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Abstract In this paper we study very large-scale neighborhoods for the minimum
total weighted completion time problem on parallel machines, which is known to be
strongly N P -hard. We develop two different ideas leading to very large-scale neigh-
borhoods in which the best improving neighbor can be determined by calculating a
weighted matching. The first neighborhood is introduced in a general fashion using
combined operations of a basic neighborhood. Several examples for basic neighbor-
hoods are given. The second approach is based on a partitioning of the job sets on
the machines and a reassignment of them. In a computational study we evaluate the
possibilities and the limitations of the presented very large-scale neighborhoods.

Keywords Scheduling · Parallel machines · Total weighted completion time · Very
large-scale neighborhoods · Local search

1 Introduction

Many optimization problems from practice are computationally intractable and it
simply cost too much time to solve them to optimality. Hence, there is need for
practical approaches to solve such problems. One class of such practical approaches
contains heuristic (approximation) algorithms that are able to find satisfying solu-
tions within a reasonable amount of computational time. In the literature concerning
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heuristic algorithms two important subclasses can be distinguished. The first sub-
class of heuristic algorithms consists of constructive algorithms. These algorithms
build solutions by assigning values to one or more decision variables at a time. The
second subclass contains improvement algorithms, that start with a feasible solution
or a set of feasible solutions and iteratively try to advance to better solutions (e.g.
local search, population based or hybrid approaches). In the latter class, local search
algorithms (also called neighborhood search algorithms) play an important role.

The basis concept of a local search heuristic is to start with some initial solution
and iteratively replaces the current solution by some solution in a neighborhood of
this solution. Thus, for a local search approach, a method for calculating an initial
solution, a neighborhood structure on the set of solutions and a method to select a
solution from the neighborhood of a given solution are needed.

The neighborhood structure has an important influence on the efficiency of local
search. It determines the navigation through the solution space and it’s size affects
the time it takes to find a best neighbor within the neighborhood. Therefore, one may
expect that the size of the neighborhood has an influence on the quality of the final so-
lution, since a larger neighborhood covers a larger number of solutions and of course,
affects the running time to find a best neighbor. This indicates that a compromise
between quality and running time has to be found.

In the last years, very large-scale neighborhoods get more and more attention.
These very large-scale neighborhoods mostly contain an exponential number of so-
lutions but allow a polynomial exploration. A nice survey about very large-scale
neighborhood techniques is given by Ahuja et al. (2002). They categorize very large-
scale neighborhoods into three not necessarily distinct classes. Their first category
of neighborhood search algorithms consists of variable-depth methods. These algo-
rithms partially exploit exponential-sized neighborhoods using heuristics. The second
category consists of network flow based improvement algorithms. These methods use
network flow techniques to identify improving neighbors. Finally, their third category
consists of neighborhoods that are defined by restricting the set of solution of the con-
sidered problem in such a way that a subproblem is achieved which can be solved in
polynomial time.

In the literature, two main directions concerning large-scale neighborhoods can
be found. On the one hand, more theoretic oriented papers exist, which consider the
computational time to find the best solution in a neighborhood versus the size of the
neighborhood and are interested in neighborhoods of maximal size which can be ex-
plored within a certain time complexity; e.g. linear or quadratic (see e.g. Deineko
and Woeginger 2000). On the other hand, more application oriented papers inves-
tigate how large-scale neighborhoods can be used to build successful heuristics for
optimization problems (see e.g. Potts and van der Velde (1995) for the traveling sales-
man problem, Congram et al. (2002) for the single machine total weighted tardiness
problem, or Agarwal et al. (2007) for the problem considered in this paper). Mostly,
the success of the large-scale neighborhoods comes in combination with a sophisti-
cated search method. This leaves open the question whether the sophisticated search
method or the used large-scale neighborhood is the main reason beyond the success
of the approaches.

In this work we give some more insight in the development and use of very large-
scale neighborhoods. It is not the aim to design an overall best heuristic for the con-
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sidered problem, but to compare two different approaches for receiving efficiently
searchable very large-scale neighborhoods. We do this for the problem of schedul-
ing independent jobs on parallel machines minimizing the weighted total completion
time (using the notation given by Graham et al. (1979) this problem is denoted by
P ‖ ∑

wjCj ). The developed neighborhoods consist mainly of matchings in an im-
provement graph. Until now, neighborhoods based on matchings are mostly used for
approximating the traveling salesman problem and some vehicle routing problems,
see Ahuja et al. (2002). According to the work of Ahuja et al. (2002), the matching
based very large-scale neighborhoods presented in this work belong to the second
category of very large-scale neighborhoods. The second approach presented in this
paper can be put into the third category, since it is based on solving a restricted version
of the considered scheduling problem. In a computational study, we investigate the
efficiency of these two approaches and try to identify what makes a very large-scale
neighborhood efficient.

For the problem P ‖ ∑
wjCj Belouadah and Potts (1994) develop a branch and

bound algorithm. For receiving lower bounds, they use Lagrangian relaxation on the
constraint, that at most m jobs may be processed during any unit time interval. Addi-
tionally, for the branching steps they use dominance rules from Elmaghraby and Park
(1974). The presented algorithm is capable of solving instances of up to 30 jobs and
8 machines on a CDC 7600 computer in about 60 seconds. Due to the nature of the
algorithm, computational time heavily increases with the number of the machines.

A different approach is used by van den Akker et al. (1999). They formulate the
problem as a set-covering problem with an exponential number of binary variables.
The idea is to assign to every machine exactly one set of jobs. There are 2n different
sets of jobs for the machines and hence, this gives a huge amount of columns for
the integer linear program and its relaxation of assigning at most one set of jobs to
a machine. Van den Akker et al. solve the relaxed linear program by column gener-
ation where the pricing algorithm for determining entering columns runs in pseudo-
polynomial time, i.e. in O(n

∑n
j=1 pj ) time and space. Computational testing indi-

cates, that the algorithm is capable of solving instances from Belouadah and Potts
(1994) in one fourth of the time that their method needs. Moreover, because the algo-
rithm performs better with increasing m, the column generation approach is able to
solve instances of size up to n = 100 jobs and m = n/10 machines in at most an hour
on a HP 9000/710 computer, which is about twice as fast as the CDC 7600. Chen and
Powell (1999) give a further approach based on column generation.

Skutella and Woeginger (2000) present a polynomial time approximation scheme
(PTAS). They use transformations that simplify an instance without dramatically in-
creasing the objective value in order to show that there exists for every ε > 0 a poly-
nomial time algorithm that computes a solution with at most a factor of 1 + ε away
from the optimal solution. Sahni (1976) develop an FPTAS (fully PTAS) for the prob-
lem Pm ‖ ∑

wjCj with fixed m, which runs in time bounded by a polynomial in the
input size and 1/ε.

Barnes and Laguna (1993) introduce a tabu search algorithm for this problem.
They use a combined neighborhood of job-insertions (we call such job-insertion a
move) and swaps, i.e. they work on assignments of jobs to machines and change the
assignment of one job or exchange the assignments of two jobs. Their computational
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experiments point out that this method is rather successful in delivering near-optimal
solutions. Agarwal et al. (2007) develop a very large-scale neighborhood based on
moving jobs from one machine to another. In principle, they allow sequences of
moves with decreasing job priorities. If in a first part of such a sequence a job j has
been moved to a different machine and is inserted there directly before a job k, in the
remaining part of the sequence only moves of jobs with lower priority than k are al-
lowed. Agarwal et al. (2007) introduce an improvement graph for this neighborhood,
which is searched heuristically and hence, forms a variable depth search algorithm.
They run computational tests using this neighborhood in local search frameworks
as iterative improvement, tabu search and iterated local search. They conclude that
an iterated local search heuristic with several runs using randomly generated initial
solutions delivers the best results regarding running time and solution quality.

The outline of the paper is as follows. In Sect. 2 we give a brief description of
the problem and introduce important notations. In Sect. 3 we present a first approach
to obtain very large-scale neighborhoods. This approach uses the idea of combining
independent moves. Next, in Sect. 4 we introduce a second method to derive very
large-scale neighborhoods. Here, we use a restricted version of the considered prob-
lem, which enables us to determine a best improving neighbor in polynomial time.
Afterwards, in Sect. 5 we give computational results for these neighborhoods and dis-
cuss the possibilities and limitations of the concept. Finally, we give some concluding
remarks.

2 Description of the problem

We consider the problem of scheduling a set J = {1, . . . , n} of jobs with processing
times pj and weights wj for j ∈ J on m identical parallel machines without pre-
emption. The goal is to find a solution minimizing the sum of weighted completion
times.

A solution of the problem consists of an assignment A : {1, . . . , n} → {1, . . . ,m}
of the jobs to the machines and a vector S of starting times (S1, . . . , Sn) of the jobs.
The starting times S are called a feasible schedule for the given assignment A, if and
only if for all jobs that are processed on the same machine no two jobs overlap, i.e. if

either Sj ≥ Si + pi or Si ≥ Sj + pj

for all pairs i, j = 1, . . . , n with A(i) = A(j) and i �= j . We denote the vector of
completion times for the corresponding feasible schedule S by C, i.e. Cj := Sj + pj

for j = 1, . . . , n.
We are now interested in an assignment A of jobs to machines and a feasible

schedule S, such that the objective function

f (S) :=
n∑

j=1

wjCj (1)

is minimized. This problem is strongly N P -hard, as described in Lenstra et al.
(1977) and Garey and Johnson (1979). The proof can be done by a reduction from
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3-Partition to instances with wj = pj for all j = 1, . . . , n, showing that already
P |wj = pj |∑wjCj is strongly N P -hard. Furthermore, for two machines (and also
for any fixed number of machines), the problem P 2 ‖ ∑

wjCj is also N P -hard, but
only in the ordinary sense.

In the case of having one machine (m = 1), the resulting problem 1 ‖ ∑
wjCj

is solvable in polynomial time by sorting the jobs according to Smith’s rule, i.e.
w1
p1

≥ w2
p2

≥ · · · ≥ wn

pn
(Smith 1956). In the case of more than one machine (m > 1),

jobs scheduled on different machines are not influencing each other. Moreover, the
objective function Eq. 1 splits up in m separate parts for the m machines. Thus, if an
assignment A of jobs to machines is given, the problem decomposes into m indepen-
dent single machine problems, and an optimal schedule S respecting this assignment
can easily be determined: order all jobs processed on the same machine according
to Smith’s rule. Summarizing, the calculation of the optimal schedule belonging to
a given assignment A and the corresponding objective value f (A) can be done in
O(n logn) and in O(n) if already an ordering of the jobs according to Smith’s rule is
given.

From now on we assume w.l.o.g. that the jobs are ordered according to Smith’s
rule. Additionally, for two jobs j and k we say that job j has a higher priority than
job k, if j < k. Hence, jobs scheduled on the same machine are always sorted by their
priority. Furthermore, for a given assignment A, we denote with Mi := A−1(i) the
set of jobs processed by machine i. Let ni := |Mi | be the number of jobs assigned
to machine i. Using the machine sets Mi , the schedule S corresponding to a given
assignment A can be determined by

Sj :=
∑

k∈Mi
k<j

pk for all j ∈ Mi and i = 1, . . . ,m.

Based on the above considerations, we represent solutions of the problem P ‖∑
wjCj by assignments A and we denote by f (A) the objective value of the sched-

ule belonging to assignment A.
In the following we use partial sums of processing times and weights for the ma-

chines. For a given assignment A, machine i and job j we denote with Lij the sum
of processing times of all jobs assigned to machine i with higher or equal priority
compared to job j . Additionally, with Wij we denote the sum of weights of all jobs
assigned to machine i with lower priority compared to job j . More formally:

Lij :=
∑

k∈Mi
k≤j

pk for all j = 1, . . . , n and i = 1, . . . ,m,

Wij :=
∑

k∈Mi
k>j

wk for all j = 1, . . . , n and i = 1, . . . ,m.

(2)

Observe, that LA(j),j = Cj for all jobs j . For a fixed machine i the values Lij and Wij

for all j = 1, . . . , n can be determined in O(n) and hence, all values can be calculated
in O(nm). If we only need the values for a fixed pair of machines i1 and i2, we can
calculate Lij and Wij for i = i1, i2 and j ∈ Mi1 ∪ Mi2 in O(ni1 + ni2).
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3 Neighborhoods by combining independent moves

In the following we introduce a first approach leading to very large-scale neighbor-
hoods of up to exponential size for the problem P ‖ ∑

wjCj . The basic principles
presented are not only restricted to neighborhood search for the problem P ‖ ∑

wjCj

but are also adoptable for similar problems, which have the property, that the sched-
ules on the different machines are independent; e.g. Q ‖ ∑

wjCj , R ‖ ∑
wjCj .

The main idea behind the presented approach to build very large-scale neighbor-
hoods is to start with a rather simple basic neighborhood N1 and to build a new
very large-scale neighborhood N2 by allowing combinations of operators from the
neighborhood N1. To be able to evaluate the neighborhood N2, only combinations of
operators which are somehow independent are allowed. This concept of combining
independent moves has already been used for other optimization problems. Potts and
van der Velde (1995) used the concept for the traveling salesman problem, Congram
et al. (2002) applied it to the single machine total weighted tardiness problem, and
Hurink (1999) to a single machine batching problem. Furthermore, in Ergun et al.
(2006) a quite general concept of the use of compound independent moves for rout-
ing problems with side constraints is presented. In all these approaches searching
the large-scale neighborhoods reduced to a shortest path problem or could be solved
using dynamic programming. As we will see, in our case searching the large-scale
neighborhood leads to a matching problem.

The presented approach to get a very large-scale neighborhood for the parallel
machine scheduling problem is general in the sense that it can be applied to all ba-
sic neighborhoods N1 which fulfill some stated properties. These properties and the
proposed construction of the neighborhood N2 are given in the following.

The basic neighborhood N1 has to consist of operators op(i1, i2) which operate on
pairs (i1, i2) of different machines (i.e. i1 �= i2). Hence, N1 contains up to 1

2m(m−1)

neighbors. The operators have to fulfill the following properties:

• the change resulting from the application of an operation op(i1, i2) for a fixed pair
i1 �= i2 is only dependent on the given schedules of the two machines i1 and i2, and
has only effects on the machines i1 and i2,

• the operator is symmetric, i.e. the assignments A′ := op(i1, i2)(A) and A′′ :=
op(i2, i1)(A) are equal.

Next, two operators op(i1, i2) and op(i3, i4) are defined to be independent if ij �= ik
for j, k ∈ {1,2,3,4}; j �= k. Thus, if we apply a set of pairwise independent operators
op(s1, t1), . . . ,op(sk, tk) to a solution A the resulting change in the objective value is
given by

f (A) − f (op(sk, tk)(. . . (op(s1, t1)(A)) . . .) =
k∑

l=1

δsl ,tl (A)

whereby δi1,i2(A) := f (A)−f (op(i1, i2)(A)) denotes the improvement of the objec-
tive value resulting from the application of op(i1, i2) to assignment A.

All basic neighborhoods N1 fulfilling the above properties can be used as the
base to design an (in m) exponential neighborhood N2. The neighborhood N2 of an
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assignment A consists of all assignments that result from applying a set of pairwise
independent operators to the assignment A. In the following we describe how a best
neighbor in this neighborhood can be obtained.

The operators of the neighborhood N2 correspond to matchings in a weighted
graph G(A) = (V ,E, c(A)), where

• the vertex set V contains a vertex for each machine,
• an edge e = {i1, i2} ∈ E with i1 �= i2 represents the operator op(i1, i2),
• an edge e = {i1, i2} gets a weight c(A)i1,i2 = δi1,i2(A).

The weights of the graph can be calculated by applying the operator op(i1, i2) for
every pair of machines i1, i2 with i1 < i2 to assignment A. Thus, the complexity of
building up the graph is 1

2m(m − 1) times the complexity of evaluating the effects
of a single operator op(i1, i2). Each matching in this graph corresponds to a set of
pairwise independent operators of N1 and, thus, to an operator of N2 and vice versa.
Furthermore, the weight w(M) of a matching M is given by the sum of the weights
of all edges present in the matching, i.e.

w(M) :=
∑

{i1,i2}∈M
c(A)i1,i2 =

∑

{i1,i2}∈M
δi1,i2(A).

We can determine the best neighbor of an assignment A in neighborhood N2 by
calculating a maximum weight matching M in the graph G(A). Observe, that the
structure of the graph G(A) is independent of the considered assignment A but the
weights heavily depend on it. Determining a maximum weight matching in a general
graph with |V | vertices and |E| edges can be done in different ways. There exists
a O(|V |3)-algorithm from Gabow (1973) and Lawler (1976) extending the work of
Edmonds (1965). Using this algorithm, the best neighbor in N2 can be determined
in O(m3).

Summarizing, the neighborhood N2 consists of an (in m) exponential number of
neighbors, whereby each neighbor represents the results achieved from applying a set
of independent operators of the basic neighborhood N1, and is efficiently searchable.
In the following we introduce some examples for the basic neighborhood N1, which
fulfill the stated properties for the neighborhood N2.

3.1 Move neighborhood

A first example of a basic neighborhood N1 is built up using move operators
opmove(i1, i2), which consider machines i1 and i2 of the given assignment A and
move exactly one job between these two machines in such a way that the change
in the objective value is best possible. Obviously, these operators fulfill the stated
property for the basic neighborhood N1. It remains to describe how these operators
opmove(i1, i2) can be evaluated efficiently.

If move(j, i) denotes an operator that reassigns job j to machine i, an operator
opmove(i1, i2) represents a best possible move in a neighborhood given by the op-
erators move(j, i), i ∈ {i1, i2}; j ∈ (Mi1 ∪ Mi2) \ Mi , i.e. the best possible move
in a neighborhood of size ni1 + ni2 . The overall change in the objective value
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Fig. 1 Illustration of
move(j, i)(A)

δA
move(j,i) := f (A) − f (move(j, i)(A)) resulting from an application of move(j, i)

to assignment A is given by

δA
move(j,i) = pj (WA(j),j − Wij ) + wj(LA(j),j − Lij − pj ), (3)

(see Fig. 1 for an illustration). Thus, if the corresponding values for W and L from
Eq. 2 are known, δA

move(j,i) can be calculated in O(1).
For the operator opmove(i1, i2) we now have to find the best move of a job between

the two machines i1 and i2. This can be achieved by evaluating all moves move(j, i2)
for jobs j with j ∈ Mi1 and all moves move(j, i1) for jobs j with j ∈ Mi2 . Since in
a preprocessing, the relevant values for W and L can be calculated in O(ni1 + ni2),
the overall complexity to evaluate the operator opmove(i1, i2) is O(ni1 + ni2). For the
neighborhood N2 we have to evaluate all operators opmove(i1, i2) with i1 < i2 to build
up the graph G(A). This can be realized in O(nm).

The neighborhood N2 contains an exponential number of neighbors (exponential
in m), where each neighbor again dominates a certain number of neighbors w.r.t.
the neighborhood defined by move(j, i) operators. More precisely, a matching M
containing the edges {s1, t1}, . . . , {sk, tk} in G(A) leads to a solution which is the best
in a neighborhood of size

∏k
l=1(nsl + ntl ). In contrast to this, neighborhood N1 (i.e.

move a job between a pair of machines i1 and i2) contains only 1
2m(m−1) neighbors,

where each neighbor represents the best solution in a neighborhood of size ni1 + ni2 .

3.2 Combining several moves

Another basic neighborhood N1 can be defined by not only moving one job from
a machine to another, but swapping two jobs between a pair of machines, or as a
generalization, by allowing a fixed amount of moves between a pair of machines in
one step. In the next part we introduce the foundations to evaluate such operators
efficiently. A general method is introduced to calculate the change of the objective
value resulting from operators exchanging several jobs between machines i1 and i2,
where i1 and i2 are fixed.

Let A1 be an assignment that results from assignment A by applying several move
operations. We want to use the change δA

move(j,i) of the objective value resulting from
applying move(j, i) to assignment A, to calculate the objective change resulting from
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Fig. 2 Emanating from
assignment A to A1

applying move(j, i) to assignment A1. Hereby we focus on the case that job j has
not changed its machine; i.e. we consider the case that job j is processed by ma-
chine i1 := A(j) in assignment A and A1. Simple calculations yield that the effect
δ
A1
move(j,i2)

of applying the operator move(j, i2) to A1 is given by

δ
A1
move(j,i2)

= δA
move(j,i2) + wj(�Li1 − �Li2) + pj (�Wi1 − �Wi2), (4)

where �Li1 := L
A1
i1,j

− LA
i1,j

, �Wi1 := W
A1
i1,j

− WA
i1,j

,�Li2 := L
A1
i2,j

− LA
i2,j

, and

�Wi2 := W
A1
i2,j

− WA
i2,j

. For an illustration of the situation see Fig. 2, where the as-
signments A and A1 are shown as well as job j and the effects influencing the change
in the objective value. By “high priority” we denote all jobs with higher priority than
job j and by “low priority” we denote all jobs with lower priority.

Equation 4 is the base of combining several moves. In the next two subsections,
we give examples of possible combinations of moves. The combined moves then
again can be used to build a very large-scale neighborhood that can be explored via
matchings.

3.2.1 Swap neighborhood

The second example of a basic neighborhood N1 uses swap operators opswap(i1, i2).
Hereby, opswap(i1, i2) is a combination of two move operators, which consider the
machines i1 and i2 of the given assignment A and move exactly one job from machine
i1 to i2 and one job from machine i2 to i1. This is done in such a way that the change
in the objective value is best possible. Obviously, these operators again fulfill the
stated property for the basic neighborhood N1. In the following we describe how the
operators opswap(i1, i2) can be evaluated efficiently by first studying the effects of a
single swap of jobs swap(j, k) and, then, showing how on base of these results the
effect of an operator opswap(i1, i2) can be calculated.
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Fig. 3 Illustration of
swap(j, k)(A) for k < j

Let i1 and i2 be a pair of different machines, job j be a job assigned to machine
i1, job k be a job assigned to machine i2, and assume w.l.o.g. that job k is of higher
priority than job j . Then, a swap of jobs swap(j, k) consists of two moves move(j, i2)
and move(k, i1), i.e. swap(j, k)(A) = move(j, i2)(move(k, i1)(A)) (see Fig. 3 for an
illustration of a swap of jobs).

Applying Eq. 4 with A1 := move(k, i1)(A) leads to the following overall change
in the objective value δA

swap(j,k) := f (A)−f (swap(j, k)(A)) resulting from an appli-
cation of swap(j, k) to assignment A:

δA
swap(j,k) := δA

move(j,i2) + δA
move(k,i1)

+ 2wjpk. (5)

Thus, if the values δA
move(j,i2)

and δA
move(k,i1)

are known in advance, δA
swap(j,k) can be

calculated in O(1).
For the operator opswap(i1, i2) we now have to calculate the best exchange of

jobs from machine i1 and i2. Since in a preprocessing the values δA
move(j,i2)

for

j ∈ Mi1 and δA
move(k,i1)

for k ∈ Mi2 can be obtained in O(n), the overall complexity

of opswap(i1, i2) is O(n2). For the neighborhood N2 we have to evaluate all operators
opswap(i1, i2) with i1 < i2 to build up the graph G(A). This can be realized in an
overall complexity of O(n2).

Again, the neighborhood N2 contains an exponential number of neighbors, where
a neighbor corresponding to a matching M containing the edges (s1, t1), . . . , (sk, tk)

in G(A) leads to a solution which is the best in a neighborhood of size
∏k

l=1(nsl ntl ).
In contrast to this, neighborhood N1 (i.e. swap a pair of jobs between a pair of ma-
chines i1 and i2) contains only 1

2m(m−1) neighbors, where each neighbor represents
a best solution in a neighborhood of size ni1ni2 .

3.2.2 k-move neighborhood

The ideas of move and swap can be generalized to a basic neighborhood N1 resulting
from k-move operators opk-move(i1, i2). Hereby, opk-move(i1, i2) moves up to k jobs
between machines i1 and i2. The moves are chosen such that the change in the objec-
tive value is best possible. These operators fulfill the stated properties for the basic
neighborhood N1. It remains to describe how these operators opk-move(i1, i2) can be
realized efficiently.

An operator opk-move(i1, i2) represents a best possible move of up to k jobs be-
tween machines i1 and i2. In the following we examine a single operator that moves
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Fig. 4 Illustration of 6-move(j1, . . . , j6)

exactly k jobs between machines i1 and i2. To simplify notation, we denote by A(j)

the machine that job j is not assigned to, i.e.

A(j) =
{

i1 ifA(j) = i2,

i2 ifA(j) = i1.

This makes it possible to write move(j)(A) instead of move(j,A(j))(A). For a
fixed k we now examine a combination of moves

k-move(j1, . . . , jk)(A) := move(jk) ◦ move(jk−1) ◦ · · · ◦ move(j1)(A),

where j1 < j2 < · · · < jk , i.e. job jl has a higher priority than job jl+1 for l =
1, . . . , k − 1 (see Fig. 4 for an illustration).

At first we consider the assignment A2 := move(j2) ◦ move(j1)(A). Due to Eq. 4
and a similar argumentation as used in Sect. 3.2.1 for evaluating a swap, the difference
of the objective values of assignments A and A2 can be calculated by

f (A) − f (A2) = δA

move(j1,A(j1))
+ δA

move(j2,A(j2))
+ 2wj2pj1�j2,j1, (6)

where �js,jt = 1 if job jt and js are assigned to different machines in A and
�js,jt = −1 in the other case. Applying this in an iterative manner, leads to
the following expression for the change of the objective value resulting from
k-move(j1, . . . , jk)(A):

δA
k-move(j1,...,jk)

=
k∑

s=1

δA

move(js ,A(js ))
+

k∑

s=1

2wjs

s−1∑

t=1

�js,jt pjt . (7)

The calculation of value δA
k-move(j1,...,jk)

with Eq. 7 needs in the worst-case a run-

ning time of O(k2), if the values δA

move(js ,A(js ))
are known in advance.

For the operator opk-move(i1, i2) we now have to calculate the best move of up to
k jobs between machines i1 and i2. To do so, denote with Mi1 ∪ Mi2 the set of jobs
processed by machine i1 or i2. For every l with 1 ≤ l ≤ k we have to calculate for
every possible subset {j1, . . . , jl} ⊆ Mi1 ∪Mi2 of cardinality l the value δA

l-move(j1,...,jl )
to determine the best move of up to k jobs between machines i1 and i2. Since in a pre-
processing the values δA

move(js ,A(js ))
can be obtained in O(n), the overall complexity

of opk-move(i1, i2) is O(k2nk). For the neighborhood N2 we have to evaluate all oper-
ators opk-move(i1, i2) with i1 < i2 to build up the graph G(A). This can be realized in
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O(k2m2nk). Thus, for constant values of k the neighborhood N2 can be evaluated in
polynomial time. Furthermore, the operator opk-move(i1, i2) retrieves the best solution
out of

∑k
l=1

(ni1 +ni2
l

)
solutions contained in the neighborhood consisting of l-move

operators with 1 ≤ l ≤ k.
As before, the neighborhood N2 contains an exponential number of neigh-

bors, and a neighbored solution achieved by a matching M containing the edges
(s1, t1), . . . , (sμ, tμ) in G(A) leads to a solution which is the best in a neighborhood
of size

μ∏

ν=1

(
k∑

l=1

(
nsν + ntν

l

))

.

In contrast to this, the neighborhood N1 consisting of opk-move(i1, i2) for 1 ≤ i1,
i2 ≤ m and i1 �= i2 contains only 1

2m(m − 1) neighbors, where each neighbor repre-

sents the best solution in a neighborhood of size
∑k

l=1

(ni1 +ni2
l

)
.

4 Split neighborhood

In this section we introduce the so-called split neighborhood. The best improving
neighbor in this neighborhood can be determined by solving an assignment problem
and due to the special structure this assignment can be determined via some sorting
routine. Since in this section we need to consider machine sets Mi resulting from
different assignments, we add a subscript to indicate the corresponding assignment;
i.e. MA

i is the machine set of machine i under assignment A.
Let q be a fixed, but arbitrarily chosen job. A split of jobs with anchor q for a

given assignment A is a partition of all sets MA
i into a so-called left-part MA

i1 and a
right-part MA

i2, such that

MA
i1 := {j ∈ MA

i : j ≤ q},
MA

i2 := {j ∈ MA
i : j > q}.

A second assignment A′ is a neighbor of A with respect to the anchor q , if the re-
sulting sets MA′

i1 and MA′
i2 are equal to the sets MA

i1 and MA
i2 for i = 1, . . . ,m, i.e. if

there exist two permutations πl,πr , such that MA
πl(i),1

= MA′
i1 and MA

πr(i),2
= MA′

i2 .
The neighborhood Nsplit(q)(A) consists of all neighboring assignments A′ with re-
spect to the anchor q . This means, that the neighborhood Nsplit(q)(A) contains all
reassignments of the right-parts Mi2 to the left-parts Mi1, and, thus, consist of up
to m! assignments.

In the following, we describe how the neighborhood Nsplit(q)(A) can be efficiently
explored and a best neighboring assignment can be determined. For this, consider Mi1
and Mi2, i = 1, . . . ,m, to be a split of jobs with anchor q for a given assignment A.
We define the contribution f (Mil) of a part Mil for l ∈ {1,2} and i ∈ {1, . . . ,m} to
be

f (Mil) :=
∑

j∈Mil

wjLij .
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Using these values, the objective value f (A) calculates as

f (A) =
m∑

i=1

(
f (Mi1) + f (Mi2)

) +
m∑

i=1

LiqWiq,

where Liq = ∑
j∈Mi1

pj and Wiq = ∑
j∈Mi2

wj .
For a neighboring assignment A′ ∈ Nsplit(q)(A) given by two permutations

πl,πr ∈ Sm, such that MA
πl(i),1

= MA′
i1 and MA

πr(i),2
= MA′

i2 ; i = 1, . . . ,m, the ob-
jective value calculates as

f (A′) =
m∑

i=1

(
f (MA′

i1 ) + f (MA′
i2 ) + LA′

iq WA′
iq

)

=
m∑

i=1

(
f (MA

πl(i),1) + f (MA
πr(i),2) + LA

πl(i),q
WA

πr(i),q

)

=
m∑

i=1

(
f (Mi1) + f (Mi2)

) +
m∑

i=1

LA
πl(i),q

WA
πr(i),q

.

Hence, the objective value of a neighboring assignment A′ differs from A in the
value of

∑m
i=1 LA

πl(i),q
WA

πr(i),q
. This value is determined by the choice, which right

parts and left parts are assigned to the same machine in A′. As a consequence, the
search for a best neighbor in Nsplit(q)(A) reduces to finding an assignment between
the values L1q, . . . ,Lmq and the values W1q, . . . ,Wmq which minimizes the sum of
the products of the assigned values. This assignment problem in a bipartite graph has
a special product property of the costs; i.e. each vertex has assigned a non-negative
value and the costs of assigning two vertices is equal to the product of the two values
of the vertices. Based on this property, the assignment which results if we put the
ith largest L-value and the m + ith largest W -value to machine i for i = 1, . . . ,m

turns out to be an optimal assignment (see for example the chapter on the assignment
problem in Brucker (2004) for a proof). Thus, the best neighbor can be calculated in
time O(m logm) by sorting the L and W values.

5 Computational results

In this section, we report on computational experiments conducted to analyze the ef-
ficiency of the introduced neighborhoods. The efficiency of neighborhoods is deter-
mined by the achieved solution quality and the used computation time. Our aim is to
evaluate the potential of the neighborhood and not on that of specific local search
method. Therefore, we have chosen to use Iterative Improvement as local search
method (i.e. in each iteration we move to an improving neighbor and stop if no such
neighbor exists). For the same reason we start the search with different initial solu-
tions. This shows which quality of local optimal solution is achieved dependent on
the quality of the initial solution.
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The problem instances were generated as described by van den Akker et al. (1999).
They introduce three different types of instances, where the integer processing times
and weights are uniformly drawn out of the following intervals:

• type (1) with pj ∈ [1,10] and wj ∈ [10,100],
• type (2) with pj ∈ [1,100] and wj ∈ [1,100],
• type (3) with pj ∈ [10,20] and wj ∈ [10,20].
Additionally, we consider another type Eq. 4, where the processing times are taken
uniformly from the interval [5,15] or [35,45] and the weights are determined by
choosing the weight to processing time ratio uniformly from the interval [0.8,1.2].
Since we were not able to receive any data-sets or codes of the existing exact so-
lution methods of Belouadah and Potts (1994) and van den Akker et al. (1999), we
calculated for a set of smaller instances optimal solutions via some straight forward
enumeration method. Additionally, we use a lower bounding method described by
Eastman et al. (1964) (abbreviated with LB). The computational tests were conducted
on a PC with Intel Pentium IV processor running at 2.4 GHz and the used methods
were coded in ANSI-C.

For receiving initial solutions we use two different constructive heuristics. A first
method is introduced by Eastman et al. (1964) and is called LRF-heuristic (Largest
Ratio First). Kawaguchi and Kyan (1986) prove that schedules constructed by the
LRF-heuristic do not exceed (

√
2 + 1)/2 < 1.208 times the optimal value. Computa-

tional testing from Baker and Merten (1973) and Barnes and Laguna (1993) indicate
that the LRF-heuristic is rather successful in delivering near-optimal solutions. Addi-
tionally, a second heuristic goes back to an idea of Hoede (2006). Here, iteratively a
non-scheduled job j is chosen for which

wj

∑

k∈N\{j},k<j

pk + pj

∑

k∈N\{j},k>j

wk

is maximal. This job j is inserted on the machine giving the least increase in the
objective value. We denote this algorithm as FF-heuristic.

We denote with k-MOVE the iterative improvement procedure that advances in
every iteration to the best solution in the neighborhood Nk-move. With MATCHING
k-MOVE we denote the corresponding iterative improvement algorithm using the
matching based neighborhood N M

k-move. To determine the best improving neighbor
in the neighborhood N M

k-move we have to solve a maximum weighted matching prob-
lem for the improvement graph corresponding to a given assignment. We realized this
by solving an integer linear program, which turned out to be fast enough for our pur-
poses. Furthermore, by SPLIT we denote the iterative improvement procedure that
calculates for every job q = 1, . . . , n the best improving neighbor of the current so-
lution in Nsplit(q) and then advance to the best solution found until there can be made
no improvement for any job q . At last, we use iterative improvement on the combined
neighborhoods Nsplit(q) and N2-move. More precisely, we run SPLIT and afterwards
advance to the best improving neighbor in N2-move. This process is repeated until no
further improvement is possible. We denote this algorithm with SPLIT-2MOVE.

If it is not mentioned, we always start with an initial solution calculated by the
LRF-heuristic. If we speak of objective values of a method we always mean the local
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Fig. 5 Deviation from optimal solutions (type Eq. 1 instances and n
m = 5)

optimum obtained at the end of the algorithm. We tested the given neighborhoods
with different initial solutions and instances with a job to machine ratio of n

m
= 10

and n
m

= 25. In order to receive significant results we average over 100 randomly
generated instances for each measurement.

First, we give an indication of the overall quality of the tested neighborhoods and
the lower bound by comparing them to optimal solutions. In Fig. 5 we present the
results of the two heuristics FF and LRF, the values of k-MOVE using LRF as initial
solution for k ∈ {2,4}, the optimal value and the lower bound LB for instances with
a job to machines ratio of n

m
= 5 and n ∈ {15,20,25}. The values in this figure show

the average absolute deviation from the optimal objective value (the relative devia-
tions are ≤0.5% times the optimal value). One can see that especially the solutions
resulting from k-MOVE with k ∈ {2,4} are close to the optimal solution, whereas the
lower bounding scheme LB does not get close to the optimal values. In Fig. 5 results
for instances of type Eq. 1 are given, but these results are representative for the other
types.

The results of Fig. 5 indicate that the results of 4-MOVE using LRF as initial solu-
tion form a good indication of the optimal objective value. Therefore, in the following
we always present deviations of achieved solutions from the 4-MOVE value using
the LRF as initial solution. Furthermore, initial tests have shown that, as already indi-
cated in Fig. 5, the LRF heuristic mostly performs better than the FF-heuristic (only
for type Eq. 4 and n

m
= 10 the FF-heuristic performs better than LRF).

In a next series of test, we investigate the performance of the different basic neigh-
borhoods. In Fig. 6 the outcome for a job to machine ratio of n

m
= 25 of k-MOVE for

k = 1, . . . ,4 and SPLIT are given. Again, type Eq. 1 is taken as a representative.

• With increasing k the values of k-MOVE get better for all types of instances except
for type Eq. 3, where the situation looks a bit different (see Fig. 7). Here, the LRF-
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Fig. 6 Overall performance (type Eq. 1 instances and n
m = 25)

Fig. 7 Overall performance (type Eq. 3 instances and n
m = 25)

heuristic performs nearly the same compared to 1-MOVE. Additionally, 2-MOVE
and 3-MOVE render comparable. Indeed, for instances of type Eq. 3 the jobs do
not differ a lot and thus, an improvement mainly can be achieved by exchanging
jobs rather than by moving. As a consequence, k-move with an odd k behaves
almost the same as (k − 1)-move.

• Mostly, the quality of local optima resulting from SPLIT is between 1-MOVE and
2-MOVE. Only for instances of type Eq. 2, the quality of SPLIT is comparable to 3-
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Fig. 8 k-MOVE and SPLIT using different initial solutions (type Eq. 1 instances and n
m = 25)

Fig. 9 Comparing k-MOVE and MATCHING k-MOVE (type Eq. 1 instances and n
m = 25)

MOVE (for smaller instances) and 4-MOVE (for larger instances). The combined
approach SPLIT-2MOVE performs slightly better than 2-MOVE for all types.

To investigate how sensitive our methods are to the choice of initial solutions (see
Fig. 8) we apply the basic neighborhoods using the two heuristics FF and LRF, but
also use randomly generated initial solution (RND). First, note that using an initial
solution of bad quality (RND), only seldom leads to solutions of a similar quality
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Fig. 10 Average running time in seconds to reach local optimum (type Eq. 2 instances with n
m = 10)

Fig. 11 Average running time in seconds to reach local optimum (type Eq. 2 instances with n
m = 25)

than the solutions resulting from an initial solution of good quality. Nevertheless, the
differences are not that big. Indeed, k-MOVE with k = 2,3,4 is able to bring initial
solutions of bad quality in the range of using initial solutions obtained by the LRF-
heuristic. This holds for all types of instances. To the contrary, additional tests have
shown that 1-MOVE is very sensitive to the choice of initial solutions in all types
of instances. SPLIT is also sensitive to the choice of initial solutions, but performs
better than 1-MOVE using bad initial solutions.
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Fig. 12 Average number of iterations to reach local optimum (type Eq. 2 instances with n
m = 25)

Fig. 13 Average number of edges in maximum weighted matching (type Eq. 2 instances with n
m = 25)

In a last series of tests we compare k-MOVE to MATCHING k-MOVE. The ex-
periments indicate, that k-MOVE and MATCHING k-MOVE are performing nearly
the same regarding solution quality for all types of instances, although the match-
ing based approaches are always slightly better. The results for k = 2, n

m
= 25 and

instances of type Eq. 1 can be seen in Fig. 9.
Summarizing the test on the quality of the solutions, we can state that not the

size of the neighborhood but the structure of the underlying basic neighborhoods are
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mainly responsible for the achieved quality. The basic neighborhoods have to allow
enough variation; independent combinations of these basic neighborhood operators
do not give a real improvement of the navigation behavior.

The results presented till now, concentrated on the quality of the achieved solu-
tions. In the next part we investigate the running time. We use instances of type Eq. 2
to present the results on the running time, since for this type of instances all our
methods need the most time to reach a local optimum. The first observation is, that
regardless which method we use, starting with initial solutions of bad quality leads
to a higher average running time of the methods (see Fig. 10 and Fig. 11). Addi-
tionally, we observe, that the average time needed to reach a local optimum by using
MATCHING k-MOVE is smaller than using the basic k-MOVE for all k (see Fig. 11).
For n

m
= 25, the running time of SPLIT is comparable to 2-MOVE (see Fig. 11) and

the average time needed to reach a local optima by using the combined approach
SPLIT-2MOVE is slightly higher than for SPLIT alone.

The decrease in the computational times using MATCHING k-MOVE instead of
k-move is a result from the fact that MATCHING k-MOVE needs a smaller number
of iterations to reach the local optimum (see Fig. 12). The lower running time and less
number of iterations for MATCHING k-MOVE compared to k-MOVE is caused by
the ability to apply several operations in a single iteration. In Fig. 13 we present the
average number of edges contained in a maximum weighted matching for instances
of type Eq. 2 with n

m
= 25.

Summarizing, for the considered parallel machine scheduling problem combining
independent moves in one operator has a positive effect on the running time but does
not help too much to improve the quality of achieved local optima.

6 Concluding remarks

We presented a general approach to build up a neighborhood N M
k-move of exponen-

tial size out of a smaller basic neighborhood Nk-move. Furthermore, we presented a
neighborhood Nsplit(q) that is based on a splitting of the job sets on the machines.
Computational tests show that using the neighborhood N M

k-move instead of Nk-move
is on average a better choice. Doing so, has an impact on the time needed to reach
a local optimum. Moreover, the solution quality is only slightly better by using the
matching based methods instead of the basic ones.

The neighborhood Nsplit(q) delivers better results compared to N M
1-move and

N1-move but is not as good as N M
2-move and N2-move. The average time needed to reach

a local optimum is comparable to N2-move. By using the two neighborhoods in a com-
bined approach, the quality of local optima increase but with an expense in running
time.

The results of this paper somehow confirm the conclusions drawn on the practical
use of neighborhoods of exponential size (see e.g. Hurink 1999, or Brueggemann and
Hurink 2007). Very large-scale neighborhoods are not per definition good for making
local search efficient. Based on our experiences, we may conclude that the size of the
neighborhood does not guarantee a better quality. And only if structural properties of
the considered problem make it possible to combine several neighborhood operators,
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very large-scale neighborhoods derived by combining operators may be successful in
speeding up the computational time (which was for our problem the case).

All in all, we suggest to develop and use very large-scale neighborhoods of the
considered types only if problem specific properties or computational arguments give
an indication that the very large-scale neighborhoods have some potential to be a
success.
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