E =co)) = (S # ca)
((E = hw) Vv (E = co)) = (S £ 1i)
(M =el) — (E =ur)

Definition 3 A ¢-tuple 7 is forbidden if T does not entail S, (i.e. T = —S,). Otherwise,
it is allowed. We refer to the set of allowed ¢-tuples as Tat’s = {1t | T & Sy}, to the
set of forbidden 7-tuples as 7° ;’S = {1t | T = —3S,}, and to the whole set of -tuples in
the SUT model S as 7"5 = 7, U 7;.

When there is no ambiguity, we refer to ’Z:f’S, T ;‘S, TS as T,, T, r, T, respectively.

Example 3 The total number of 7-tuples |7 | for ¢ = 2 in the SUT of Example 1 is 37.
The set of forbidden tuples 7 is:

Ty = {(E, co), (M, eD)}, {(E, hw), (S, 1)}, {(E, hw), (M, eD)}, {(E, co), (S, i)}

Therefore, the number of allowed tuples |7, is 33.

Definition 4 A test case v covers a value tuple 7 if both assign the same domain value
to the variables in the value tuple, i.e., v = 7.

Example 4 In Example 1, the test case v = {(L, dy), (E, hw), (S, ca), (M, cb)} cov-
ers the following ¢-tuples for r = 2:

{(L,dy), (E, hw)}, {(L,dy), (S, ca)}, {(L,dy), (M, cb)},
{(E, hw), (S, ca)}, {(E, hw), (M, cb)}, {(S, ca), (M, cb)}

Definition5 A Mixed Covering Array with Constraints (MCAC), denoted by
CA(N;t,S), is a set of N test cases for a SUT model S such that all 7-tuples are
at least covered by one test case. We refer to parameter ¢ as the strength of the Cover-
ing Array.

The term Mixed reflects that the domains of the parameters in Sp are allowed to have
different cardinalities.

The term Constraints reflects that S, is not empty.

Example 5 An example of MCAC for the SUT in Example 1 is shown in Table 2:
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wtonomon dving SUT L E 5 M
(7] dy hw ca cb
9] ni hw ra cb
U3 ni ur ca el
U4 dy ur ra cb
vs dy ur li cb
[ dy co ca cb
v7 ni co ra cb
vg dy ur ra el
[ ni ur li cb
v10 ni ur li el
Zlalgﬁjmgu? (dgr’i\?ihz)sfgfffh;his L £ 5 M
corresponds to the CAN (2, S) vy dy ur el .
35} dy hw cb ca
U3 dy ur cb li
U4 dy co cb ca
vs ni hw cb ra
Ug ni ur el ca
v7 ni ur el li
Ug ni co cb ra

Definition 6 The Covering Array Number, CAN (¢, S), is the minimum N for which
there exists an MCAC CA(N; t, S). An upper bound ubCANE.S) for CAN(,S) is
an integer such that ub®AN®5) > CAN(z, S), and a lower bound [bCAN®5) is an
integer such that CAN (¢, S) > [bCAN®S),

When there is no ambiguity, we refer to ubCAN @S (1pCAN @Sy ag yb (1b).

Example 6 Given the SUT in Example 1, CAN (2, S) = 8 as shown in Table 3.

Definition 7 The Tuple Number, 7' (N; t, S), is the maximum number of z-tuples that
can be covered by a set of N tests for a SUT model S. An upper bound ub”V:%S)
for T(N; 1, S) is an integer such that ub” V%5 > T(N; ¢, S), and a lower bound
IbTWN:65) s an integer such that T(N; 1, §) > [T N:6:5),

When there is no ambiguity, we refer to ub? MV:-5) (1pTN:6.5)y as ub (Ib).

Example 7 Giventhe SUT modelin Example 1, 7'(8; 2, §) = 33since CAN (2, S) = 8
and there are exactly 4 forbidden 2-tuples. Additionally, 7(7;2,S) = 31 and
T(6;2,5)=29.

Definition 8 The MCAC problem is to find an MCAC of size N.
The Covering Array Number problem is to find an MCAC of size CAN (¢, S).
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The Tuple Number problem is to find a test suite of size N that covers T (N; ¢, S)
t-tuples.

The MCAC problem is a decision problem. The Covering Array Number and the
Tuple Number problems, to which we refer in short as the CAN (¢, S) and T (N; ¢, S)
problems, respectively, are optimization problems.

Now, we introduce the definitions related to the encodings and the SATisfiability-
based solving technology we will use to solve the problems defined above.

Definition 9 A literal is a propositional variable x or a negated propositional vari-
able —x. A clause is a disjunction of literals. A formula in Conjunctive Normal Form
(CNF) is a conjunction of clauses.

Definition 10 A weighted clause is a pair (¢, w), where c is a clause and w, its weight,
is a natural number or infinity. A clause is hard if its weight is infinity (or no weight
is given); otherwise, it is soft. A Weighted Partial MaxSAT instance is a multiset of
weighted clauses.

Example 8 The following Weighted Partial MaxSAT instance ¢ = {(xy, 2), (x2, 1),
(x1 V x2,3), (—x1 V —x3, 00)} contains exactly 3 soft clauses and 1 hard clause.

Definition 11 A truth assignment for an instance ¢ is a mapping that assigns to each
propositional variable in ¢ either O (False) or 1 (True). A truth assignment is partial
if the mapping is not defined for all the propositional variables in ¢.

Definition 12 A truth assignment / satisfies a literal x (—x) if 7 maps x to 1 (0). A
truth assignment / falsifies a literal x (—x) if / maps x to O (1). A truth assignment
I satisfies a clause if [ satisfies at least one of its literals; otherwise, it is violated or
falsified. The cost of a clause (¢, w) under [ is O if I satisfies the clause; otherwise, it
is w. Given a partial truth assignment 7/, a literal or a clause is undefined if it is neither
satisfied nor falsified. A clause c is a unit clause under / if ¢ is not satisfied by / and
contains exactly one undefined literal.

Definition 13 The cost of a formula ¢ under a truth assignment I/, denoted by
cost(1l, ¢), is the aggregated cost of all its clauses under 1.

Example9 Given I = {x; = 0,x; = 0} and the instance ¢ in Example 8, the
cost(1, @) is 6.

Definition 14 The Weighted Partial MaxSAT (WPMaxSAT) problem for an instance
¢ is to find an assignment in which the sum of weights of the falsified soft clauses is
minimal (referred to as the optimal cost of ¢) and all the hard clauses are satisfied. The
Partial MaxSAT problem is the WPMaxSAT problem when all the soft clauses have
the same weight. The MaxSAT problem is the Partial MaxSAT problem when there
are no hard clauses. The SAT problem is the Partial MaxSAT problem when there are
no soft clauses.

Example 10 The optimal cost of the instance ¢ in Example 8 is 1.
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Definition 15 An instance of Weighted Partial MaxSAT, or any of its variants, is unsat-
isfiable if its optimal cost is co. A SAT instance ¢ is satisfiable if there is a truth
assignment /, called model, such that cost (I, ¢) = 0.

Definition 16 An unsatisfiable core is a subset of clauses of a SAT instance that is
unsatisfiable.

Definition 17 Given a SAT instance ¢ and a partial truth assignment 7, we refer as Unit
Propagation, denoted by U P (1, ¢), to the Boolean inference mechanism (propagator)
defined as follows: Find a unit clause in ¢ under I, where [ is the undefined literal.
Then, propagate the unit clause, i.e. extend / withx =1 (x = 0)ifl =x (I = —x)
and repeat the process until a fixpoint is reached or a conflict is derived (i.e. a clause
in ¢ is falsified by 7).

We refer to U P (I, ¢) simply as U P(¢) when [ is empty.

Example 11 Given the SAT instance ¢ = {(x1 V x2), (x1 V —=x2 V x3 V x4)} and the
partial truth assignment I = {x; = 0}, UP(I, ¢) simplifies ¢ to {(x3 V x4)} and
extends I to {x; =0, xp, = 1}.

Definition 18 Let A and B be SAT instances.

A = B denotes that A entails B, i.e. all assignments satisfying A also satisfy B.
It holds that A |= B iff A A =B is unsatisfiable.

A Fyp B denotes that, for every clause ¢ € B, U P(A A —c¢) derives a conflict.
If AFyp Bthen A = B.

Definition 19 A pseudo-Boolean (PB) constraint is a Boolean function of the form
Z;’zl qil; © k, where k and the g; are integer constants, /; are literals, and ¢ € {<, <
b :7 27 >}'

Definition 20 A Cardinality (Card) constraint is a PB constraint where all ¢; are

equal to 1. An A-Most-One (AMO) constraint is a cardinality constraint of the form

Z?:l li < 1. An At-Least-One (ALO) constraint is a cardinality constraint of the form

>'_;li > 1. An Exactly-One (EO) constraint is a cardinality constraint of the form
n

Zi:l li=1

The interface of a modern SAT solver is presented in code fragment SATSolver. The
input instance is added to the solver with functions add_clause and add_retractable
(in case the clause can be retracted) (lines 5-7), which operate on a single clause,
while functions add and retract operate on a set of clauses. The last two functions
are overloaded to ease the usage of SAT solvers within MaxSAT solvers (lines 10-13
and 14-18). Variable n_vars indicates the number of variables of the input formula
(line 1).

Function solve (lines 8-9) returns UNSAT (SAT) if the input formula is unsatisfiable
(satisfiable) and sets variable core (model) to the corresponding unsatisfiable core
(model). Function assume (line 4) allows to place an assumption on the truth value
of a literal before function solve is called. Finally, modern SAT solvers also support
an incremental solving mode, which allows to keep the learnt clauses across calls to
the function solve.

@ Springer



Incomplete MaxSAT approaches for combinatorial testing

Code SATSolver: Members and functions interface

#Attributes
1 n_vars #number of variables of the formula loaded
2 core #last core found
3 model #last model found
#Methods
4 function assume(x : literal)
L #Sets the literal x in the solver trail

5 function add_clause(c : clause)
L #Adds the clause c to the solver

6 function add_retractable(c : clause)
L #Adds the clause c to the retractable list of clauses of the solver

7 function retract_clause(c : clause)
L #Retracts the clause ¢ from the solver’s list of retractable clauses

8 function solve()

#If formula is satisfiable, srarus < SAT, sat.model is updated

#1f formula is unsatisfiable, status <— UNSAT, sat.core is updated
9 return status

10 function add (¢ : SAT formula)
11 L foreach ¢; € ¢ do sat.add_clause(c;)

12 function retract(¢ : SAT formula)
13 L foreach ¢; € ¢ do sat.retract_clause(c;)

#0verloaded functions for SAT-based MaxSAT algorithms
14 function add (¢ : Weighted Partial MaxSAT formula)
15 foreach (c;, w;) € ¢ do
16 L L if w; = oo then sat.add_clause(c;) else sat.add_retractable(c;)

17 function retract(¢ : Weighted Partial MaxSAT formula)
18 L foreach (c;, w;) € ¢ do if w; # oo then sat.retract_clause(c;)

3 The MCAC problem as SAT

In this section, we present the SAT encoding described in Yamada et al. (2015) to
decide whether there exists a CA(N; ¢, S) for a given SUT model S = (P, ¢). Itis
similar to previous encodings described in Hnich et al. (2005, 2006); Banbara et al.
(2010); Nanba et al. (2012); Ansétegui et al. (2013).

In the following, we list the set of constraints that define the SAT encoding and
describe the semantics of the propositional variables they refer to. To encode each
constraint, we assume that AMO and EO cardinality constraints are translated into CNF
through the regular encoding (Ansétegui and Manya 2004; Gent and Nightingale 2004)
and the typical transformations (Tseitin 1983) of — and <> are implicitly applied.?

First, we define variables x; , , to be true iff test case i assigns value v to parame-
ter p, and state that each parameter in each test case takes exactly one value as follows

2 We replace A — B with (A Vv B), and A <> B with (A — B) A (A < B) where A and B are
disjunctions of literals.

@ Springer



C. Ansotegui et al.

(where [N] ={1,..., N}):

AN D xipu=1 (X)

i€[N] peP ved(p)

Second, as described in Nanba et al. (2012), to enforce the SUT constraints ¢, for
each test case i, we add the CNF formula that encodes the constraints of ¢ into SAT
and substitute each appearance of the pair (p, v) in ¢ by the corresponding literal on
the propositional variable x; , , for each test case i.

—X; Xi
CNF Lpy o Zhpl }) SUTX
/\ ( { p#uv’ ( )

ic[N] p=v

Third, we introduce propositional variables ci and state that if they are true, then
tuple T must be covered at test i, by forcing the variables p in the test case to be
assigned to the value specified in 7, as follows:

A N /N € —xipw (CX)

i€[N]teT, (p,v)eT

Notice that only z-tuples that can be covered by a test case are encoded, i.e., 7 € 7.
In Sect. 4, we discuss how to detect the ¢-tuples forbidden by the SUT constraints.

Finally, we state that every ¢-tuple t € 7,, must be covered at least by one test case,
as follows:

N Ve (©

€7, i€[N]

Proposition 1 Let Satc S he X ANCACX ASUTX. SatCX is satisfiable iff a
CA(N;t,S) exists.

Inspired by the incremental SAT approach in Yamada et al. (2015) (see Sect. 6),
we present another encoding where C and C X are replaced by CCX:

A N N\ €@ =t v, (a) (CCX)
i€[N]teT, (p,v)eT
Aed (b) (CCX)
e,
N\ @ = =) (c) (CCX)
tel,

Variables ci have now a different semantics, i.e., if they are true, t is covered by
test case i or by any lower test case j, where 1 < j < i (equation a). In order to
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guarantee that T will be covered by some test, notice that we just need to force ¢

to be true and c? to be false (variables ¥ are additionally included in the encoding).
This can be achieved by adding the unit clauses cﬁ' (equation b) and the implication
c?’ — —-c(r) (equation c) for every allowed tuple 7.

The seasoned reader may wonder why we do not simply replace equation (c) by
A T, —|c9. Indeed, this is possible. First, notice that UP on the conjunction of equa-
tions (b) and (c) will derive exactly the same. Second, for encoding some problems
where it is not mandatory to cover all the tuples (see Sect. 9 on encoding the Tuple
Number problem), we have to erase equation (b) from CCX and also guarantee that
if a tuple t is not covered in an optimal solution, i.e., civ has to be False, then the
related clauses in CC X have to be satisfied (these are hard clauses) and, if possible,
to be trivially satisfied, i.e., without requiring search. Equation (c) eases this case for
all the scenarios in Sect. 9. Notice that, once civ is False, clauses in equation (c) are
trivially satisfied and, by setting the remaining ci vars to True, clauses in equation (a)

are also trivially satisfied.

Proposition 2 Ler Sat>ys’ be X A CCX A SUTX. Satpes’ is satisfiable iff a
CA(N;t,S) exists.

Remark 1 There are some variations of equation (a) in CCX that can be beneficial
when using some SAT solvers, as we will see in Sect. 11.1. For example, we can use
full implication instead of half implication in equation (a), i.e., (ci <~ ci’] V Xipv)s
or we can even use (¢ — ci=1 v x; ) A (b < ¢i=1). Also, we can consider full
implication in equation (c) and, for some of the problems analyzed in Sect. 11.1, we
can even replace equation (c) by A, T, ﬁcg.

Example 12 We show how to build Satév X 10.0=2.5 for the SUT in Example 1, where

N = 10 is an upper bound ub for this SUT (see Sect. 4).
To encode the X constraint, we add:

X1,L,dy T X1,L0i =1, X1,Ehw + X1, Eur + X1,E,co =1, (Ex. X)
XU,M,cb + X1,M,e1 =1, X1,8,ca + X1,8,ra + X1,5,1i =1

X10,L,dy + X10,L,ni =1, X10,E,hw + X10,E,ur + X10,E,co =1,
X10,M,chb + X10,M,el =1,  X10,5,ca + X10,8,ra + X10,5,1i =1

Next, for each test (1, ..., 10), we encode the SUT constraints SUT X :
(X1,L,ni N X1,E,co) = —X1,S,ca (Ex. SUTX)
(X1,E.hw V X1,E,co) —> TX1,8.0i
X1,M,el = X1,E,ur
(X10,2,ni N X10,E,c0) —> TX10,S,ca
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(X10,E,hw V X10,E,c0) = TX10,5,1i

X10,M,el = X10,E,ur

Finally, the encoding of the C X and C constraints is shown below. We identify the
set of allowed tuples, (7,), as described in Sect. 4. In particular, there are |7,| = 33
allowed tuples as we mention in Example 3.

1 1
Cry = X1, Ldy, ---» Cpy = X1,M.el (Ex. CX)
1 1
Ctl - xl,E,hu)a D) C'[33 - xl,S,ll
10 10
cfl — xlO,L,dy’ ceey C7_-33 — xlO,M,el
10 10
Crp = X10,Ehw>  « -5 Cryy = X10,8,0i
1 2 10 1 2 10
(Cr. Ve, \/~~\/crl), R (cr33 Ve, V~-ch) (Ex. C)

To build Satévcz ;OJ:Z’S, we encode the CC X constraint instead of the C and CX
constraints:

1 0 1 0
Crp = € VXL Ldy, -y Cry ™ Cry VX1 Ml (Ex. CCX a)
1 0 1 0
Cyp ™ Cop VXLEhws -+ Cryy = Copy VXIS
10 9 10 9
CTl — CT1 \/xl(),[ﬁdy, ey CT33 — CT33 V X10,M,el
10 9 10 9 .
Cy = Cq V X10,E,hws -+ Cra — Cras V X10,S,li
10 10
e (Ex. CCX b)
10 0 10 0
Cyl ™ TCps ey Cppy ™ TCr (Ex. CCX¢)

Once we run a SAT solver on any of the previous SAT instances, if there exists
a CA(10; 2, S), it will return a satisfying truth assignment. To recover the particular
CA(10; 2, S) implicitly found by the solver, we just need to check the assignment to
the x; , , variables. For example, if x1,1 4y is True then parameter Luminosity takes
value day at test 1.

4 Preprocessing for the MCAC problem

In the context of the Covering Array Number problem, we define an upper bound
ub and a lower bound /b to be integers such that ub > CAN(t,S) > [b. When
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ub = 1b + 1, we can stop the search and report ub as the minimum covering array
number CAN(t, S).

To get an initial value for ub, we can execute a greedy approach to obtain a subop-
timal CA(N; ¢, §) and set ub to N. For example, in the experiments, we use the tool
ACTS (Borazjany et al. 2012) that supports Mixed Covering Arrays with Constraints.
Moreover, a lower ub also implies a smaller initial encoding.

Additionally, by inspecting the solution, i.e., the test cases that certify the suboptimal
CA(N; t, S), we can compute which tuples are not covered, the set of forbidden tuples,
since the suboptimal CA(N; t, S) guarantees to cover all allowed ¢-tuples.

Furthermore, let r be the maximum number of allowed 7-tuples associated with any
parameter tuple of length 7. Then, we can set [b = r — 1, since these r value tuples
(mutually exclusive) need to be covered by different test cases.

Algorithm ForbiddenTuples: Detection of forbidden tuples.

1 Input: SUT model S, SAT solver sat
2 sat.add(Sardy " S [X, SUTX])
3Tp =0

4 forr €7 do

5 for (p,v) € t do

6 L sat.assume(x, p y)

7 if sat.solve() = UNSAT then Ty <~ Ty Ut

8 return 7y

Using an approach like ACTS, not based on constraint programming techniques,
has a drawback. It may not be efficient enough if testing the satisfiability of S, (the
set of SUT constraints) is computationally hard. In this case, to detect the forbidden
tuples, we can simply apply algorithm ForbiddenTuples. This algorithm tests, for every
tuple t (lines 4-7), if it is compatible with the SUT constraints (line 2) through a SAT
query; if the solver results in unsatisfiability (line 7), the tuple is added to the set of
forbidden tuples 7, which is ultimately returned by the algorithm (line 8).

For + = 2, which is already of practical importance (Kuhn et al. 2004), the
experiments carried out in this paper show that this detection process is negligible
runtime-wise.

5 Symmetry breaking for the MCAC problem

As Yamada et al. (2015), we fix the r 7-tuples that conducted us to set the initial b
(see Sect. 4) to test cases {1, ..., r}. This helps us break row symmetries for the first r
test cases. We will refer to this as fixed-tuple symmetry breaking.

There are other alternatives. We can impose row symmetry breaking constraints as
Flener et al. (2002); since each row (test) represents a number in base 2, we can add
constraints to order the tests in monotonic increasing order, from test O to test N — 1.
We can also apply, as explained above, fixed-tuple symmetry breaking to the first r
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tuples (first partition) and apply row symmetry breaking constraints to the remaining
ub —1b + 1 test cases (second partition). Furthermore, we can impose an order among
the tuples in the first partition and the second partition, so that if two sets share the
same value for the fixed tuple, then the one representing the lower number must be in
the first partition.

Our experimental analysis shows that fixed-tuple symmetry breaking is superior
to any other of the mentioned alternatives. For lack of space, we restricted all the
experiments to this symmetry breaking approach.

Example 13 We show how to apply symmetry breaking to the SUT in Example 1.

(E, S) is the parameter tuple with the largest number of allowed tuples we selected.
Its set of allowed value tuples is: {t; = {(E, hw), (S, ca)}, 1o = {(E, hw), (S, ra)},
i3 = {(E,ur),(S,ca)}, u = {(E,ur),(S,ra)}, s = {(E,ur),(S,li)}, 76 =
{(E, co0), (S, ca)}, 1 = {(E, co), (S, ra)}}.

To apply the fixed-tuple symmetry breaking variant, we just need to fix each allowed
value tuple in a different test as shown below:

X1,E.hw N\ X1,8,ca (Ex. SYM X)
X2,E.hw N X2,8,ra
X3,E,ur N\ X3,8,ca
X4,E ur N\ X4,8,ra
X5,E,.ur N\ X5,8.1i
X6,E,co /\ X6,8,ca

X7,E,co N\ X7,8,ra

6 Solving the CAN(t, S) problem with Incremental SAT

In this section, we present the CALOT algorithm, which is an incremental SAT
approach for computing optimal covering arrays with SUT constraints described by
Yamada et al. (2015). The input to the algorithm is an upper bound ub (computed as
in Sect. 4), the strength ¢ and the SUT model S. In line 2, the incremental SAT solver
is initialized with the SAT instance SatéVC: )';b’t’s . Additionally, breaking symmetries
for the first [b + 1 tuples, as described in Sect. 5, are added to the SAT solver. The
output is the covering array number and an optimal model.

The algorithm works by iteratively decreasing the ub till it reaches /b + 1 (line
5) or the current SAT instance is unsatisfiable (line 6). To decrease the ub by one,
the algorithm adds the set of unit clauses /\TE% ci_l (line 7), which state that every
t-tuple is covered by a test case with an index smaller than i.

There is a subtle detail in lines 9 and 10. Whenever the algorithm finds a new upper
bound, variables x; , , related to the previous upper bound are fixed to the value in the
last model found (b,,,04¢; in line 8), so that these variables do not need to be decided
in the next iterations. As Yamada et al. (2015) report, not fixing these variables can
have some negative impact on the performance.
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Algorithm CALOT: Algorithm 2 in Yamada et al. (2015)

1 Input: upper bound ub, strength t, SUT model S

N=ub,t,§
2 sat.add(Satq oy )

3 Fix [b + 1 value tuples to break symmetries (see Section 5)
4 binodel <Y
sfori=N,..Ib+1do

if sat.solve() = UNSAT then return (i, by, 04.1)

6

7 | saradd(N;er ™Y
8

9

bmodel < sat.model
for T € 7, do
10 L for (p,v) € T do byogellxi,p,v]l ? sat.add({x; py}) 2 sat.add({—x; p o}

11 return (Ib + 1, byodel)

Remark 2 The original (Yamada et al. 2015)’s algorithm pseudocode is slightly dif-
ferent. First, it assigns the i-th test at iteration i to the value it had in the previous
model found instead of assigning the i 4 1-th test. This does not correspond to the
description given in the text of the paper and may lead to an incomplete algorithm.

Second, the set of constraints (a) (CC X), described in Yamada et al. (2015), does
not set cév to True as we do in this paper, which makes the pseudocode perform a
dummy first step that can cause to report a wrong optimum. We think that these are
merely errors in the description, and we have fixed them. Since the tool CALOT is not
available from the authors for reproducibility, we have tried to do our best to reproduce
(or extend) the idea behind their work.

In Sect. 8, we will see that this SAT incremental approach resembles how SAT-based
MaxSAT algorithms behave (Ansétegui et al. 2013; Morgado et al. 2013). Actually, in
contrast to Yamada et al. (2015), we show that MaxSAT technology can be effectively
applied to solve Covering Arrays.

7 The CAN(t, S) problem as partial MaxSAT

Ansétegui et al. (2013) proposes an encoding into Partial MaxSAT to build covering
arrays without constraints of minimum size. The main idea is to use an indicator
variable u; that is True iff test case i is used to build the covering array. The objective
function of the optimization problem, which aims to minimize the number of variables
u; set to True, is encoded into Partial MaxSAT by adding the following set of soft
clauses:

N\ (i1 (SoftU)

i€[lb+2...N]

Notice that we only need to use N — (/b + 1) indicator variables since we know that
the covering array will have at least /b + 1 tests (see Sect. 4).
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To avoid symmetries, it is also enforced that if test case i 4 1 belongs to the minimum
covering array, so does the previous test case i:

/\ (i1 — u;) (BSU)
iellb+2..N—1]

Then, variables u; are connected to variables ci, expressing that if we want test i
to be the proof that T is covered, then test i must be in the optimal solution?:

A AN G (CU)

i€[lb+2...N] 17T,
Proposition 3 Ler PMSat)y"5'" be SoftU A BSU A CU A Saty{*. If N >

CAN(t, S), the optimal cost of the Partial MaxSAT instance PM Sa tN LSIb
CAN(t,S) — (Ib + 1), otherwise it is 00.

In order to build the Partial MaxSAT version of Satévg}’(s, we just need to change
how variables u; are related to variables ci. This constraint reflects that if u; is False
(i.e., test i is not in the solution and, therefore, due to constraint BSU, none of the
tests > i cannot be in the solution either), then the tuple 7 has to be covered at some
test below i:

A AN G (ccu)

i€[lb+2..N)teT,

Proposition 4 Ler PMSat}yi>'"" be SoftU A BSU A CCU A SatXd If N >
CAN(t, S), the optimal cost of the Partial MaxSAT instance PMSat]CVéI)’(S’lb is

CAN(t,S) — (Ib + 1), otherwise it is oo.

Remark 3 In Ansétegui et al. (2013), variables u; are instead connected to variables
Xi,p,v in the following way:

/\ Nwio \/ xipw (XU)

N] peP ved(p)
This is a more compact encoding but it requires Eq. X to use an AMO constraint
instead of an EO constraint.

Finally, we can convert these Partial MaxSAT instances into Weighted Partial
MaxSAT modifying SoftU as follows:

N uiow) (WSoftU)

ie[lb+2...N]

3 Notice that 7 could be covered by other tests but the respective ci variables be False.
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If we use w; = 2/~»+2) we naturally introduce a lexicographical preference in
the soft constraints. This is a key detail to alter the behaviour of SAT-based MaxSAT
algorithms when solving Covering Arrays. If the MaxSAT solver applies the stratified
approach (Ansétegui et al. 2012) (see for more details Sect. 8), it suffices to use
w; =1 — (Ib+2) + 1, i.e., to increase the weights linearly. This is of interest since
a high number of tests in WSoftU can result in too large weights for some MaxSAT
solvers.

Proposition 5 Let W PM Sat>¢i>'" be WSoftU A BSU A CCU A Sat}ely.

IfN > CAN(t, S) and w; = 21=*2) the optimal cost of the Weighted Partial
MaxSAT instance WPMSatévg)’(S’lb is 2CAN@)=Ub+D) _ 1 otherwise it is oo.

IfN > CAN(t, S) and w; = i —(Ib+2)+1 the optimal cost of the Weighted Partial
MaxSAT instance W PM Sat ;52" is (14+-n) -n/2 wheren = CAN (1, §) — (Ib+ 1),

otherwise it is 00.

Example 14 We extend our working example to obtain the Partial MaxSAT and
Weighted Partial MaxSAT encodings described in this section. We first describe how
we encode SoftU (left) and BSU (right) constraints:

(—u10, 1) .
(—ug, 1) ulgo N u: (Ex. SoftU and BSU)
(—ug, 1)

Recall thatin ourexample ub = 10 and /b = 6 (see Examples 12 and 13). Therefore,
we will have N — (Ib + 1) = 10 — (6 + 1) = 3 u; indicator variables.

To build the PMSatéV;]O"ZZ’S’I ~ instance we add to Satg;lo’tzz’s the CU

constraint:
10 10
Crl —> UL)y ey CT33 —> U110 (EX. CU)
9 9
C7p = U9, ooy Cppy —> U9
3 8
Cyp —> U8, ..., Cp —> Ug
To build PMSatéVC:)io’t:ZS’lb:6 we add to Satévg§0":2’s the CCU constraint:
—c? > u - - (Ex. CCU)
7 105 «es Crs uio X.
8 3
=Cr, > U9, ..., TCr. —> U9
7 7
—'CT1 — ug, ..., —'CT33 — Ug

The weighted counterparts, WPMSatéV;lo"zz’S’lh:6 and WPMSatéVC:;O’tzz’S’lb:q

need only to replace SoftU by WSoftU (using w; =i — (Ib + 2) + 1), as follows:

(—u10, 3) (Ex. WSoftU)
(—ug, 2)
(—ug, 1)
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To build the resulting MCAC from the MaxSAT solver truth assignment, we will
discard the x; , , vars whose corresponding u; is assigned to False (i.e. test i does not
belong to the solution), and proceed as in Example 12.

8 Solving the CAN(t, S) problem with MaxSAT

In this section, we show that SAT-based MaxSAT approaches can simulate*
the CALOT algorithm, while the opposite is not true. This is an interesting insight
since the MaxSAT approach additionally provides the option of applying a plethora
of MaxSAT algorithms.

Let us first introduce a short description of SAT-based MaxSAT algorithms. For
further details, please consult (Ansétegui et al. 2013; Morgado et al. 2013). Roughly
speaking, SAT-based MaxSAT algorithms proceed by reformulating the MaxSAT opti-
mization problem into a sequence of SAT decision problems. Each SAT instance of
the sequence encodes whether there exists an assignment to the MaxSAT instance with
a cost less than or equal to a certain k. SAT instances with a k less than the optimal
cost are unsatisfiable, while the others are satisfiable. The SAT solver is executed in
incremental mode to keep the clauses learnt at each iteration over the sequence of SAT
instances. Thus, SAT-based MaxSAT can also be viewed as a particular application of
incremental SAT solving.

There are two main types of SAT-based MaxSAT solvers: (i) model-guided and
(ii) core-guided. The first ones iteratively refine (decrease) the upper bound and
guide the search with satisfying assignments (models) obtained from satisfiable SAT
instances. The second ones iteratively refine (increase) the lower bound and guide the
search with the unsatisfiable cores obtained from unsatisfiable SAT instances. Both
have strengths and weaknesses, and hybrid approaches exist (Ansétegui et al. 2016;
Ansotegui and Gabas 2017).

8.1 The linear MaxSAT algorithm

The Linear algorithm (Eén and Sorensson 2006; Le Berre and Parrain 2010), described
in Algorithm Linear, is a model-guided algorithm for WPMaxSAT. Let ¢ = ¢5 U ¢,
(line 1) be the input WPMaxSAT instance, where ¢ (¢y) is the set of soft (hard)
clauses in ¢.

Ateach iteration of the Linear algorithm, the SAT instance solved by the incremental
SAT solver is composed of: (i) the hard clauses ¢;, (line 2), which guarantee that
any possible solution is a feasible solution; (ii) the reification of each soft clause
(ci, wi) € ¢s into clause (c; V b;), where b; is a fresh auxiliary variable which acts as
a collector of the truth value of the soft clause (line 3); and (iii) the CNF translation of
the PB constraint Z(c,-.,w,-) g, Wi - bi = k, where k = ub — 1 bounds the aggregated
cost of the falsified soft clauses, i.e., the value of the objective function.

Initially, ub is setto (3_ ., u)eg, Wi + 1) (line 4), that is semantically equivalent to
oo. Then, iteratively, if the incremental SAT solver returns satisfiable, ub is updated

4 By simulate, we informally refer to perform the same sequence of upper bound refinements and the same
filtering based on unit propagation.
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Algorithm Linear: Linear SAT-based algorithm

1 Input: Weighted Partial MaxSAT formula ¢ = ¢5 U ¢y, SAT solver sat
2 sat.add(¢y)
3 sat.add({c; V bj|(c;, w;) € ¢s})
4 ub < Z(Ci,w,-)equ w; + 1
Pb = Xiepwpeps Wit bi <ub—1
sat.add(pb.to_cnf)
while True do
if sat.solve() = UNSAT then return (ub, sat.model)
ub « Z(Ci,wi)e% w; - sat.model[b;]
0 sat.add(pb.update(ub — 1))

e ® 9 w

—

to (Z(ci,wi)e% w - sat.model[b;]) (line 9)5; otherwise, ub is the optimal cost (line 8).
If the input instance is unsatisfiable the algorithm returns Z(Cl_ wpeep, Wi +1@e., 00).

A technical point to mention is that the PB constraint is translated into SAT thanks
to an incremental PB encoding (line 5) so that whenever we tighten the upper bound,
instead of retracting the original PB constraint and encode the new one, we just need to
add some additional clauses (line 10). Additionally, if all the weights in the soft clauses
are equal, instead of using an incremental PB encoding, we can use an incremental
cardinality encoding for which more efficient encodings do exist.

Proposition 6 The Linear algorithm with Weighted Partial MaxSAT instance
WPM Satévé’)’(s’lb as input can simulate the CALOT algorithm (excluding lines 9 and
10).

In the first place notice that in the worst case the Linear algorithm will decrease
the current upper bound by one unit as the Algorithm CALOT. Then, the key point
establishing the connection of the Linear algorithm with the CALOT algorithm is to
show that, given the same upper bound k to both algorithms, the Linear algorithm can
propagate the same set of ci_l variables (line 7 in Algorithm CALOT).

Let us recall that the Linear algorithm, with input ¢ = WPM Satévg,’(s’lb, will
generate a sequence of SAT instances composed of the original hard clauses ¢y, the
reification of the soft clauses /\(c,',wi)edzy (¢; V b;), the translation to CNF of the PB
constraint Z(Ci,wi)eqbs w; - b; < k, where (c;, w;) represents the i-th soft clause in
WPM Satévg)’(s’lb, i.e., (—u;, 21 _(l”+2)) when using the exponential increase, and the
current upper bound k.

Proposition 7 If ¢ = W P M Sat5>"", then

CCU A /\ (—u; V b)) A Z 2=+ p <k byp

(—u; 20~ +2) ey (—u; 20~ Wb +2) gy

/\ /\ ci_l.

k<i<N+11€T,

5 sat.model[b;] is 1 if b; is assigned to True in the model, otherwise it is 0.
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First of all, notice that the weight of a higher index test is strictly greater than
the aggregated weights of the lower index tests. Given an upper bound k, an effi-
cient CNF translation of the PB constraint will allow Unit Propagation (UP) to
derive that all bs associated with soft clauses with a weight greater than k must
be False. Then, from the set of clauses that reify the soft clauses (of the form
—u; V b;), UP will also derive that the corresponding u; vars must be False and,
from the set of hard clauses CCU, UP will derive that the corresponding ci’l must
be true.

If the input problem is a Partial MaxSAT instance, i.e., PM Satévg)’(s’lb where the i-
th soft clause is of the form (—u;, 1), the Linear algorithm uses a cardinality constraint
instead of a PB constraint to bound the aggregated cost of the falsified soft clauses. In
this case, we can only guarantee that CCU A\, 1yeg, (Ui VDAY Ly 1yep, bi <
k = /\k<[§N+1 /\feﬂ ci_l. Notice that, given an upper bound k, UP cannot derive
on Z(—'ui,l) cés b; < k the set of b;s that must be False, because all correspond to soft
clauses of equal weight.

CALOT algorithm cannot simulate the Linear Algorithm While the CALOT
algorithm decreases the upper bound by one at each iteration, the Linear algorithm
can decrease it more aggressively. This is the case when it finds a model with a lower
cost than k — 1 (line 9), which can significantly reduce the number of calls to the SAT
solver.

8.2 The WPM1 MaxSAT algorithm

The Fu&Malik algorithm (Fu and Malik 2000) is a core-guided SAT-based MaxSAT
algorithm for Partial MaxSAT instances. In contrast to the Linear algorithm, which
uses the models to iteratively refine the upper bound, the Fu&Malik algorithm uses
the unsatisfiable cores to refine the lower bound. In particular, the initial SAT instance
¢o explored by the Fu&Malik algorithm is composed of the hard clauses in the input
MaxSAT instance ¢y, plus the SAT clauses c¢; extracted from the soft clauses (c;, w;).
We refer to these ¢; clauses as soft-indicator clauses.

At each iteration, if ¢y is satisfiable, the optimum is k. If ¢ is unsatisfiable, the
clauses in the unsatisfiable core retrieved by the SAT solver are analyzed. If none of
the clauses is a soft-indicator clause, the Partial MaxSAT formula is declared unsat-
isfiable and the algorithm stops. Otherwise, the core tells us that we need to relax
the soft-indicator clauses, i.e., we need to violate more clauses. To construct the next
instance, @i +1, each soft-indicator clause in the core of ¢y is relaxed with a fresh aux-
iliary variable b and a hard EO cardinality constraint is added on these new variables,
indicating that at least one clause must be violated (this is what the core told us) and
at most one clause is violated (this prevents jumping over the optimum).

The WPM1 algorithm (Ansétegui et al. 2009; Manquinho et al. 2009) is an exten-
sion of the Fu&Malik algorithm that solves Weighted Partial MaxSAT instances by
applying the split rule for weighted clauses. In particular, we are interested in using the
Stratified WPM1 algorithm (WPM1) (Ansétegui et al. 2012), which clusters the input
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clauses according to their weights.® These clusters were originally named as strata
in Ansétegui et al. (2012). The algorithm incrementally merges the clusters solving
the related subproblem until all clusters have been merged. In its simpler version, all
the clauses in a cluster have the same weight (called the representative weight), and
clusters are added in decreasing order with respect to the representative weight, but
other strategies can also be applied (Ansétegui et al. 2012).

Algorithm WPMI1: Stratified WPM1

1 Input: Weighted Partial MaxSAT formula ¢, SAT solver sat
2 Pk, bre, status < @, ¢, SAT

3 while True do

4 if status = SAT then

5

6

sat.add(¢pg; < next_stratum(¢yk, dre))
Dwks Pre < Pk Y bsi> Pre \ st
7 if (status < sat.solve()) = SAT then
8 L if ¢ro = ¥ then return (cost(sat.model, ¢), sat.model)
9 else
10 if (to_relax < core_analysis(¢yi, sat.core)) = ¢ then return (co, ¥)
1 relaxed, B ,residuals < split_and_relax(to_relax, sat.n_vars)
12 sat.retract(to_relax)
13 sat.add(¢prx < relaxed U (CN F(ZheB b=1),00))
14 bwk> Pre < (Pwk \ to_relax) U ¢rx, pre Uresiduals

In the WPMI1 algorithm, variable ¢, represents the formula that contains the
merged clusters (strata) so far, while ¢,. represents the remaining weighted clauses
from the original input instance ¢. Whenever we solve to optimality the current
instance ¢y, i.e., the SAT solver returned a SAT answer in the last call (line 4)
but ¢, # @, function next_stratum updates variable ¢y, to the new stratum (cluster)
to be merged with ¢wk7 (the working SAT instance (line 5) and variables ¢y, @re
are updated accordingly (line 6)). Otherwise, the SAT solver returned UNSAT in the
previous call, meaning that we are still optimizing the current subproblem ¢,,; and
need to call the SAT solver again (line 7).

If the SAT solver returns a SAT answer and all the original clauses in ¢ have been
considered, i.e. ¢, = @, then we have optimized the input instance ¢ and return its
cost and an optimal model (line 8).

If the SAT solver returns an UNSAT answer, first we analyze the unsatisfiable core
returned by the SAT solver (line 10) and return the soft-indicator clauses to be relaxed
in variable to_relax, if any; otherwise, we have certified that the set of hard clauses
is unsatisfiable, i.e., we return cost co and an empty model.

Function split_and_relax (line 11) first applies the split rule to the soft-indicator
clauses in to_relax and generates two sets, one where all the clauses are normalized to

6 Recall that hard clauses have weight co.

7 In Ansotegui et al. (2012), the first call to next_stratum returns the cluster of all hard clauses since their
representative weight is oo
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have the minimum weight, and another with the residuals of each clause with respect to
the minimum weight in ro_relax. Second, the set of clauses with the minimum weight
are extended, each with an additional fresh variable and stored in the set relaxed as
in the Fu&Malik algorithm. The new fresh variables are returned in set B.

Finally, the original set of clauses to_relax is retracted from the SAT solver (line
12), and the new set relaxed is added to the working SAT instance plus the cardinality
constraint that increases the lower bound as in the Fu&Malik algorithm (line 13).8 In
line 14, ¢« is updated to reflect the changes in the SAT working formula, and the
remaining formula ¢, is extended with the residuals generated from the application
of the split rule.

As a final remark, notice that if the statements in grey boxes of the WPM 1 algorithm
are erased and function next_stratum is instructed to report sequentially, first the hard
clauses and then the soft clauses, we get the original Fu&Malik algorithm.

In the context of the Covering Array Number problem, the Fu&Malik algorithm
on the PM Saté\]g)’(s b instance will perform a bottom-up search, i.e, the first query
will correspond to the question of whether the covering array can be constructed with
k = Otests, then with k = 1 tests, etc. This approach does not provide any intermediate
upper bounds since the only query answered positively corresponds to the optimum.

However, interestingly, by considering the weighted version of the Fu&Malik algo-
rithm, we can perform a top-down search on the Covering Array problem and provide
intermediate upper bounds.

Proposition 8 The Stratified WPM 1 algorithm with input WPMSatéVg)‘(S’lb can sim-
ulate the CALOT algorithm (excluding lines 9 and 10).

Back to the context of covering arrays, each cluster in WP M Satévg)’(s’lb would be

composed of a single soft clause (—u;, w;), except the cluster containing all the hard
clauses. The first subproblem seen by the Stratified WPM1 algorithm encodes the
query of whether one can build a covering array using N tests. The next subproblem
incorporates the first soft clause (—u y, wy) and encodes the query of whether one can
construct the covering array using N — 1 tests. Notice that each —u; will propagate,
according to CCU, the corresponding ci’l vars as in the CALOT algorithm. Notice
also that every solution of a subproblem is an upper bound for the covering array.

The discussion of this section has provided insights into how to solve Covering
Arrays through MaxSAT, but also into how to fix similar difficulties in other problems
where MaxSAT is not yet effective enough.

8.3 Test-based Streamliners for the CAN(t, S) problem

Notice that a solution fora CAN (¢, S) problem can be extended to multiple solutions
in the previous MaxSAT translations. This happens when CAN (¢, §) < N, since the
assignment to the x vars related to any test i with i > CAN(z, S) (useless from the
point of view of the CAN(t, S) problem) still needs to be consistent with the X and
SUT X constraints. In general, notice that SUT X can be NP-complete.

8 Notice that (CNF(Zbebfvar: b = 1), 00) is a set of clauses that have co weight.
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Lines 9 and 10 of the CALOT algorithm, as described in Sect. 6, fix that problem
but cannot directly be applied within MaxSAT algorithms since the solver is not aware
of the CAN(t, S) problem semantics.

However, we can reproduce a similar effect. At the preprocessing step, we can build
a dummy test case v by computing a solution to S, (e.g. with a SAT solver) or select
any of the test cases in the solution returned by the ACTS tool when computing the
upper bound (see Sect. 4). Then, we can state in the MaxSAT encoding that if a given
test i is not part of the optimal solution (i.e., u; is False), then the corresponding x
vars are set to the value in the test case v.

A\ —ui =\ Xipow (NUX)

ie[lb+2...N] (p.v)ev

The dummy test case v exactly plays the role of the so-called streamliner constraints
(Gomes and Sellmann 2004), which rule out some of the possible solutions but make
the search of the remaining solutions more efficient.

There is yet another way to mitigate that potential bottleneck. We can indeed extend
SUT X clauses for test i with literal —u;. Therefore, whenever test i is no longer in
the optimal solution (i.e. ; is False), the corresponding SUT constraints are trivially
satisfied. However, in the experimental investigation, we confirmed that this option is
less efficient than adding NU X clauses.

Example 15 For the SUT in Example 1, let us assume that we use the following dummy
test v = {(L, dy), (E,ur), (S,ra), (M, cb)}. Then, the NU X encoding for v is:

—u10 = (X10,L,dy A X10,E,ur A X10,5,ra /N X10,M,cb) (Ex. NUX)
—ug — (X9,L.dy N X9, E ur NX9.S.ra N X9, M,cbh)

—ug — (X8,L.dy N X8,E,ur N X8,8,ra N X8,M,cb)

9 The T(N; t, S) problem as weighted partial MaxSAT

For some applications, we may not be able to use as many test cases as the covering
array number (e.g. due to budget restrictions), but we may still be interested in solving
the Tuple Number problem, i.e., to determine the maximum number of covered ¢-tuples
we can get with a test suite of fixed size.

Once again, MaxSAT technology can play an important role when SUT constraints
are considered. Moreover, the size of the SAT/MaxSAT encodings for this problem
are smaller than encodings for computing the Covering Array Number, since fewer
tests are taken into consideration.

In the following, we show how we can modify the Sa tév Xt S and Satévg)’(s formulae
to become Partial MaxSAT encodings of the Tuple Number problem.

The basic idea is that we need to soften the hard restriction that enforces all allowed
t-tuples to be covered. To this end, we modify the SAT instance Satév Xl 5 as follows:
First, we soften all the clauses from Eq. C which encode that every ¢-tuple T must
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be covered by at least one test case, therefore allowing to violate (or relax) these
constraints. For the sake of clarity, although not required for soundness, we introduce a
new set of indicator variables c; thatreify each ALO constraint in Eq. C by introducing
the following hard constraints:

N\ (oo \/ ) (RC)

tel, i€[N]

Then, we add the following set of soft clauses:

/\ (¢, 1). (SoftC)

tel,

Finally, we we replace in Sat/CV Xt 5 the set of constraints C (the hard constraint that

forced to cover all the tuples) by the previous two sets of constraints.

Proposition9 Let S be a SUT model and let TPMSatév)’(t’S be Satév)’(t’s {WT/\RC }
The optimal cost of TPMSat(" is |T,| — T(N; 1, S).

Remark 4 Evenif N > [b, we cannot use fixed-tuple symmetry breaking since we do
not know whether the ¢-tuples that we fix will lead to an optimal solution. Therefore,
fixed-tuple symmetry is disabled for all the encodings in this section.

Remark5 When computing the tuple number, we can avoid the step of detecting all
forbidden tuples since the encoding remains sound, i.e., we can interchange 7, by
T . Notice that those ¢, vars related to forbidden tuples will always be set to False.
Moreover, notice that a core-guided algorithm may potentially detect easily as many
unsatisfiable cores as forbidden tuples which include just the unit soft clause that
represents the forbidden tuple.

In case we want to extend Satévg)’(s to compute the tuple number, we just need
to notice that the previously defined role of ¢; corresponds exactly to variable ¢ in
S atévétks, so we just need to soften the hard unit clauses civ (described in CC X) with
weight 1.

N
Proposition 10 Let S be a SUT model and let TPMSatéVg)’(S be Satgg)’(s {(i;]\’,;) }
The optimal cost ofTPMSatéVg)’(S is |7, — T(N;t,S).

Example 16 We show how to build 7 P M Satév x 100=2.5 for the SUT in Example 1.
We must create a new variable ¢; for each value tuple in 7, and then replace

constraint C in SATéVX: 10.4=2,5 (see Example 12) by RC (left). Finally, we have to
add the SoftC soft clauses (right):
Cr < (c%l \ c%l VARERY c%?) (cgy, D
: : (Ex. RC and SoftC)
Cryy < (el vl vieveld) (Crys> 1)
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Forthe TPM Satév Y )1(0”:2’5, we just have to soften, with weight 1, the set of clauses

from CCX (b) in SAT = ""=** (see Example 12).

In what follows, we present two extensions.

9.1 Combining the CAN(t, S) and T(N; t, S) problems

The Covering Array and Tuple Number problems can lead to thinking about a more
general formulation of the optimization problem where we want to maximize the
number of covered ¢-tuples while minimizing the number of test cases. Notice that
it will depend on the value of N with respect to the covering array number (not
necessarily known a priori) whether we are, in essence, solving the covering array
number or the tuple number problem.

To this end, we take the PM Satév Xt ,5ib encoding of the Covering Array Number
problem for a SUT model S, N tests and strength 7. As earlier shown in this section,
we first replace the set of hard constraints C by RC and SoftCWU.

N\ (o luil + 1. (SoftCWU)
€Ty,

Notice that we prefer violating all soft clauses (—u;, 1) over violating a single soft
clause (c¢, |uj| + 1). This way, we guarantee that any solution to our new Weighted
Partial MaxSAT instance maximises the number of covered 7-tuples while minimises
the number of needed test cases.

Proposition11 If N > CAN(t,S), the optimal cost of the Weighted Partial
MaxSAT instance P M Sat);>5"* [w} is CAN(z, S) — (Ib+ 1)+ (|1 Ta] —
T(N:t,8))(lui|+1), otherwise itis N — (Ib+1)+ (|To| — T (N; t, S)) - (Juj| +1).°

The same idea can be applied to P M Satév (’:t)’(s’lh by softening the unit hard clauses

(c?’ ) in equation (b) from CC X with weight |u;| + 1. Here, it is important to recall
the discussion in Sect. 3 on the need of equation (c) in CC X. The other, perhaps more
natural, alternative was to replace equation (c) in CC X by /\TE% ﬁcg. The problem
arises when, in an optimal solution, t is not covered, what also implies that (ciV ) is
False. Notice that we need to satisfy all clauses related to T in CCX but, in order to
do that, we need to set all ci vars to False. This may not be compatible with equation
CCU (clauses of the form —|ci_1 — u;) when some test i is discarded to be in the
solution and variable u; is set to False, since UP will derive in CCU that ci’l is True.
In this case, a contradiction is reached. On the other hand, as discussed in Sect. 3,
equation (c) allows to set all ci vars to True when (ciV ) is False and trivially satisfy
all clauses in CC X related to .

9 Notice that if N > CAN(t, S), then |7;| — T(N;t, S) is 0. However, we keep this expression in case
we want to interchange 7, by 7 . i.e., if we do not prefilter the forbidden tuples (see Remark 5).
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Proposition 12 If N > CAN(t, S), the optimal cost of the Weighted Partial MaxSAT

instance PMSatévg)’(S’lb {%} isCAN(t,S)—(Ub+ 1)+ (74| —T(N;1,5))-

(lui| + 1), otherwise itis N — (Ib + 1) + (|T;| — T(N; t, S)) - (lui| + 1). °

9.2 The CAN(t, S) problem with relaxed tuple ratio coverage as MaxSAT

We can tackle other realistic settings where we still want to use the minimum number
of tests, but there is no need to achieve a 100% ratio of covered ¢-tuples (mandatory
per definition in Covering Arrays). Notice that the last tests that shape the covering
array number tend to cover very few not yet covered ¢-tuples. Therefore, if these tests
are expensive enough in our setting, we may consider relaxing the ratio coverage and
skip these tests.

The mentioned problem can be encoded by replacing the previously soft constraints
on the c¢; vars with a hard cardinality constraint on the minimum number of ¢-tuples
to be covered as follows:

> e = (17l (CCard)
e,

where rt is the ratio of allowed ¢-tuples that we want to cover. Notice that, for efficiency
reasons, CCard can be also described as ZTE% —cr < [|74] - (1 —ro)].

Remark 6 With this formulation, we cannot use the fixed-tuples symmetry breaking
since we do not know whether we will require at least /b tests to cover the specified
ratio of allowed #-tuples.

Proposition 13 Let RT PMSarl¢s™"" be PMSarli™"=" [ <Cerd). The optimal

cost ofRTPMSaIICVg)’(S’” is the minimum N’ such that T(N',t, S) > [|1,| - rt].

10 Incomplete MaxSAT algorithms for the T(N; t, S) problem

As argued earlier, if certifying optimality is not a requirement and we are just interested
in obtaining a good suboptimal solution in a reasonable amount of time, we can
apply incomplete MaxS AT algorithms on the encodings of the Tuple Number problem
described in the previous section. Additionally, in this section, we present a new
incomplete algorithm to compute suboptimal solutions for the Tuple Number problem.

10.1 MaxSAT based incremental test suite construction

A way to reduce the search space of any constraint problem is to add the so-called
streamliner constraints (Gomes and Sellmann 2004). We recall that these constraints
rule out some of the possible solutions but make the search for the remaining solutions
more efficient. However, in practice, streamliners can rule out all the solutions.
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In our context, the streamliner constraints correspond to a set of tests that we think
have the potential to be part of optimal solutions. By fixing these tests, we generate a
new covering array problem, easier to solve, but whose Covering Array Number can
be greater than or equal to that of the original covering array, because we may have
missed all the optimal solutions. We iterate this process until all #-tuples get covered.
To select the k candidate test to be fixed at each iteration, we solve the Tuple Number
problem restricted to length k.

In the context of the Tuple Number problem, this iterative process of fixing tests
should not only finish when all z-tuples have been covered but also when the requested
N tests have been fixed.

To that end, here we combine a greedy iterative approach with the SAT-based
MaxSAT approaches from Sect. 9 in the IncrementalCA algorithm.

Algorithm Incremental CA: MaxSAT based Incremental Test Suite Construction

1 Input: SUT model S, Tests N; per iteration, SAT-based MaxSAT solver msat
2T,V < T4, 0

3 while 7, # and |T| < N do

4 N’ < min(N;, N —|T|)

N',t,S
5 msat.add (TPMSatCCX )

6 msat.solve()

7 v < tests from msat.model
8 YT <~ T Uv

9 | Tr < T \{tlvET)

10 return 77

In this algorithm, we begin with the remaining tuples to cover 7,, initially assigned
to allowed tuples 7, as well as an empty test suite 7" (line 2). Then, we first check how
many tests should be encoded; the minimum between the tests in iteration N; and the
remaining number of tests left to complete the test suite, N — | 7| (line 4), storing the
result into N'. Next, we solve the Tuple Number problem for these N’ tests, encoded
asaTPM Satévé;s formula (lines 5, 6) from Sect. 9. We extract the model from the
MaxSAT solver, interpreting it into newly found test cases v (line 7). Then, those new
tests are added to test suite 7" (line 8). Finally, the tuples covered by these new test
cases are removed from 7, (line 9). This iteration is repeated until no more tuples are
left in 7, or we have reached the requested N test cases (line 3), in which case we
return the constructed test suite 7 (line 10).

11 Experimental evaluation

In this section, we report on an extensive experimental investigation conducted to
assess the approaches proposed in the preceding sections. We start by defining the
benchmarks, which include 28 industrial, real-world or real-life instances and 30
crafted instances, and the algorithms involved in the evaluation.
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We contacted the authors of Yamada et al. (2015) and Yamada et al. (2016) to obtain
the benchmarks used in their experiments. In particular, the available benchmarks
are: (i) Cohen et al. (2008), with 5 real-world and 30 artificially generated (crafted)
covering array problems; (ii) Segall et al. (2011), with 20 industrial instances; (iii)
Yu et al. (2015), with two real-life systems reported by ACTS users; and (iv) Yamada
et al. (2016), with an industrial instance named “Company_B”.

Table 4 provides information about the System Under Test of each instance, where
Sp is the number of parameters and their domain (e.g. the meaning of 223! in instance
7 is that the instance contains 29 parameters of domain 2 and 1 parameter of domain
3); S, is the number of SUT constraints and their sizes (e.g. the meaning of 21332 ip
instance 7 is that the instance contains 13 constraints of size 2 and 2 constraints of
size 3); and # lits CN F (S,) is the number of literals of the CNF representation of S,
(i.e. the sum of the sizes of all clauses).

Table 4 also reports, for ¢+ = 2, the following data: ub4€TS  which indicates the
upper bound returned by the ACTS tool (see Sect. 4); ub™, which is the best known
upper bound (a star indicates that it is optimal, i.e., CAN (2, S)); [b, which reports the
lower bound (computed as in Sect. 4); and |7, | and |7 7|, which report the number of
allowed and forbidden tuples, respectively.

Finally, we also show, for the PM Satévg; 2,8.1b encoding of each instance, the
following information: # vars, which is the number of variables used by this encoding;
# clauses, which is the number of clauses; # [its, which is the number of literals; and
size (MB), which is the file size of the WCNF formula in MB.

Notice that in this paper we focus on ¢ = 2 strength coverage.

Regarding existing tools for solving Mixed Covering Arrays with Constraints, the
main tool we compare with is CALOT (Yamada et al. 2015). Unfortunately, CALOT
is not available from the authors but we did our best to reproduce it (see Sect. 6),
showing our experimental investigation that the results are consistent with those of
Yamada et al. (2015). Our implementation of CALOT and all algorithms presented in
this paper can be found in http://hardlog.udl.cat/static/doc/inc-maxsat-ct/html/index.
html, which we think is also a nice contribution for both the combinatorial testing and
satisfiability communities.

Since all the algorithms presented in this paper are built on top of a SAT solver,
we compared, when possible, all the algorithms with the same underlying SAT solver.
That is not the case in Yamada et al. (2015), which may lead to flawed conclusions.
In our experimental investigation we choose Glucose (version 4.1) (Audemard et al.
2013), as most of the state-of-the-art MaxSAT solvers are built on top of it.

We also use the ACTS tool (Borazjany et al. 2012) to compute fast and good enough
upper bounds of the Covering Array Number problem, although it is not competitive
with SAT-based approaches.

The environment of execution consists of a computer cluster with machines
equipped with two Intel Xeon Silver 4110 (octa-core processors at 2.1GHz, 11MB
cache memory) and 96GB DDR4 main memory. Unless otherwise stated, all the exper-
iments were executed with a timeout of 2h and a memory limit of 18GB. To mitigate
the impact of randomness we executed all the algorithms using five different seeds for
each instance.
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The rest of the experimental section is organized as follows. Regarding the Cover-
ing Array Number, in Sect. 11.1, we compare the CALOT algorithm with the MaxSAT
encodings and SAT-based MaxSAT approaches described in Sects. 7 and 8 . Regarding
the Tuple Number problem, in Sect. 11.2, we evaluate the complete and incomplete
MaxSAT algorithms on the encoding described in Sect. 9. Then, in Sect. 11.3, we eval-
uate the incomplete approach for computing the Tuple Number described in Sect. 10.

11.1 SAT-based MaxSAT approaches for the covering array number problem

In this experiment, we compare the performance of state-of-the-art SAT-based
MaxSAT solvers with the CALOT algorithm described in Sect. 6. We hypothesise that
since these SAT-based MaxSAT algorithms, once executed on the suitable MaxSAT
encodings, can simulate the behaviour of the CALOT algorithm (see Propositions 6
and 8) but the opposite is not true, MaxSAT algorithms may perform similarly or
outperform the CALOT algorithm. This hypothesis would contradict the findings in
Yamada et al. (2015), where it was reported that the CALOT algorithm clearly dom-
inates the MaxSAT-based approach in Ansétegui et al. (2013). If our hypothesis is
correct, MaxSAT approaches for solving the Covering Array Number problem would
be put back on the agenda. We focus in anytime algorithms that must be able to report
suboptimal solutions. '

Solvers The CALOT algorithm (described in Sect. 6) and the model-guided Linear
SAT-based MaxSAT algorithm Linear (described in Sect. 8) were implemented on
top of the OptiLog (Ansétegui et al. 2021) python framework for SAT solving. This
framework includes python bindings for several state-of-the-art SAT solvers and the
python binding to the PBLib (Logic and Optimization Group 2019).

We additionally tested several complete and incomplete algorithms from the
MaxSAT Evaluation 2020 (Bacchus et al. 2020). From complete MaxSAT solvers
we tested MaxHS (Bacchus 2020), EvalMaxSAT (Avellaneda 2020), RC2 (Ignatiev
2020) and maxino (Alviano et al. 2015). We only report results for RC2 and one
seed,!! as this was the complete solver that reported better results. MaxHS obtained
the best results for 2 of the tested instances, but we decided to exclude it from the
comparison since it cannot report upper bounds for most of the instances and it uses
another underlying SAT solver than Glucose41.

Regarding incomplete MaxSAT algorithms we tested Berg et al. (2020), tt-open-
wbo-inc (Nadel 2020) and SatLike (Lei and Cai 2018). We report results for Loandra
and tt-open-wbo-inc as SatLike crashed in some of the tested instances.

MaxSAT encodings We report results on P M Sa IICV g)‘(s’lb and the weighted version

WPMSatéVg)‘(S’lb using a linear increase for the weights (w; =i — (Ib +2) + 1, see
Eq. WSoftUin Sect. 7). We found that W P M Saté\]g )’(S‘”’ with the linear and exponential
increase (w; = 2i—(b +2)) lead to the same performance, but the exponential increase

represented a problem for some MaxSAT solvers when i was high enough.

10 we adapted RC2 MaxSAT solver to report suboptimal solutions when applying the stratified strategy
(see Sect. 8)

11 Unfortunately RC2 MaxSAT solver does not allow to specify a seed.
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We further tested the three different alternatives for equation (a) from CC X, where
two reported good results. The first one is the original (a) equation shown in Sect. 3,
(ci — ci_l V X; p,v), which we will refer to as a.0. The second one is the variation
(ci — ci_l V Xipw) A (ci <~ ci‘l), which we will refer to as a.1.

Results Table 5 shows the results of our experimentation. For each row and solver
column, we give the average size of the minimum MCAC (out of the 5 executions
per instance) and the average runtime. Bold values represent the best results. In case
there are ties in size, the best time is marked. Sizes that have a star represent that the
optimum has been certified in at least one of the five seeds executed for the current
benchmark instance.

Table 6 aggregates the information presented in Table 5 to analyze the dominance
relations among approaches. In particular, we show for each row the number of wins
(W) and loses (L) with respect to each of the approaches in columns, for both size and
run times. We consider that if algorithm A finds a smaller MCAC than B, then A also
needs less runtime than B. In this sense, we will say that an approach outperforms
another if it provides a strictly better solution within the given timeout or finds the
same best suboptimal solution faster. For example, in the ACTS row we found that it
obtains worse sizes than CALOT CCX a.0 in 52 instances (0 W, 52 L in column size),
better runtimes in 2 and worse runtimes in 56 (2 W, 56 L in column time).

We observe how both tt-open-wbo-inc and loandra outperform the results obtained
by CALOT, improving the sizes in more than 10 of the 58 available instances and, in
the case of t-open-wbo-inc, we also improve runtimes in more than 40 instances. This
confirms our hypothesis that MaxSAT approaches can simulate and even improve the
results obtained by the CALOT algorithm.

Regarding the different variations of the CC X encoding, we notice that for tt-open-
wbo-inc and loandra, variation a.1 slightly improves results obtained by the original
variation a.0. In particular, we observe that tt-open-wbo-inc with this specific encoding
obtains the best size!? in instance RL-B (727), while algorithm CALOT reports a size
of 760. However, this behaviour of the encoding a.1 is not observed in algorithm
CALOT, as in this case, the best variation of equation (a) seems to be a.0. These results
suggest that in case we use a new MaxSAT solver we should not discard at front any
encoding variation.

For RC2 and linear approaches we can observe clear differences among them
when applying the P M Satévg)’(s’lb encoding, as linear obtains better sizes and times
in 21 and 57 instances respectively. These results show that, for the Covering Array
Number problem, it is more effective to perform a search that incrementally refines
the upper bound as the linear approach does (see Sect. 8). However, we observe a
substantial improvement when using the WP M Satévé’)'(s’lb with the RC2 MaxSAT
solver, improving the sizes obtained by its unweighted counterpart in 19 of the 58
instances, which produces similar results than CALOT and PM Satévg)’(s’lb linear
approaches. This is expected since the weighted version forces RC2 to perform a
top-down search as discussed in Sect. 8.

We also tested the WP M S atévg)’(s’lb encoding over the tt-open-wbo-inc, a not core-
guided MaxSAT solver. We observe that results are similar or slightly worse than with

12 To the best of our knowledge this is the best known upper bound for ¢+ = 2 for this instance.
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the PM Satévg}’(s > We believe the WPM Satévé’)’(s’lb encoding is more useful for
core-guided MaxSAT solvers as it modifies their refinement strategy (i.e. improve the
upper bound instead of the lower bound). We also observed that refining the lower
bound for the Covering Array Number problem is more challenging than refining the
upper bound, as there are some instances where encoding P M Satgé’)’(s’lb with RC2
(which would refine the lower bound) is not able to report any results, usually on
instances where the CAN is not found.

11.2 Weighted partial MaxSAT approaches for the tuple number problem

Encouraged by the good results of the proposed MaxSAT approaches for the Covering
Array Number problem, we now evaluate the MaxSAT approach described in Sect. 9
on SAT-based MaxSAT approaches for solving the Tuple Number problem. Notice that
the CALOT algorithm only works for solving the Covering Array Number problem.
In this sense, this is a pioneering work on applying SAT technology to solve the Tuple
Number problem.

Solvers We choose the 1t-open-wbo-inc MaxSAT solver to perform these experi-
ments, as this has been the approach that achieved better results in Sect. 11.1.

MaxSAT encodings We recall there are also some variations of the 7 P M Sa tév g)’(s’lb
encoding, due to the way constraint CCX is formulated, i.e. the relation among ci
vars and x; p , vars (see Remark 1 in Sect. 3). According to some preliminary exper-
imentation we observed that variation (¢! <> ¢.~! v x; , ,), to which we refer as a.2,
reported also good results, while variation a.1 did not and was excluded.

We additionally noticed that, when computing the tuple number, the cost of the
solution returned by the MaxSAT solver when using the original encoding of equation
(a)inCCX, (ci — ci_l V X, p,v), can indeed overestimate the real cost of the solution
induced by the value of the x; , , vars, i.e., the assignments that represent the actual
tests used in the solution. This can happen since it is possible to set to False a ¢!
even if the right-hand side of the implication is True. Enforcing the other side of the
implication corrects this issue. For these reasons we will use the (ci <~ ci‘l V Xipw)
variation of CCX.

Results We would like to study the evolution of the number of covered tuples as a
function of the number of tests, as we hypothesise that adding a new test close to the
Covering Array Number (that guarantees all tuples can be covered) will allow adding
very few additional tuples. In that sense, if these tests are expensive enough, they will
not pay off in terms of the available budget and the additional percentage of coverage
we can achieve.

In Fig. 1, we show the number of tests required to reach a certain percentage of
the tuples to cover for the #-open-wbo-inc approach. Notice that t-open-wbo-inc is
an incomplete MaxSAT solver and we are therefore reporting a lower bound on the
possible percentage by a particular number of tests. For lack of space, we only show
the most representative instances of all the benchmark families.

We observe, for all the tested instances, that most of the tuples are covered using
a relatively small number of tests and the remaining tuples require a relatively large
additional number of tests. In our experiments, with only 52% of tests required for the
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Covering Array Number or for the best suboptimal solution from Table 5 in Sect. 11.1,
we are able to reach a 95% coverage, whereas the remaining 5% of tuples need the
remaining 48% of tests.

We also notice that the Tuple Number problem is more challenging than the Cov-
ering Array Number problem. According to some experimentation that we performed
using complete MaxSAT solvers, none of the tested approaches has been able to cer-
tify any optimum for N > 1, even for the instances that were easy to solve for the
Covering Array Number problem.

Another interesting observation is the erratic behavior on the RL-B instance (Yu et al.
2015) (Fig. 1, bottom right). RL-B is the biggest instance in the available benchmarks,
having 27 parameters with domains up to 37, and with a suboptimal solution for the
Covering Array Number (for t+ = 2) of 727 tests. After 100 tests, the results for the
Tuple Number problem become quite unstable in contrast to the behaviour on the rest
of the instances. This phenomenon points out that the approach analyzed in this section
has some limitations when instances are large enough. For a fixed set of parameters,
instances become bigger when we increase the strength ¢ or the number of tests as in
this case.

To conclude this section, we have confirmed that MaxSAT is a good approach to
solve the Tuple Number problem with constraints. We have also observed that with a
relatively small number of tests we can cover most of the tuples, and that this approach
can be useful for medium-sized instances that do not need a large number of tests to
reach a reasonable coverage percentage.

In the next section, we explore the Incremental Test Suite Construction for the Tuple
Number problem described in Sect. 10.1. It allows us to tackle more efficiently those
Tuple Number problems involving a relatively large number of tests.

11.3 MaxSAT based incremental test suite construction for T(N; t, S)

In Sect. 11.2, we have analyzed an approach that can be used to maximise the number
of tuples covered by a number of tests inferior to CAN (z, S). However, we have seen
that it becomes less efficient if we require to compute the Tuple Number problem for
a large enough number of tests.

Solving approaches Here we propose three incomplete alternatives for solving the
Tuple Number problem, with the aim of improving the results obtained in Sect. 11.2.
Our hypothesis is that the application of incomplete approaches can be more suitable
when solving bigger instances.

The first approach is the greedy algorithm presented in Yamada et al. (2016), referred
to as maxh — its. This algorithm incrementally adds a test at a time. The test is
constructed through a heuristic (Czerwonka 2006) that tries to increase the number of
covered tuples so far, by selecting at each step the parameter tuple with the most value
tuples yet to be covered.

The second approach is the Incremental Test Suite Construction from Sect. 10.1
(referred here as maxsat — its), which also adds a test at a time,!3 but this test is built

13 The algorithm allows to add more than one test at a time, but this experiment is out of reach in this paper.
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by solving the Tuple Number problem through an incomplete MaxSAT solver instead
of using a heuristic as in the previous approach.

In the third approach, instead of a MaxSAT query, as in the second approach, we
apply a SAT query to return a test that covers at least one more tuple (referred to as
sat — its) than the incremental test suite built so far.

We also evaluate the approach described in Sect. 9.2. The idea is to relax the
Covering Array Number problem by allowing to cover only a 95% of the allowed
tuples (t,). We refer to this approach as mints — 95%|t,|. As for the Covering Array
Number problem, we use the upper bound returned by the ACTS tool (see Sect. 4) for
the initial number of tests.

Results: We present the relative performance of the previous four approaches
respect to the best incomplete MaxSAT approach (tt-open-wbo-inc) for solving the
Tuple Number problem from Sect. 11.2, referred as >~ T'(N; t, S) (we use the symbol
2~ to indicate that the values reported for >~ T (N; ¢, S) correspond to subopti-
mal solutions). All the approaches shown in this section also use the incomplete
SAT-based MaxSAT solver tt-open-wbo-inc, except sat — its which uses the Glu-
cose4l SAT solver. For the encoding of equation (a) of CCX we use variation a.2
(¢l < ci=l v x; ) asin Sect. 11.2.

To perform a fair comparison we tried to execute all the algorithms within the
same runtime conditions. We use as a reference the runtime that maxsat — its needs
to cover all the allowed tuples. In more detail, we set a timeout of 100s to each
iteration of the maxsat — its approach.'* Therefore, the total runtime in seconds
consumed by maxsat — its is the number of tests it reaches multiplied by 100. For
maxh —its and sat —its, the timeout is the total runtime consumed by maxsat —its.
For mints — 95%|t,|, we use as timeout the runtime consumed by >~ T (N; ¢, S) to
reach 95% of coverage. Finally, for >~ T'(N; t, S), we use a timeout of N - 100 seconds
for each N. Notice that in this last case we are ensuring that for a given N, both
~ T(N;t,S)and maxsat —its approaches will have the same execution time limits.

All approaches have been executed with 3 seeds and the mean is reported. The
experimental results are presented in Figs. 2 and 3. As in Sect. 11.2, we only plot the
most representative instances.

Figure 2 shows the increment (or decrement) of the number of tests required by
maxsat —its, maxh —its and mints — 95%|t,| to cover the same number of tuples
as~ T(N;t, S). On the other hand, Fig. 3 shows the increment (or decrement) of tests
required to reach the same coverage ratio as >~ T (N; t, S). For the sat —its approach
we found that in most cases it is able to cover only one tuple per test, so we decided
to exclude these results in the figures as they were clearly outperformed by the rest of
the presented approaches.

In both figures, we plot a vertical line to show the points where >~ T (N; 1, S)
reaches 95% and 100% of tuples covered.

In general, maxsat — its clearly outperforms maxh — its. This can be expected
since the nature of the incremental approach is to do the best at each possible iteration,
and maxsat — its tackles exactly this goal by solving the Tuple Number problem,
while maxh — its do not.

14 We assume that maxsat — its is able to cover at least one more tuple in 100 seconds
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Partial MaxSAT formula size for RL-B
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Fig.4 Partial MaxSAT formula size for RL-B in literals as a function of test suite size

We also observe that maxsat —its outperforms the tuple coverage that~ 7' (N; ¢, S)
can achieve on the first tests. Particularly, maxsat —its is able to improve the number
of tests required to cover 95% of the allowed tuples in 7 of the 8§ instances we show
in Figs. 2 and 3. On the other hand, above 95%, >~ T (N; ¢, S) seems to be the best
approach in terms of using fewer tests for the same coverage. This makes sense since
the incomplete nature of maxsat — its makes it less efficient when approaching the
complete coverage, which may not be needed for several applications.

In Fig. 2 we observe an erratic behaviour of instance RL-B, which is the largest
instance that we had available. These results are in line with the ones in Fig. 1 of
Sect. 11.2, and shows the possible issues that >~ T (N; ¢, S) can suffer when dealing
with large instances. In particular, Fig. 4 shows the number of literals of the MaxSAT
instance solved by >~ T (N; ¢, S) and maxsat —its as the size of the test suite increases
for the RL-B benchmark. We observe that >~ T (N; t, S) has to deal with an increasing
size of the Partial MaxSAT instance proportional to the number of tests in the test
suite. In contrast, for maxsat — its the size of the instance decreases, since only one
test is encoded and the number of tuples to cover decreases along with the size of
the test suite built so far. This is an interesting insight since RL-B instance comes
from an industrial application and it may reflect what we can face in harder real-world
scenarios. Therefore, maxsat — its may seem more well suited for these harder real-
world domains and may extend the reach of Combinatorial Testing for more complex
SUTs.

Finally, although mints — 95%|t,| is not consistently the best option to obtain
a good suboptimal test suite that covers 95% of the total tuples, it obtains the best
result on instances NetworkMgmt and Storage5. Moreover, it is the only method that
guarantees optimality when combined with a complete MaxSAT solver.
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12 Conclusions

We have shown that MaxS AT technology is well-suited for solving the Covering Array
Number problem for Mixed Covering Arrays with Constraints through SAT technol-
ogy. In particular, we discussed efficient encodings and how MaxSAT algorithms
perform on them.

We also presented MaxSAT encodings for the Tuple Number problem. To our best
knowledge, this is the first time that this problem is studied with SUT Constraints.
Additionally, we presented a new incomplete algorithm that can be applied efficiently
to solve those instances where the Tuple Number problem encoding into MaxSAT is
too large. In particular, we proved we can build good enough solutions by incrementally
adding a new test synthesized through a MaxSAT query that aims to maximize the
coverage of additional allowed tuples, respect to the test suite under construction.

Another interesting result that we obtained is that if we do not aim to cover all
t-tuples but a statistically significant fraction, we can save a great number of tests. We
experimentally showed that to cover a 95% percentage, we just need, on average, a
52% percentage of the best suboptimal solution reported so far. This is of high practical
importance for applications where test cases are expensive according to the budget.

From the point of view of Combinatorial Testing, it is reasonable to say that the
practical and theoretical interest application of our findings and approaches will grow
proportionally to the hardness or complexity of the SUT constraints. This will certainly
extend the reach of Combinatorial Testing to more challenging SUTs.

From the point of view of Constraint programming, the lessons learnt on how
to design efficient encodings for MaxSAT solvers can be exported to solve similar
problems. These problems are roughly characterized by having an objective function
whose size is proportional to the best known upper bound.

SAT and MaxSAT communities will also benefit from new challenging benchmarks
to test the new advances in the field. Moreover, any future advance in MaxSAT tech-
nology can be applied to solve more efficiently the Covering Array Number and Tuple
Number problems with no additional cost.
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