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Abstract
During the COVID-19 pandemic, there has been considerable research on how regional and country-level forecasting can be 
used to anticipate required hospital resources. We add to and build on this work by focusing on ward-level forecasting and 
planning tools for hospital staff during the pandemic. We present an assessment, validation, and deployment of a working 
prototype forecasting tool used within a modified Traffic Control Bundling (TCB) protocol for resource planning during the 
pandemic. We compare statistical and machine learning forecasting methods and their accuracy at one of the largest hospi-
tals (Vancouver General Hospital) in Canada against a medium-sized hospital (St. Paul’s Hospital) in Vancouver, Canada 
through the first three waves of the COVID-19 pandemic in the province of British Columbia. Our results confirm that 
traditional statistical and machine learning (ML) forecasting methods can provide valuable ward-level forecasting to aid in 
decision-making for pandemic resource planning. Using point forecasts with upper 95% prediction intervals, such forecast-
ing methods would have provided better accuracy in anticipating required beds on COVID-19 hospital units than ward-level 
capacity decisions made by hospital staff. We have integrated our methodology into a publicly available online tool that 
operationalizes ward-level forecasting to aid with capacity planning decisions. Importantly, hospital staff can use this tool to 
translate forecasts into better patient care, less burnout, and improved planning for all hospital resources during pandemics.

Keywords Forecasting · Machine learning · COVID-19 · Ward-level forecasting · Traffic Control Bundling · Pandemic 
resource planning

Highlights 

• Ward-level forecasting methods can aid hospital staff in 
expanding and contracting the size of COVID-19 wards 
for improved resource management.

• Statistical and machine learning forecasting methods can 
provide better accuracy in anticipating required beds in 
both confirmed COVID-19 positive and patient-under-
investigation (PUI) wards than human decision-making 
alone.

• The upper 95% prediction interval of an ARIMAX fore-
casting method improves forecasting accuracy by approx-
imately two-fold compared to planned capacity levels set 
by hospital staff.

• Using time-lagged epidemiology information (commu-
nity positivity rates and daily reported COVID-19 cases) 
can improve forecast accuracy during inflection periods 
(increasing or decreasing bed demand) in hospital wards, 
particularly for larger hospitals that emulate community-
related health impacts.
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• A forecasting planning tool has been built into a publicly 
available online tool that operationalizes forecasting and 
aids in planning decisions at the ward level to support 
pandemic relief. The tool can be accessed here: https:// 
stpau lhosp ital. shiny apps. io/ hospi tal_ plann ing/

1 Introduction

The COVID-19 pandemic has put a significant strain on 
healthcare resources worldwide, often challenging the 
capacity of hospitals and placing excessive stress and anxi-
ety on healthcare workers – the greatest asset of our health-
care systems. This is also the case in Canada, where six 
to seven pandemic waves have strained hospital resources. 
According to recent polls, 70% of surveyed Canadian health-
care workers reported mental fatigue, including experiencing 
sleep deprivation and burnout [1, 2]. The need to cohort 
hospitalized patients based on their COVID-19 status has 
further increased the complexity of healthcare system opera-
tions and added to healthcare worker stress.

During the pandemic, many forecasting methods have 
been applied to understand the growth and decline of the 
total number of people infected with COVID-19 across dif-
ferent jurisdictions. However, there is a dearth of research 
investigating forecasting methods at a more granular level, 
including specific hospitals [3, 4] and even specific depart-
ments, wards, and units [5]. In the context of a pandemic, 
forecasting strategies for specific wards or hospital units 
could assist decision-makers with short-term planning in 
ways that city or region-wide forecasts cannot. Hospitals 
in different areas with the same jurisdiction could experi-
ence differing demand patterns for hospital beds for several 
reasons, including sociodemographic variation, localized 
outbreaks, attitudes toward following public health meas-
ures, and the concentration of similar facilities [6, 7]. From a 
supply perspective, hospital and ward-specific factors could 
result in day-to-day changes in bed availability, such as staff-
ing shortages and limitations in physical space.

In the world of time-series forecasting, the two popular 
categories of forecasting methods used today are traditional 
“statistical” time-series methods and more recently applied 
“algorithmic” machine learning (ML) forecasting methods 
[8]. This paper investigates if statistical or ML forecasting 
methods can provide improved accuracy in anticipating the 
number of beds required in COVID-19 wards while func-
tioning within a modified Traffic Control Bundling (TCB) 
protocol for resource planning during the pandemic. TCB 
protocols have been implemented in hospitals worldwide 
during the earliest stages of the COVID-19 pandemic. Oper-
ationally, their goal is to minimize nosocomial transmissions 
by separating known positives, unknowns (PUI), and known 
negatives to minimize nosocomial outbreaks and provide 

capacity planning and resource management of COVID-19 
wards [9].

The main contribution of this paper is our proposal for a 
forecasting system that enables an accurate short-term pre-
diction (up to approximately 7 days) of bed requirements 
within hospital wards during the early stages of pandemic 
resource planning. This forecasting system is applicable 
in situations where pandemic cases are not monotonically 
increasing or decreasing, but rather COVID-19 cases are 
expected to experience moderate expansion and contraction 
over time and can be cared for within the existing capacity 
of local healthcare facilities.1 The forecasting system has 
effectively been applied to the earliest stages of pandemic 
resource planning when the greatest element of diagnostic 
uncertainty (e.g., vaccinations were unavailable, and patients 
were separated within hospital wards into 3 distinct patient 
cohorts2). The forecasting system can be adapted for future 
outbreaks of a pandemic or other viral outbreaks where 
ward-level hospital care and staffing are strained in terms 
of patient loading. To achieve this main contribution our 
research includes:

• An evaluation of the accuracy of statistical and machine 
learning forecasting methods for predicting bed require-
ments within COVID-19 wards during the first three 
waves of the COVID-19 pandemic (end of March 2020 
to June 30, 2021). Statistical [10–13] and ML [14–16] 
forecasting have proven effective for population growth 
models during the COVID-19 pandemic, but no known 
research has explored their application to ward-level 
demand in hospitals. Likewise, no known literature iden-
tifies under what conditions such forecasting methods are 
useful and applicable to pandemic forecasting at the ward 
level and to what extent. We explore the benefits and the 
limitations of such forecasting methods for ward-level 
predictions using comprehensive time-series evaluation 
techniques comparing such methods to other forecasting 
methods employed in the literature.

• An evaluation of external covariates in such forecasting mod-
els including time-lagged variables that demonstrate signifi-
cant correlations with bed requirements in hospital wards.

• An evaluation of the use of prediction intervals in such 
forecasting methods to model the uncertainty of point 
forecasts and their ability to anticipate swings in patient 
demand at the ward level of hospitals.

1 For example, the forecasting system produces accurate predictions 
of the total number of patients in COVID-19 wards (see Figs. 1 and 2 
for time-series plots) with an average daily demand of approximately 
30 beds with a standard deviation of 12 beds per day during the sec-
ond and third waves of the pandemic.
2 COVID-19 positive, COVID-19 negative and COVID-19 patients 
under investigation (PUI).

https://stpaulhospital.shinyapps.io/hospital_planning/
https://stpaulhospital.shinyapps.io/hospital_planning/


479Forecasting ward‑level bed requirements to aid pandemic resource planning: Lessons learned…

1 3

• The selection of the most appropriate standardized fore-
casting methods (statistical and ML methods) to include 
in an online forecasting system for ward-level predic-
tions, that provides both point forecasts and prediction 
intervals to support planning decisions.

• In practical terms, this paper shows how statistical and 
ML forecasting methods can contribute to supporting the 
decision-making of ward-level bed requirements for the 
health of patients and the important planning of hospital 
employees in two hospitals in Vancouver Canada.

To make our research contribution truly beneficial, we 
have developed a working prototype forecasting tool that 

allows for “real-time” forecasting capabilities at the ward-
level during a pandemic. Its purpose is to be used and oper-
ated by healthcare professionals working within hospital 
wards—not data scientists—and has been programmed into 
an online tool that is publicly available for use. Our tool fore-
casts bed requirements within individual COVID-19 wards 
and provides a planning module that predicts the likelihood 
that future patient demand within a given COVID-19 ward 
will exceed hospital set capacities within a defined time hori-
zon. In developing this tool, we investigated univariate and 
multivariate methods to find the best predictors among these 
methods while balancing accuracy and simplicity of imple-
mentation. For simplicity we focus on three important condi-
tions: (1) hospital staff does not require prior knowledge of 

Fig. 1  Number of COVID-19 
patients at St. Paul’s Hospital 
from April 2020 until June 
2021. The red line represents 
the total number of COVID-19 
positive patients assigned to 
the Red ward. The yellow line 
represents the total number of 
patients assigned to both the 
Red and Yellow wards. The 
black dotted line represents the 
set capacity level of the beds 
allocated to both the Red and 
Yellow ward
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Fig. 2  Number of COVID-19 
patients at Vancouver General 
Hospital from March 2020 
until June 2021. The red line 
represents the total number of 
COVID-19 positive patients 
assigned to the Red ward. The 
yellow line represents the total 
number of patients assigned to 
both the Red and Yellow wards. 
The black dotted line represents 
the set capacity level of the beds 
in the Red ward only
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forecasting methods to use it, (2) training of the forecasting 
method itself is not a requirement to conduct forecasting, 
and (3) the method should have as few input variables as 
possible, and these variables should be easily obtainable by 
hospital staff. The tool empowers physicians, nurses, and 
administrators to make “real-time” informed decisions when 
planning hospital resources, including the compounding 
impacts of schedules relating to urgent and elective surgical 
procedures.

Our paper is organized as follows. Section 2 discusses the 
need for research for exploring the accuracy of ward-level 
forecasting methods that are possibly less complicated and 
more accurate than current ward-level forecasting methods 
published in the literature. Section 3 describes the setting 
at the two hospitals in Vancouver, Canada during the pan-
demic. It also presents the data used in this study to compare 
alternative forecasting methods and identifies the opportu-
nity for improvement in ward-level resource planning. Sec-
tion 4 provides an overview of this study’s statistical and 
ML forecasting methods and the cross-validation techniques 
used to compare forecast accuracy. Section 5 presents the 
results and reflects upon the accuracy of the various fore-
casting methods and uncertainty levels. In Section 6, we 
discuss the implication of our findings and the value of our 
results for scholars, practitioners, and most importantly hos-
pital staff working in COVID-19 wards. We further discuss 
the development of the online prototype forecasting tool to 
support ward-level decisions. Lastly, we provide concluding 
remarks and our aims for further research.

2  Literature

Forecasting methods have proven effective for hospital 
resource management in a variety of settings, including 
healthcare emergency departments [17–20]; outpatient 
visits [21, 22]; hospital bed capacity [23, 24]; hospital ser-
vices [25–27], and most recently a surge of research has 
focused on pandemics [3–5, 11–16, 28–48]. Given the 
unique circumstances presented within each country dur-
ing the COVID-19 pandemic, forecast method selection and 
its application has been varied. The selection of forecasting 
methods includes statistical time-series methods [11–13, 
28–30, 37, 38, 43, 48], machine learning methods [14–16, 
19, 20, 27, 33, 35, 36, 39, 42, 47], simulation and queueing 
based methods [3, 5, 40] and combined approaches [4, 15, 
33–36, 39, 41, 46]. Table 1 summarizes the similarities and 
differences between forecasting methods and their applica-
tions during the COVID-19 pandemic. A large majority of 
forecasting methods are applied within a specific geographi-
cal context at the country [11–13, 16, 28, 30, 34, 35, 37–39, 
43, 44, 48], regional or local health authority level [14, 16, 
29, 32, 33, 40–42, 45, 47] to predict the total demand of 

hospital resources in aggregate to plan for larger geographi-
cal resources such as the total number of intensive care unit 
(ICU) beds and ventilator demands.

As shown in Table 1, very few papers have investigated 
forecasting methods specifically to predict ward-level 
demand requirements during the pandemic. Yang and col-
leagues [3] have developed a probabilistic model that trans-
lates regional COVID-19 estimates into hospital-specific 
forecasts with prediction intervals. Their forecasting method 
relies upon the accuracy of regional forecasts to create accu-
rate predictions at the hospital level. A common forecast-
ing method deployed during the pandemic, and utilized by 
Yang and colleagues [3], are epidemiologic forecast methods 
such as SIR, SIR, SEIR SEIRD models that are based on a 
set of differential equations with defined initial conditions 
and adaptive parameters [49]. Such models are primarily 
designed to forecast large populations rather than individual 
hospitals [3] and are sensitive to the definitions of initial 
conditions and parameters [50]. Despite such challenges, 
Yang and colleagues [25], demonstrate accurate predictions 
at the hospital level using three varied assumptions about the 
accuracy of regional forecasts (perfect forecasts, unbiased 
forecasts, and biased forecasts).

Another valuable research contribution to forecasting at 
the hospital level comes from Garcia-Vicuna and colleagues 
[51]. These researchers simulate patient arrivals based on 
Population Growth (PG) models and subsequently use a dis-
crete-event-simulation (DES) model to generate uncertainty 
of point forecasts. Likewise, Manca and colleagues [49] use 
a similar approach to forecasting ICU bed demand using 
PG models. PG models are applicable to forecasting mono-
tonically increasing bed numbers, which never decrease over 
time, up to a maximum plateau level [49]. Thus, PG models 
are appropriate for larger geographical regions or hospitals 
that experience sustained growth in total hospitalizations to 
a maximum value; followed by a plateau, and finally, a pat-
tern of decreasing trend to zero when the pandemic expires. 
Conversely, as in our study, individual wards are more likely 
to experience non-monotonically increasing trends where the 
number of patients requiring beds increases and decreases 
with relatively fewer fluctuations. PG models cannot be used 
in such scenarios [49].

Our work complements prior research on ward-level fore-
casting in several ways. Based on our extensive literature review 
and our best knowledge, no research has yet investigated the use 
of statistical and machine learning forecasting models to predict 
bed requirements at the ward-level. Although there exists plenty 
of research on how such models can accurately predict regional 
or country-level growth patterns of the pandemic, no literature 
has quantified the effectiveness of such classical approaches 
to predict ward-level demand during the earliest stages of the 
pandemic. Compared to classical statistical and ML forecast-
ing methods, most ward-level forecasting methods published 
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Table 1  Forecasting Methods developed during COVID-19

Authors Target Level Predictions Forecasting Method(s) Investigated Area

Alabdulrazzaq et al. (2021) Country Level Autoregressive integrated moving 
average (ARIMA)

Kuwait

Alzahrani et al. (2020) Country Level ARIMA Saudi Arabia
Aslam (2020) Country Level Kalman Filter (KF), ARIMA, & 

Holt-Winters (HW)
Pakistan

Baas et al. (2021) Hospital ICU;
Hospital COVID-19 wards

Richards’ curve, Kaplan–Meier 
estimation, Poisson Arrival Loca-
tion Model

Netherlands

Barret et al. (2020) Provincial Level Scenario-Based Individual Level 
Simulation

Ontario, Canada

Bekker et al. (2021) Country Level Linear Programming, Kaplan–
Meier estimation, and Queuing 
Model

Netherlands

Bhandari et al. (2020) Local Health Jurisdiction Survival Analysis, Cox propor-
tional hazard regression analysis

Rajasthan, India

Bhandary et al. (2020) Country Level ARIMA, exponential smoothing 
(ETS), & Susceptible-infectious-
recovered (SIR)

Nepal

Braga et al. (2021) State Level Artificial Neural Networks (ANN) Pará, Brazil
Calabuig et al. (2021) Hospital Level Kaplan–Meier Survival Curve Granada, Spain
Capistran et al. (2021) City Level (ICUs) SEIRD Model; Bayesian Mexico
Ceylan (2020) Country Level ARIMA France, Italy, & Spain
Chakraborty and
Ghosh (2020)

Country Level ARIMA, wavelet-based Forecast-
ing (WBF)

Canada, France, India, & South 
Korea

Darapaneni et al. (2021) State Level SIR/SEIR, Time-series Analysis 
(ARIMA)

Telangana, India

Garcia-Vicuña et al. (2021) Country Level Population Growth Models; DES Spain
Goic et al. (2021) Local Health Jurisdictions Trimmed Mean to combine 

ARIMA/ARIMAX, ANN, and 
compartmental models

Chile

Hasan (2020) Global Cumulative Cases ANN – ensemble empirical model 
decomposition (ANN-EEMD) 
MA, & Linear Regression

World (aggregate)

Joseph et al. (2020) Country Level ETS & integer-valued generalized 
autoregressive conditional heter-
oskedastic (INGARCH)

Nine Countries

Kamar et al. (2021) Country Level Modified CHIME Model (SIR 
Model)

ESTF Calculator, AUBMC Surge 
Needs Calculator

Lebanon

Khan & Gupta (2020) Country Level ARIMA & Nonlinear autoregres-
sive neural network (NNAR)

India

Kufel (2020) Country Level ARIMA 32 European Countries
Macca et al. (2020) Country Level Population Growth Models Italy
Melin et al. (2020) Country and State Level Multiple ensemble artificial neural 

network
Mexico

Perone (2020) Country and Regional Level ARIMA Italy, Russia, & USA
Ribeiro et al. (2020) State Level ARIMA, cubist regression (CUB-

IST), random forest (RF), ridge 
regression (RIDGE), support vec-
tor regression (SVR), & stacking-
ensemble learning (SEL)

Brazil

Petropoulos and Makridakis (2020) Country Level ETS World (aggregate)
Singh S. et al. (2020) Country Level ARIMA-WBF France, Italy, Spain, UK, & USA
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in the literature to date are relatively complicated. Functionally 
and practically speaking, such classical methods may prove to 
be easier to implement (for exploration and tool development) 
and provide as good or better accuracy for ward-level plan-
ning and decision-making. Such forecasting methods have the 
added benefit of using readily available data at the ward-level, 
which does not need to be modified from regional forecasts 
as previous studies have done. Given that ward-level demand 
will vary across different hospitals, forecasting at the point of 
real-time demand (without modifications to the time series) 
will likely provide the greatest overall accuracy of bed demand 
that is realized. This is analogous to forecasting retail demand 
for multiple consumer products across different geographical 
retail locations. To accurately predict the consumer demand 
for specific products at a single location, one needs to estimate 
the drivers of demand fluctuations that will depend on a single 
location and single SKU [52]. Further, some statistical and ML 
forecasting methods allow for the inclusion of covariates or 
external factors that can pick up on patterns outside the time 
series. Thus, there exists an opportunity to investigate the use of 
epidemiological and community-related factors, that may serve 
as useful inputs to such forecasting methods to help capture 
trend effects for improved accuracy. Lastly, no literature seems 
apparent that investigates the accuracy of prediction intervals of 
such methods as most research on ward-level forecasting meth-
ods has focused on. In this paper, we strive to fill this literature 
gap for researchers and practitioners alike.

3  Setting

This section describes the operational contexts of the two 
hospitals (St. Paul’s Hospital and Vancouver General Hos-
pital) during the first three waves of the COVID-19 pan-
demic in BC (approximately, from the end of March 2020 

to June 2021 [53]). St. Paul’s Hospital (SPH) is consid-
ered a moderate-sized hospital in Canada with a total of 
446 beds. Vancouver General Hospital (VGH) is the tenth 
largest hospital in Canada with a total of 926 beds [54]. 
Both hospitals are in Vancouver, BC residing within the 
Vancouver Coastal Health Authority (VCHA) which serves 
approximately 1.25 million of British Columbia's population 
of five million. Like many hospitals worldwide [9, 55–58], 
both SPH and VGH implemented a modified TCB protocol 
to maximize the use of existing healthcare resources and 
to mitigate the spread of COVID-19 within their hospitals 
during the early stages of the pandemic. As discussed in 
[9], a modified TCB protocol called “Red-Yellow-Green” is 
a system for stratifying patients into 1 of 3 risk profiles and 
corresponding ward spaces, named Red, Yellow, and Green 
probability of disease. Red spaces are for patients confirmed 
to have COVID-19. Green spaces are for patients with a low 
enough diagnostic probability for COVID-19 infection that 
can be cohorted as usual with universal precautions. Yel-
low spaces are reserved for patients with great enough diag-
nostic probability for COVID-19 infection that additional 
infection control precautions are warranted. Red and Yellow 
wards have the strictest infection control measures involving 
reduced density of patient cohorts, access restrictions for 
health care providers, etc. These wards represent possible 
locations of nosocomial spread and often require additional 
resources (bed spaces, altered nursing ratio/ physician ratios, 
increased consumption of PPE, etc.) to adequately prevent 
these infections. Patients admitted to the Red and Yellow 
wards are cared for by designated COVID teams to limit the 
potential spread to healthcare workers (HCWs) and patients 
in Green zones.

There are two important types of resource planning 
decisions within the modified TCB protocols at SPH 
and VGH that are impacted by this study. One is related 

Table 1  (continued)

Authors Target Level Predictions Forecasting Method(s) Investigated Area

Swaraj et al. (2020) Country Level ARIMA, NNAR, & ARIMA-
NNAR

India

Toharudin et al. (2021) Provincial Level NNAR, Multi-layer Perceptron 
(MLP),

Extreme Learning Machine (ELM)

Jakarta, West Java Indonesia

Wieczorek et al. (2020) Country and Regional Levels ANN Several countries & regions
Yang et al. (2021) Hospital Acute Care and ICU 

wards
SIR, Simulation California, USA

Yonar H. et al. (2020) Country Level ARIMA & Brown/Holt linear 
exponential smoothing method 
(B/W LES)

G8 countries

Zhao et al. (2020) Provincial and City Level ARIMA, ARIMAX, ETS, & Sus-
ceptible-infected but undetected-
infected quarantined-suspected-
discharged (SEIQDR) ARIMA

China



483Forecasting ward‑level bed requirements to aid pandemic resource planning: Lessons learned…

1 3

to the total ward space within the hospital and the other 
is related to the separation of individual wards and the 
assigned bed and staffing numbers to each ward. The total 
hospital ward space of Internal Medicine at both hospitals 
is fixed due to hospital infrastructure that cannot be easily 
adjusted. One of the main applications of this research 
is being able to predict the possibility that the total ward 
space will overflow into other hospital units or beyond the 
capacity of the hospital. This impacts the total required 
number of HCWs and the functionality of hospital units 
beyond the COVID-19 wards. The second important ward-
level decision is related to the operational expansion and 
contraction of individual COVID-19 wards within the 
total ward space. This is because bed numbers, nurses, and 
allied health teams are often assigned on a per ward basis 
to provide the necessary level of biocontainment and safety 
for both patients and healthcare workers, thus minimizing 
the potential for nosocomial transmissions. Operationally, 
these decisions influence the location of moveable walls 
and labels on the individual patient rooms to create clear 
demarcations between the Red, Yellow, and Green wards. 
Thus, ward sizes at both hospitals were interdependent: 
increasing or decreasing the number of beds in one ward 
directly impacted the size of the other wards and their 
required healthcare resources. At SPH and VGH, hospital 
decision-makers made these decisions based on their 
assessment of the demand (COVID-19 cases) and supply 
(staffing and physical space) at a particular point in the 
pandemic.

Figure 1 and 2 show the number of patients assigned to 
the Red, and the combined Red-Yellow COVID-19 wards 
at SPH and VGH from approximately April 2020 to June 
2021.3 Figure 1 shows the set capacity levels (black dot-
ted line) of the total COVID-19 beds in the combined Red 
and Yellow wards at SPH. Figure 2 shows the set capacity 
levels (black dotted line) of only the Red ward at VGH.4 
These lines reflect the decisions of hospital staff related to 
COVID-19 ward expansion or contraction. A few interest-
ing observations can be deduced from these two figures. 
At SPH, it is quite possible that the set capacities were too 
high during the pandemic, particularly in the Yellow ward. 
This indicates the times when possibly too many beds and 
respective staffing resources were assigned to individual 
wards. In total, the COVID-19 ward’s (Red and Yellow) 
total set capacity at SPH experienced on average 186% 

higher than the required number of beds needed. Figure 2 
shows the capacity of the Red ward at VGH was set unusu-
ally high at the start of the pandemic given the uncertainty 
of the pandemic on hospital resources. Likewise, Fig. 2 
shows the total ward-level demand at VGH was signifi-
cantly higher than at SPH, having several periods of dou-
bling or tripling of ward-level demand within a week or 
two. As shown in this paper, statistical and ML forecasting 
methods with defined uncertainty levels (80%-99%) can 
aid in decision support for the expansion or contraction of 
COVID-19 wards at these two hospitals. One way we dem-
onstrate this in this paper is by comparing the set capacity 
levels of the COVID-19 wards made by hospital staff to 
the prediction intervals of various forecasting methods. 
We also apply a similar ward-level evaluation methods of 
forecasting methods used in literature to evaluate the accu-
racy of ward-level forecasting methods used in this study.

4  Methods

This section discusses the data used in this study, the 
selection of appropriate statistical and ML forecasting 
methods, and the techniques used to compare their 
accuracy. Our research followed a traditional time-series 
analysis by first conducting exploratory data analyses to 
identify the underlying time-series characteristics of the 
data. Next, based on those underlying characteristics, 
we selected appropriate models to apply to training data 
sets for model estimation, identification, and validation. 
Lastly, we applied those forecasting methods to a testing 
data set, which allowed us to conduct in-sample validation 
to identify the accuracy of the methods using several error 
metrics and benchmarks.

We explored several approaches of time-series cross-
validation techniques to quantify error metrics (i.e., accu-
racy), including using different holdout periods over the 
times-series and forecasting using an expanding window 
technique that predicts from 1 to 14  days ahead. This 
approach provides the best validity of how a time series 
model will perform to real data [59]. We used a cross-val-
idation approach similar to that of Baas et al. [5] that vali-
dated a forecasting method during COVID-19 to predict 
bed occupancy in ICUs and hospital wards. This allowed 
for a rigorous approach to quantity forecast accuracy 
between various statistical and ML forecasting methods 
and compared accuracy to academic literature (as found 
by Baas et al. [5] and Yang et al. [3]) for forecasting at the 
hospital ward level. We also utilize a forecasting evaluation 
technique applied by Yang et al. [3], forecasting weekly 
across the periods of the pandemic with the greatest stress 
and volatility to measure the coverage rate (CR) and accu-
racy metrics of competing forecast methods.

3 At SPH, COVID-19 patient counts are calculated for the Red ward 
alone and does not include COVID-19 patients elsewhere in the hos-
pital. At VGH, COVID-19 counts represent all patients in hospital 
admitted to Internal Medicine and therefore there are times shown 
where the number of patients exceed ward capacity.
4 Unfortunately, data on the set capacity levels of the Yellow ward at 
VGH were unavailable.
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4.1  Data

The data used in this study are ward-level bed occupancies 
at SPH and VGH as discussed in Section 3. We conducted 
extensive exploratory data analysis to select possible forecast-
ing methods that could prove valuable in this study. Three 
time series at both hospitals (occupancy in the Red, Yellow, 
and combined Red & Yellow wards) represent the important 
demand profiles that are target variables for forecasting. The 
three datasets (Red, Yellow, and Red and Yellow combined) 
at both hospitals were investigated for trend, level, and sea-
sonal effects using various statistical tools, including time-
series plots, ACF/PACFs, decomposition plots, and statis-
tical tests for trends and seasonality. Stationary tests using 
augmented Dickey-Fuller (ADF), Philips Perron (PP), and 
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) unit root tests 
provide overall confirmatory evidence that all three time-
series from St. Paul’s Hospital are nonstationary, and station-
arity is achieved using first differences. Our results found that 
the 3 time series at both hospitals showed little evidence of 
seasonality, with primary components being stationary, trend, 
and lagged effects – indicating all 3 time series could be mod-
eled effectively using autoregressive techniques.

We also investigated the validity of using epidemiological 
and external data sources in our study. Two of the forecasting 
methods explored (ARIMAX and NARX) are designed to 
allow for external covariates to be incorporated to improve 
their predictive performance. Publicly available data was lim-
ited to the following epidemiological variables: the number of 
reported daily new cases (at both provincial and local health 
regions), the total number of active cases (provincial only), 
and daily positivity test rates (local health regions only). The 
data used at the local health region is Vancouver Coast Health 
Authority (VCHA) for both SPH and VGH. We also investi-
gated weather data in our analysis: daily average temperature 
and daily total precipitation. The epidemiological data came 
directly from the BC Center for Disease Control [53], and the 
weather data was extracted from weather resources provided 
by the Government of Canada [60].

Tables  2 and 3 provides a heatmap comparing the 
bivariate correlations (Pearson’s coefficient of correlation 
r) between the internal data of the number of ward-level 

beds occupied at both hospitals and external variables. We 
conducted an extensive correlation analysis of time-lagged 
external variables and their relationship with hospital 
ward-level demand to identify optimal time-lagged effects 
(examples provided in Fig. 10 in Appendix 1). SPH shows 
a relatively lower correlation with external covariates for 
the Yellow and combined Red and Yellow wards, with its 
highest correlation between the occupancy of the Red ward 
and VCHA positivity (with an optimal lag of 14 days).5 The 
larger hospital (VGH) had a significantly higher correlation 
with ward-level demand and the external epidemiological 
data (using optimal lags).

As shown in Table 3, both the Red ward and the com-
bined Red and Yellow wards show positive bivariate corre-
lations ranging between 0.82 and 0.86 with lagged external 
variables. Similarly, the number of patients in the Yellow 
ward at both hospitals demonstrates a relatively weaker 
correlation with external variables. Noticeably, correlations 
between community effects and the number of patients in the 
wards are weaker at SPH compared to VGH. We believe this 
is due to the ward-level demand at the larger hospital having 
greater ability, due to its size, to reflect a stronger association 
with community-level factors relative to the smaller hospital. 
This is also true of the lag analysis demonstrating signifi-
cantly higher correlations with lagged external variables at 
VGH than SPH.

Table 4 shows the bivariate correlations between our 5 
external variables. The daily new reported cases for BC, 
daily new reported cases for the VCHA, and total active 
cases for the BC province are all highly correlated. Given 
these findings, we selected to use the positivity rate in 
VCHA (lagged 14 days) for SPH and the daily reported new 
cases in the VCHA region (lagged 18 days) for VGH as an 
external epidemiological variable in our analysis.

Figure 3 shows that the number of patients in the COVID-
19 wards at the smaller hospital (SPH) have a moderate cor-
relation with daily positivity rate (optimal lag of 14 days) in 
the VCHA. Conversely, Figs. 4 and 5, shows the optimal lag 

Table 2  Correlations (Pearson’s 
coefficient of correlation r) 
between epidemiological, 
external data and ward 
occupancy at SPH from Sept. 
14, 2020, to June 29, 2021

Red Yellow Green
Red +
Yellow

Red + 
Yellow +

Green

Daily Cases in VCHA -0.05 0.07 -0.18 -0.01 -0.24

Positivity rate in VCHA 0.24 -0.21 -0.23 0.11 -0.21

Daily Cases in BC 0.08 -0.09 -0.37 0.02 -0.46

Mean Temperature -0.36 0.19 0.36 -0.24 0.28

Total Precipitation -0.01 -0.16 -0.03 -0.11 -0.13

Lag 14 - Positivity rate in VCHA 0.53 -0.39 -0.36 0.28 -0.24

5 Correlation between positivity rate using a lag of 14 days and the 
Red ward demand increases to 0.73 across the entire first three pan-
demic waves.
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of daily reported new cases and positivity rates in VCHA, 
are highly correlated with daily ward-level demand at VGH. 
In this paper, we investigate how such differences impact the 
accuracy of ward-level forecasts across a number of statisti-
cal and ML forecasting methods.

4.2  Statistical and machine learning forecasting 
methods

In this subsection, we briefly provide an overview of 
the selection of statistical and ML forecasting methods 
employed in this study and provide appropriate reasoning for 
their use. The statistical and ML forecasting methods applied 
in this study are benchmarks and standards within academia 
and industry. For example, in the recent M4 competition [61] 
that publicly invites researchers and practitioners worldwide 
to compete in a forecast competition, all of the following 
statistical and ML forecasting methods used in this study 
were classified as standards to which competing methods 
were compared. Given this knowledge and the statistical 
properties of the time series discussed in Section 4.1, four 
exponential smoothing methods were investigated in this 
study: (1) Simple Exponential Smoothing (SES), (2) SES 
with a special form of drift known as the Theta method, 
(3) Holt’s Linear Trend Method, and (4) Holt’s Method 
with Dampened Trend. These methods are considered 
univariate models that only utilize the time-series data in 
the model development. ARIMA and ARIMAX were found 
to be highly appropriate statistical forecasting methods for 
ward-level forecasting in this study.6 ARIMA stands for 
autoregressive (AR) integrated (I) moving average (MA) 
and is based on the underlying principle that future values 
can be effectively predicted from a linear combination of 
past observations and white noise innovations (error terms). 
ARIMAX is a more general form of the ARIMA method that 

allows for the inclusion of exogenous covariates (i.e., “X”), 
providing the ability for multivariate time-series estimation. 
This technique allowed for the inclusion of epidemiological 
data to be modeled with the observed time series of bed 
occupancy within the COVID-19 wards. All statistical 
forecasting methods above were implemented using the 
“forecast” package in R developed by Rob Hyndman [62]. 
Interestingly, in a recent study by Makradkis and colleagues 
[63], these authors found that these statistical forecasting 
methods dominated popular ML forecasting methods in 
forecast accuracy across all cross-validation time horizons 
and all forecast error metrics. Nonetheless, we implemented 
one of the more accurate ML forecasting methods for time-
series analysis found in comparative studies [63, 64]: a 
Multilayer Perceptron (MLP) neural network model that 
is constructed using one hidden layer. In this form, the 
MLP can be classified as a nonlinear autoregressive neural 
net (NAR). A neural network can be applied to univariate 
and multivariate time series using a special class called 
time-delayed neural networks. Likewise, a NAR with 
covariates of relevant epidemiological data is classified as 
NARX. We implemented the NAR and NARX using two 
different R packages (“forecast” [62] and “nnfor” [65]) to 
experiment with performance and accuracy. We conducted 
comprehensive diagnostics and validation methods of 
the specified models and experimented with both manual 
and automatic model parameter specifications. Prediction 
intervals for all forecasting methods were based on the cross-
validation residuals derived (bootstrapping and simulation) 
using an expanding window procedure that is discussed in 
the next section.

Error metrics were calculated using standard error fore-
casting metrics for accuracy: (1) the mean absolute error 
(MAE), and (2) the root mean squared error (RMSE). The 
metrics were used to compare the accuracy of the forecast-
ing methods against one another and the accuracy of the 
methods against the current set capacity levels of the two 
COVID-19 wards (Red and Yellow) at St. Paul’s Hospital. 
We also further validated all forecasting methods using three 
benchmark indicators that will be discussed.

Table 3  Correlations (Pearson’s 
coefficient of correlation r) 
between epidemiological, 
external data and ward 
occupancy at VGH from Sept. 
14, 2020, to June 29, 2021

Red Yellow Green
Red +
Yellow

Red + 
Yellow +

Green
Daily Cases in VCHA 0.51 0.12 -0.25 0.51 0.33

Positivity rate in VCHA 0.69 0.16 -0.37 0.69 0.42

Daily Cases in BC 0.58 0.07 -0.24 0.57 0.41

Mean Temperature -0.02 0.00 -0.21 -0.02 -0.23

Total Precipitation -0.11 -0.04 0.15 -0.11 0.02

Lag 18 - Daily Cases in VCHA 0.83 0.09 -0.50 0.82 0.43

Lag 12 - Positivity rate in VCHA 0.87 0.18 -0.50 0.86 0.48

Lag 18 - Daily Cases in BC 0.84 0.12 -0.47 0.83 0.48

6 We also implemented several seasonal statistical models including 
Holt-Winters (ETS), TBATS and Prophet that all proved inferior to 
the selected models. As indicated, our exploratory analysis demon-
strated a negligible degree of seasonality across the time-series.
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4.3  Evaluation methods

Two comprehensive evaluation methods are presented to vali-
date the accuracy of our selected forecasting methods and 
various statistical and ML forecasting methods in general 
when applied to ward-level forecasting. The first is a cross-
validation technique similar to Baas et al. [5], which provides 
an expanding window procedure developed by Hyndman and 
Athanasopoulos [59]. This method uses a comprehensive 
evaluation of the accuracy of the various statistical and ML 
forecasting methods against forecasting benchmarks and set 
capacity levels (where data is available). We used the results 
from this first method to select specific forecasting methods to 
be further stress-tested over the most volatile demand periods 
using a similar approach by Yang et al. [3].

The first evaluation method uses all data up to a given day 
to train the model and then uses a forecast expanding win-
dow time horizon t to conduct in-sample cross-validation. We 
implemented this procedure using Rob Hyndman’s time series 
cross-validation function, tsCV(), in the R programming lan-
guage [66]. Figure 5 shows how tsCV() works for an expand-
ing window of 3-days ahead. Once a starting point is chosen, 
the model is trained using all previous time-series data (i.e., 
the initial training data) and a forecast will be made for a pre-
defined forecast window for 3-days ahead (shown in Fig. 5 as 

“forecast 1”) with the first forecast at the starting point. The 
forecast window then moves one period forward and a second 
forecast window of the same time horizon is made (“forecast 
2”). This process is repeated until the end of the data series. The 
size of the window can vary. We used an expanding window 
procedure with time horizons of t = 1, 2, 3 … 14 days. Forecast 
errors were calculated (i.e., the difference between the actual 
observation and the forecasted values) for each forecast window 
so comprehensive forecast error metrics (i.e., MAE and RMSE 
values) along with the benchmark error metrics could then be 
averaged over all the forecast windows (Fig. 6).

We further employed three additional metrics in this 
study to measure the accuracy of models within the expand-
ing window cross-validation procedure against common 
benchmarks: (1) a naïve forecast method, (2) a 5-day cen-
tered moving average model (that was also used by Baas 
et al. [5]), and (3) a comparison of the prediction intervals 
(80%, 90%, 95%, and 99%) of various forecast methods rela-
tive to the current set capacity levels of the two COVID-19 
wards (Red and Yellow). For our 3 benchmarks, we use the 
“mean absolute scaled error” (MASE) which is specifically 
designed to compare competing forecasting methods to 
assess accuracy. The MASE is calculated by dividing the 
MAE of a given model divided by the MAE of the bench-
mark model. For example, the MASE benchmark for a naïve 

Table 4  Correlations (Pearson’s coefficient of correlation r) between epidemiological and external from Sept. 14, 2020, to June 29, 2021

Daily Cases in 
VCHA

Positivity rate in 
VCHA

Daily Cases in 
BC

Mean 
Temperature

Total 
Precipitation

Daily Cases in VCHA 1

Positivity rate in VCHA 0.89 1

Daily Cases in BC 0.92 0.88 1

Mean Temperature -0.41 -0.41 -0.51 1

Total Precipitation -0.03 -0.10 -0.01 -0.09 1

Fig. 3  Positive correla-
tion (r =  + 0.72 for Red and 
r =  + 0.54 for Red + Yellow) 
between the total number of 
patients in the COVID-19 wards 
at Vancouver General Hospital 
(VGH) (on the left vertical axis) 
and a 14-day lag of the COVID-
19 positivity rate within the 
Vancouver Coastal Health 
Authority (VCHA) (on the right 
vertical axis)
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forecast compares a given forecast method's MAE to a naïve 
forecaster's MAE. If the value of MASE is less than one, the 
forecasting method is more accurate on average than a naïve 
forecast method that simply uses a given day’s observation 
as the forecasted value in the next period.

Conversely, if MASE is greater than one, the naïve forecast 
model is more accurate than the given forecast method. MASE 
is considered a more appropriate metric to evaluate forecast 
accuracy for in-sample analysis when time-series observa-
tions are close to zero [59, 67]. Likewise, MASE avoids the 
issue associated with producing error metrics that are infinite 
or undefined due to having intermittent data as we have here 
[67]. There are times at St. Paul’s Hospital when the number 
of patients hits zero patients in the Red and Yellow COVID-19 
wards and this will produce infinite or undefined values for 
some forms of forecast error metrics (i.e., the mean absolute 
percentage error). The second benchmark metric calculates 
MASE comparing the MAE of a given model to the MAE of 
a 5-day centered moving average model that averages the two 
previous day’s demand, the current day’s demand, and two 
future days’ demand. This method was also applied as a bench-
mark in similar research for ward-level forecast accuracy (in 
Baas et al. [5]). The final MASE benchmark is used to compare 
the accuracy of point forecasts with specified prediction lev-
els (80–99%) against the error metrics defined by the planned 
capacity levels set by hospital staff for the COVID-19 wards. 
Hospital staff would tend to set capacity levels of COVID-19 
wards high enough to provide a sufficient number of beds for 
any patient assigned to the Red or Yellow wards. Given that any 
forecast is considered to be the expected value (or mean) of the 
anticipated demand, we compared the planned capacity levels 
set by hospital staff to the upper forecast prediction intervals 
of 80%, 90%, 95%, and 99%. In doing so, we created our own 
variation of MASE, using MAE of the planned capacity levels 

(set by hospital staff) in the denominator, that indicates if a fore-
casting method with its specified prediction interval (80%-99%) 
is better or worse than the hospital staff's current capacity levels.

5  Results

We focused on data from the second and third waves at both hos-
pitals (Sept. 14, 2020, to June 29, 2021) as the cross-validation 
data set to compare the accuracy of competing forecast methods. 
This time period was selected as it was a period of considerable 
stress and volatility of the COVID-19 wards at both hospitals and 
represents a period during the pandemic with a high degree of 
diagnostic uncertainty. Forecasting error metrics were the larg-
est for the combined total number of COVID-19 patients in the 
Red and Yellow wards; therefore, we present these results in this 
paper. Forecasting error metrics for the Red ward and the Yellow 
ward were consistently lower at both hospitals.7

Tables 5 and 6 demonstrate the results of the cross-validation 
of statistical and ML forecasting methods at SPH and VGH, 
respectively. Columns 3 and 4 show the absolute error metrics 
of RMSE and MAE, respectively (bolded values denote lowest 
errors), applied to expanding window forecasts of 1, 3, 5, 7, and 
14 days ahead. Compared to other ward-level forecasting meth-
ods published in the literature [3, 5], the error metrics produced 
in this study are generally similar or lower, suggesting good 
accuracy of statistical and ML forecasting methods to ward-
level forecasting. Generally speaking, ARIMA, ARIMAX, 
and NNARX demonstrate the lowest error metrics for longer 
time horizons of 5, 7, or 14 days ahead as shown by the bolded 
errors. For SPH, Table 5 shows that both statistical and ML 

Fig. 4  Positive correla-
tion (r =  + 0.89 for Red and 
r =  + 0.90 for Red + Yellow) 
between the total number of 
patients in the COVID-19 wards 
at Vancouver General Hospital 
(VGH) (on the left vertical axis) 
and an 18-day lag of the daily 
reported confirmed cases within 
the Vancouver Coastal Health 
Authority (VCHA) (on the right 
vertical axis)
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7 Error metrics for the Red ward were up to 20% lower, while error 
metrics for the Yellow ward were between 35 and 50% lower.
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point forecasts with defined prediction intervals can improve 
decision-making accuracy for capacity planning. All forecast-
ing methods using point forecasts with increasing prediction 
intervals (80–99%) applied to the total number of COVID-
19 patients (combined Red and Yellow wards) demonstrate a 
reduction in forecast error when compared to the error of the 
planned capacity levels that were set by hospital staff. As shown 
in the far-right column of Table 5, MASE is calculated by 
dividing the MAE of the various models (point forecasts with 
upper prediction levels) by the MAE of the planned capacities 
set in both the Red and Yellow wards (MAE = 9.77) using a 
1-day ahead time horizon. For example, the MASE value for 
the most accurate forecasting method (ARIMAX) while using 
an upper prediction level of 95% is 0.52. This is calculated by 
dividing the MAE metric of the upper 95% prediction level for 
ARIMAX (5.04) by the MAE of the planned capacities set in 
the Red ward (9.77).8 MASE values less than one indicate an 
improvement in forecast accuracy relative to the benchmark 
whereas values greater than one indicate the benchmark method 
is more accurate. Notably, these forecasting methods improve 
forecast accuracy while simultaneously covering a high propor-
tion of demand requirements for the COVID-19 wards. This 
is shown in the coverage rate (“CR”) column indicating how 
often the realized bed occupancy using an expanded window 
was covered by the 95% prediction interval. These results are 
consistent with the results of the Red and Yellow ward when 
analyzed independently.

The second benchmark metric shows that most forecast-
ing methods using point forecasts are more accurate than a 

moving average forecaster for all expanding window time 
horizons as shown in Tables 5 and 6. The final benchmark 
method of using a naïve forecasting method within the 
expanding window cross-validation technique is the most 
rigorous of accuracy comparisons. This is simply because the 
naïve method will still utilize a 1-day step time horizon fore-
cast within its expanding window, unlike the other forecasting 
methods that forecast the entire expanding windows before 
calculating the error metrics. Five out of the seven methods 
in both Tables 5 and 6 still demonstrate MASE values of less 
than one across all expanding window time horizons.

We also recognize the importance of comparing the RMSE 
values across the different forecast methods, as shown in 
Tables 5 and 6. The RMSE value provides greater sensitiv-
ity to larger forecast errors and for this reason, it may be a 
better indicator of the accuracy of the competing forecast 
methods. In our study, larger forecast errors would indicate 
a greater difference between the forecasted demand and the 
actual demand in the COVID-19 wards and, therefore should 
be heavier penalized for such errors. Having periods of large 
shortages or significant oversupply of beds and staffing within 
the COVID-19 wards would be extremely detrimental to both 
patient care and hospital employees. At both hospitals, ARI-
MAX and NNARX demonstrated the lowest RMSE error 
metrics for longer time horizons of 5, 7, and 14 days dem-
onstrating the importance of external covariates to capture 
longer-term dynamics of ward-level demand.

5.1  Selection of forecasting methods

Regarding which forecasting method works best, we need to 
discuss the application of the TCB protocol used for ward-level 
planning and the frequency of decision-making that occurs for 
expanding or contracting individual wards. This analysis can 
only be performed for SPH because data regarding the capacity 

Fig. 5  Positive correlation 
(r =  + 0.88 and r =  + 0.87) 
between the total number of 
patients in the COVID-19 wards 
at Vancouver General Hospital 
(VGH) (on the left vertical axis) 
and a 12-day lag of the positiv-
ity rate within the Vancouver 
Coastal Health Authority 
(VCHA) (on the right vertical 
axis)
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8 Another way we will present forecast accuracy in this paper will be 
to reverse the numerator and the denominator of the MASE calcula-
tion. For example, 9.77/5.04 = 1.93, therefore we can state that using 
an upper 95% prediction interval of an ARIMAX forecast method is 
1.94 times more accurate on average than the planned capacity levels 
set by hospital staff during this validation period.
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level decisions of the wards at VGH were unavailable. Dur-
ing the cross-validation period (Sept 2020 to June 2021), SPH 
experienced 42 weeks of decision-making using the TCB pro-
tocol to manage the size of the COVID-19 wards (Red and 
Yellow). During that time, the frequency of decision-making 
to expand or contract the size of COVID-19 wards ranged from 
0 times per week (at low periods during the pandemic) to 4 
times per week (typically at times when numbers were increas-
ing). On average, decisions relating to ward size occurred 1.38 
times9 per week (or every 5.07 days). This indicates that the 
expanding forecasting window of 5 days is likely a good indi-
cator of the forecasting method that would have closely mod-
eled the decision-making frequency at SPH using the TCB 
protocol to manage the size of the COVID-19 wards. Using 
the RMSE error metric as a preferred error metric, given its 
greater sensitivity to large errors that occur, Table 5 indicates 
that ARIMAX, followed by ARIMA, provides the best overall 
accuracy for a 5-day expanding window for the total number of 
COVID-19 patients in the Red and Yellow wards. Notably, both 
methods provide MASE values of less than 1 when using point 
forecasts with increasing prediction intervals (80–99%) while 
simultaneously providing high coverage rates within the wards. 
Noticeably ARIMAX provides the best overall accuracy over 
longer time horizons of 7 and 14 days. As shown in Table 6, 
the cross-validation results are quite similar for VGH, which 
experienced greater demand volatility during the second and 
third waves relative to SPH.

In our efforts to develop an online forecasting tool for 
ward-level forecasting, we selected ARIMA and ARIMAX 
as the default methods for several reasons. The first reason is 
that both methods provide excellent forecast accuracy against 
competing methods, consistently outperforming benchmarks 
across all time horizons. Secondly, upper prediction intervals 
outperformed the accuracy of the planned capacity levels that 
were set by hospital staff at SPH, demonstrating the potential 
for improvement in decision-making for resource allocation of 
staffing and beds. Moreover, both methods are relatively simple 
to implement compared to a more complicated method such as 
NNAR, which does not readily produce prediction intervals. 
As discussed, we strive to implement a simple forecasting tool 

that can be used by healthcare professionals, requiring minimal 
input variables and no prior knowledge of forecasting to use it.

5.2  Further accuracy metrics of selected models

To further illustrate the accuracy of the selected forecasting 
methods, Fig. 7 shows the expanding window forecasts using 
an ARIMAX forecast method applied to both Red and Yellow 
wards to anticipate future bed occupancies during the cross-
validation period. The top figure demonstrates the expanding 
window forecasts for 1, 3, 5, and 7 days ahead in the com-
bined Red and Yellow wards at the SPH (left) and VGH (right) 
wards. As shown in the top row of this figure, the accuracy of 
the expanding window forecasts improves closer to the time of 
prediction. For example, the 1-day ahead forecasts (green) were 
more accurate to the actual demand (shown by the red line) than 
the 3-day ahead forecasts (purple), 5-day ahead forecasts (blue), 
and the 7-day ahead forecasts (black). Likewise, the middle row 
illustrates the accuracy of the 5-day ahead forecasts (blue line) 
along with a 95% prediction interval. Lastly, the bottom row 
demonstrates the 7-day expanding window forecasts’ accuracy 
and a 95% prediction interval. SPH (right) also includes the 
dashed black line representing the planned capacity levels set 
by hospital staff in the COVID-19 wards.

Figure 7 provides a few important revelations of the 
accuracy of these methods. First, the visualizations for 
SPH (left) demonstrate how using the upper 95% prediction 
interval of a 5-day ahead forecast would have produced 
an accurate benchmark to set capacity levels in COVID-
19 wards (except for one period of extreme demand that 
took place in January 2021). Notably, using such a method 
to set capacity levels would have achieved consistently 
high coverage rates and would have likely provided a 
greater utilization of hospital resources within COVID-
19 wards (also positively impacting external resources of 
COVID-19 wards). Second, we find that ARIMAX tends 
to have greater accuracy at the larger hospital (VGH) 
during periods of dramatic increases or decreases in 
patient demand. As shown, SPH (left) and VGH (right) 
demonstrate sustained periods of sharp increases in total 
ward-level demand in January 2021 and April 2021, 
respectively. At SPH, both ARIMA and ARIMAX tend to 
have a lagged response during periods of sharp increases 

Fig. 6  Expanding window 
cross-validation procedure

Starting point

Forecast 1 Forecast 3 Forecast 5 Forecast 7
Forecast 2 Forecast 4 Forecast 6

Ini�al training data set

Tes�ng (valida�on) data set

9 58 times over the 42 weeks.
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or decreases of more than 10 patients over 5 days (i.e., 
inflection points). Comparatively, VGH’s point forecast and 
prediction intervals are more reactive to inflection points 
in ward-level demand during such periods. This is due to 
the stronger covariates found for VGH relative to SPH as 
discussed in Section 4.1. Lastly, it’s interesting to note 
that during periods of sharp increases in demand at VGH, 
the upper 95% prediction interval would have provided a 
valuable benchmark for ward-level planning. Likewise, 
during periods of sustained decreases at VGH, the point 

forecasts would have provided a valuable benchmark for 
ward-level planning.

To further demonstrate the performance of the selected 
forecasting methods (ARIMA and ARIMAX) that are 
used within our prototype forecasting tool, we use a simi-
lar approach used by Yang et al. [3] by forecasting the total 
number of COVID-19 patients with a time horizon of 7 days 
(on each Monday we make ward-level predictions for the 
next Monday), comparing with the actual value. This allows 
a direct comparison of other forecasting methods developed 

Table 5  Cross-validation of 
statistical and machine learning 
forecasting methods at SPH 
compared to planned capacities 
(with prediction intervals) 
and benchmark forecasters 
for combined Red and Yellow 
wards. Bolded numbers depict 
the lowest forecast errors

1 The 5  MASEM values for the Planned Capacity Levels correspond to the following: point forecasts 
(expected mean), upper 80% prediction interval, upper 90% prediction interval, upper 95% prediction inter-
val, and the upper 99% prediction interval, respectively
Bolded numbers depict the lowest forecast errors

Model Expanding Window 
Forecasts

CR Absolute Perfor-
mance

Relative Performance using MASE

RMSE MAE vs Naïve vs MA vs Planned Capacity  Levels1

SES 1d 0.97 3.05 1.56 0.87 0.98 (0.16; 0.33; 0.43, 0.52; 0.73)
3d 0.94 3.97 2.00 0.90 0.97
5d 0.90 4.49 2.22 0.92 0.90
7d 0.86 4.98 2.36 0.87 0.85
14d 0.84 5.50 2.57 0.90 0.86

Holts 1d 0.96 3.05 1.55 0.86 0.97 (0.16; 0.34; 0.44, 0.54; 0.75)
3d 0.94 3.92 1.98 0.89 0.96
5d 0.89 4.58 2.24 0.92 0.91
7d 0.87 5.19 2.49 0.91 0.90
14d 0.85 6.13 2.93 1.03 0.98

Holts, Damped 1d 0.96 3.05 1.57 0.88 0.99 (0.16; 0.33; 0.43, 0.52; 0.73)
3d 0.94 3.87 1.97 0.88 0.95
5d 0.89 4.49 2.23 0.92 0.90
7d 0.87 4.98 2.36 0.87 0.85
14d 0.85 5.50 2.57 0.90 0.86

ARIMA 1d 0.99 3.06 1.56 0.87 0.98 (0.16; 0.34; 0.43, 0.53; 0.73)
3d 0.94 3.86 1.97 0.88 0.95
5d 0.94 4.45 2.24 0.92 0.91
7d 0.88 5.01 2.40 0.88 0.86
14d 0.90 5.45 2.57 0.90 0.86

ARIMAX 1d 0.99 3.09 1.58 0.88 0.98 (0.16; 0.33; 0.42, 0.52; 0.72)
3d 0.94 3.92 1.98 0.89 0.96
5d 0.95 4.42 2.16 0.89 0.88
7d 0.85 4.83 2.30 0.85 0.83
14d 0.86 5.01 2.31 0.81 0.77

NAR 1d 0.94 3.46 1.74 0.97 1.09 (0.18; 0.35; 0.45, 0.55; 0.76)
3d 0.90 4.46 2.24 1.00 1.08
5d 0.86 5.06 2.47 1.02 1.00
7d 0.85 5.80 2.81 1.03 1.01
14d 0.86 5.71 2.62 0.92 0.87

NARX 1d 0.98 3.54 1.60 0.89 0.99 (0.16; 0.38; 0.49, 0.60; 0.84)
3d 0.94 4.23 2.03 0.91 0.98
5d 0.91 4.76 2.21 0.91 0.90
7d 0.88 5.38 2.49 0.92 0.90
14d 0.91 5.09 2.27 0.80 0.76
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in research for the same purposes. We selected two 10-week 
periods at both hospitals during the second and third waves, 
demonstrating the greatest volatility of ward-level patient 
demand for this analysis.10 These peaked time periods occur at 
different times demonstrating that each hospital experienced 
a variation in patient demand despite being located within the 

same municipality. This demonstrates the importance of using 
localized forecasting at the ward level within each hospital 
due to each having its specific demand characteristics.

Here we present the results of one of the 10-week periods 
for each hospital that demonstrated the poorest forecast accu-
racy. It should also be pointed out that the volatility experi-
enced by SPH seems similar to the medical wards used by 
Yang et al. [3], and VGH’s ward-level hospitalizations show 
a higher degree of volatility, with peak demands being twice 
that of SPH. As shown in Fig. 8, the 95% upper prediction 
interval of both ARIMA and ARIMAX consistently provides 

Table 6  Cross-validation of 
statistical and machine learning 
forecasting methods compared 
at VGH and benchmark 
forecasters for combined Red 
and Yellow wards. Bolded 
numbers depict the lowest 
forecast errors

Bolded numbers depict the lowest forecast errors

 Model Expanding Window 
Forecasts

CR Absolute Performance Relative Performance

RMSE MAE vs Naïve vs MA

SES 1d 0.98 3.47 1.18 0.95 0.88
3d 0.93 5.04 1.60 0.96 0.85
5d 0.90 6.32 1.89 0.96 0.90
7d 0.83 7.36 2.08 0.95 0.94
14d 0.79 10.29 2.74 0.95 0.95

Holts 1d 0.99 3.45 1.17 0.93 0.86
3d 0.93 5.04 1.60 0.96 0.85
5d 0.89 6.32 1.91 0.96 0.91
7d 0.83 7.37 2.10 0.96 0.95
14d 0.79 10.37 2.72 0.94 0.94

Holts, Damped 1d 0.99 3.50 1.20 0.96 0.89
3d 0.93 5.08 1.61 0.97 0.86
5d 0.89 6.34 1.90 0.96 0.91
7d 0.83 7.37 2.08 0.96 0.95
14d 0.79 10.28 2.75 0.96 0.95

ARIMA 1d 0.99 3.35 1.12 0.90 0.83
3d 0.96 5.08 1.59 0.95 0.84
5d 0.90 6.37 1.88 0.95 0.90
7d 0.85 7.41 2.07 0.95 0.94
14d 0.80 10.37 2.80 0.97 0.97

ARIMAX 1d 0.99 3.37 1.20 0.96 0.89
3d 0.93 4.92 1.59 0.96 0.85
5d 0.87 6.17 1.92 0.97 0.91
7d 0.85 7.11 2.16 0.98 0.98
14d 0.83 9.56 2.86 0.99 0.99

NAR 1d 0.98 3.71 1.27 1.02 0.94
3d 0.90 6.26 1.84 1.10 0.98
5d 0.85 7.89 2.15 1.09 1.02
7d 0.81 8.68 2.23 1.03 1.01
14d 0.72 11.34 2.92 1.01 1.01

NARX 1d 0.98 4.53 1.26 1.01 0.97
3d 0.95 6.37 1.78 1.07 1.06
5d 0.85 7.17 2.08 1.05 1.07
7d 0.79 7.82 2.26 1.04 1.00
14d 0.64 9.47 3.05 1.06 1.05

10 For SPH, the greatest volatility (upward and downward trends) is 
from Sept 14/2020 to Nov. 23/2020 and from Dec. 28/2020 to Mar. 
7/2021. For VGH, the greatest volatility in ward-level patient demand 
occurred from Nov. 1/2020 to Jan 10/21 and from Mar. 8/2021 to 
May 31/2021.
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better accuracy than set capacities at SPH for the total number 
of beds in the Red and Yellow wards. Both models provided 
a 90% coverage rate across 10 weeks of weekly forecasting 

during the greatest volatility of total ward-level demand. As 
expected, SPH shows little to no difference between ARIMA 
and ARIMAX methods providing further evidence that 
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Fig. 7  Cross-validation of the ARIMAX forecasting method at SPH 
and VGH during the greatest demand volatility of the second and 
third waves for each hospital. Top row: expanding window forecasts 
1, 3, 5, and 7  days ahead in the combined COVID-19 red and yel-
low wards at SPH (left) and the combined COVID-19 red and yel-
low wards at VGH (right). Middle row: expanding window forecasts 

for 5 days ahead in the combined COVID-19 red and yellow wards 
at SPH with total planned capacities for the COVID-19 wards set 
by hospital staff (left) and the combined COVID-19 red and yellow 
wards at VGH (right), along with the 95% prediction interval. Bottom 
row: same as middle row except using expanding window forecasts 
for 7 days ahead
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covariates at smaller hospitals may not be as effective inputs 
for forecasting ward-level demand compared to larger hos-
pitals that are likely to experience a greater association with 
community-level epidemiological factors.

The results are quite different for the larger hospital (VGH) 
across its most volatile demand period. As shown in Fig. 9, 
the 95% prediction interval of ARIMAX is more reactive dur-
ing weeks of increasing or decreasing trends, where ARIMA 
tends to have a slightly lagged effect and has periods of over-
shooting on upward trends and delays on downward trends. 
Ideally, forecasting methods should strive to provide 100% 
coverage of patients needing care while simultaneously mini-
mizing the number of unused beds. The result show that the 
upper 95% prediction interval of ARIMAX is better posi-
tioned to achieve these objectives simultaneously compared 
to the upper 95% prediction interval of ARIMA. Despite this, 
both methods provide excellent coverage rates of the actual 
number of patients, similar to that of Yang et al. [3].

As shown in Table 7, the fraction of the weeks for which 
the 95% prediction intervals of ARIMA and ARIMAX 
covered the observed bed count at VGH during the high-
est period of peak demand is 90% and 100%, respectively. 
Likewise, the error metrics are generally low with ARIMAX 
showing greater accuracy for both point forecasts and the 
upper 95% prediction intervals compared to ARIMA.

This analysis demonstrates that weekly ward-level fore-
casting can be accurately anticipated with weekly changes 
of approximately 10–15 patients (increase or decrease) cap-
tured by both smaller (SPH) and larger hospitals (VGH). 
Overall, the results show that using an upper 95% predic-
tion interval with weekly forecasts can improve decision-
making with setting capacity levels. It also shows the fact 
that larger hospitals are likely to experience greater accu-
racy with using statistical forecasting methods by including 
external covariates (epidemiological community factors) 
relative to smaller hospitals.

Fig. 8  SPH ward-level fore-
casts, time horizon = 7 days, 
95% prediction intervals, with 
black squares representing 
actual values
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Fig. 9  VGH ward-level fore-
casts, time horizon = 7 days, 
95% prediction intervals, with 
black squares representing 
actual values
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6  Discussion and conclusion

Past research has primarily focused on forecasting methods 
applied to larger regional or country-level growth patterns 
to predict aggregate demand for medical resources during 
the COVID-19 pandemic. As discussed in this paper, hos-
pital wards experience unique demand patterns for COVID-
19 patients that vary across geographical regions and even 
between hospitals within the same health authority. Thus, we 
argue that the operational planning of hospital wards requires 
a forecasting approach vastly different from the population 
growth models well documented in the literature for pan-
demic forecasting [49, 51]. Ward-level forecasting methods 
help resource planning decisions during the earliest stages of 
the COVID-19 pandemic on two levels. One is related to the 
total COVID-19 ward space dedicated in a given hospital, and 
the other is related to the expansion and contraction of inter-
dependent COVID-19 wards within the total dedicated ward 
space. In this paper, we add to the few forecasting methods in 
the literature that have been effectively applied to ward-level 
forecasting that support pandemic relief, particularly to aid 
with planning of hospital staffing that has experienced dra-
matic burn-out during the COVID-19 pandemic.

This paper is the first to explore the use of statistical and ML 
forecasting methods and their accuracy in forecasting ward-
level demand to aid in planning of hospital resources (beds, 
staffing, etc.) during the COVID-19 pandemic. Our results 
confirm that traditional statistical and ML forecasting methods 
can provide valuable ward-level forecasting to aid in decision-
making for pandemic resource planning. Using point forecasts 
with upper 95% prediction intervals, such forecasting methods 
would have provided better accuracy in anticipating required 
beds in both COVID-19 wards (confirmed positive and PUI 
wards) than ward-level capacity decisions made by hospi-
tal staff during the second and third waves of the pandemic. 
From the perspective of hospital staff in COVID-19 wards, this 
translates into more accurate decision-making in setting ward 
capacity levels during pandemics. The cost of over or under-
allocating beds in COVID wards is high. Over-allocation leads 

to idle physicians and nurses (lost wages), reduced capacity in 
non-COVID-19 areas, and potentially its impacts on additional 
off-site wards in extreme cases of a pandemic. Under-alloca-
tion leads to physician, nurse, and allied health staff burn-out, 
impaired ability to maintain infection control precautions 
(increased risk of nosocomial transmission), patient morbid-
ity, and mortality in severe cases.

The use of specific statistical and ML forecasting methods 
for ward-level forecasting is appropriate under specific condi-
tions related to forecasting accuracy, benefits, and limitations. 
Regarding forecasting accuracy, we find that ARIMA, ARI-
MAX, and NARX provided the best overall accuracy among 
the various forecast methods analyzed for two hospitals in this 
study for ward-level forecasting for 5, 7, and 14 days ahead 
time horizons. NARX, although it provided good accuracy, was 
removed from consideration due to its challenges of producing 
prediction intervals and its sensitivity to missing values which 
can be quite common. ARIMA and ARIMAX are easier to 
implement within our online forecasting tool and are well-doc-
umented in literature as effective time-series forecasting meth-
ods across many healthcare applications [68]. For example, 
Sun et al. [69] found that ARIMA provided good forecasting 
accuracy for daily patient attendance at ED in Singapore even 
though daily variations were quite significant, ranging from 10 
to 72 patients per day. Likewise, these authors found similar 
improvements in the forecasting performance of ARIMA when 
combined with other variables like air quality and public holi-
days. For pandemic forecasting at the ward-level, ARIMA has 
the added benefit that it does not require specialized modeling 
requirements relative to other ward-level forecasting methods 
that have recently been published in the literature (e.g., regional 
forecast requirements [3], complicated queueing models, or 
probabilistic modeling [3, 51]). Diagnostic and validation 
tools for ARIMA and ARIMAX can also be implemented in 
our online forecasting tool for those users that are more well-
versed in forecasting methods. This study shows that ARIMA 
and ARIMAX are accurate for ward-level forecasting for mod-
erate changes (increases or decreases) of approximately 10–15 
patients every 3 or 4 days. This degree of volatility is likely 
to be representative of the ward-level volatility across many 
hospitals that utilized a modified TCB protocol during the pan-
demic.11 Such forecasting methods would not be suitable for 
explosive changes in demand, such as monotonically increases 
or decreases over time, that would likely be better modeled 
using population growth curves as shown in the literature for 
regional changes. Likewise, statistical and ML methods would 
fail to anticipate ward-level demands in large increases that 
would happen overnight without having prior data to identify 

Table 7  Weekly forecast error metrics and coverage rates of point 
forecasts and the 95% prediction intervals over 10 weeks of the great-
est volatility in ward-level demand at SPH and VGH

Point Forecast 
Accuracy

Upper 95% PI 
Accuracy

SPH Coverage Rate RMSE MAE RMSE MAE

ARIMA 90% 4.34 3.84 6.57 5.44
ARIMAX 90% 4.27 3.72 6.34 5.15
VGH
ARIMA 90% 7.64 6.02 12.56 14.41
ARIMAX 100% 6.48 5.57 6.68 8.00

11 For example, the average weekly standard deviation of bed 
demand in the combined Red and Yellow wards at VGH over 
42 weeks during the second and third waves was 3.3 beds per week 
(or, an average absolute range of approximately 8 patients weekly).
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such trends. Such forecasting methods are inherently limited 
by past time-series patterns and therefore data quality of both 
COVID-19 patient numbers and any external covariates are 
requirements for such methods to provide valuable inputs to 
ward-level decision-making.

In this study, we found that the ward-level demand of 
COVID-19 patients in the largest hospital in British Colum-
bia, Canada (VGH) was highly correlated with time-lagged 
epidemiological factors, such as positivity rates and daily 
reported cases within the local health authority (VCHA). 
We did not find such high correlations with epidemiological 
factors at a smaller hospital (SPH) within the same health 
authority. Such associations are valuable inputs for ARI-
MAX and NNARX forecasting methods in terms of overall 
forecast accuracy, particularly for longer time horizons of 
7 and 14 days ahead. These results show that statistical and 
ML forecasting methods with strong covariates are likely to 
be more useful for ward-level forecasting at larger hospitals 
that are reflective of community-level pandemic effects.

In order to truly benefit from the findings of this study, 
we have built a working prototype forecasting tool using a 
package called Shiny as part of the R statistical software. 
The tool is still in development and requires improvements 
in terms of its usability for hospital staff for everyday use. A 
prototype is now publicly available online only for purposes 
of research assessment and dissemination: https:// stpau lhosp 
ital. shiny apps. io/ hospi tal_ plann ing/

As shown in Fig. 11 in Appendix 2, individuals can 
load data and forecast bed requirements to make informed 
decisions for individual wards within hospitals. It has been 
designed to provide real-time forecasting for the number of 
beds required in COVID-19 wards (Red), wards dedicated 
to PUI (Yellow), or the combined demand for both wards. 
The tool requires only the data to load and uses an ARIMA 
or ARIMAX default forecasting method to predict hospital 
ward demand. We also programmed the allowance for exter-
nal covariates for improved forecasting to benefit from the 
improved accuracy found in longer time horizons with ARI-
MAX. The tool also has a capacity planning module that 
allows the user to determine the probability of exceeding a 
set capacity level within a forecast time horizon. The tool 
predicts both the forecasted values along with a 95% predic-
tion interval using a bootstrapping method. The capacity 
planning tool uses the upper 95% prediction interval to cal-
culate the probability that demand will exceed set capacity 
levels. The point of having the capacity planning module 
in the forecasting tool allows for risk analysis of coverage 
rates and unused bed capacity to be conducted. The trade-
off between having too many beds and not enough beds for 
100% patient coverage should ultimately be left in the hands 
of the hospital staff who make the decisions to expand or 
contract covid-19 wards, who best understand the imme-
diate consequences of these two contradictory objectives. 

The forecasting tool’s capacity planning module provides 
the percentage likelihood of having a sufficient number of 
beds over the next 14 days which ultimately allows this 
risk to be analyzed. In periods of sustained increases of 
patient demand, having some drop in the coverage rate 
from 100% is likely to be warranted. For example, hospital 
staff at a larger hospital may decide that a 95% coverage 
rate is suitable given their ability to rapidly add more beds 
whereas at a small hospital any drop of 100% coverage may 
be deemed unacceptable. Likewise, most hospitals, during 
periods of decreasing demand, having too many unused 
beds in COVID-19 wards would likely be less concerning, 
relatively speaking.

Fig. 11 (in Appendix 2) provides an example of forecast-
ing the required demand for the combined Red and Yellow 
wards with a set capacity for a total of 18 beds required. The 
capacity planning tool predicts the probability that demands 
within both wards will be exceeded over the next five days. 
As shown, the tool predicts an increasing likelihood that the 
capacity will be exceeded with only a 3% likelihood for the 
next day but a 19% likelihood on day 4. We believe this type 
of real-time feedback during decision-making on specific 
ward capacity is likely to be extremely valuable from a plan-
ning and cost perspective.

This work has several limitations and opportunities for 
future research. Our findings are limited to the medicine 
wards at two urban hospitals in Vancouver, Canada (one 
small to moderate-sized and the other a large hospital). 
Future research is to validate our forecasting tool at other 
hospitals across Canada and to improve the usability of the 
tool for hospital staff. We also intend to investigate the pos-
sibility of implementing alternative forecasting methods 
beyond the methods investigated in this study as more hos-
pital data becomes readily available. It may be possible to 
identify more accurate forecasting methods or procedures 
that could improve the overall accuracy of ward-level pre-
dictions. Likewise, we would like to investigate further the 
relationship between time-lagged covariates and ward-level 
demand at other hospitals to identify if similar patterns 
found in this research can be replicated for both smaller and 
larger hospitals. We also plan to investigate the predictability 
of forecasting methods for greater time horizons and other 
specific periods within the pandemic, which relates to grow-
ing variant and vaccination rates. Further research may also 
investigate a number of external variables that may improve 
the predictability of statistical and ML forecasting methods, 
including the effect of hospital discharges, length of stay, 
and the number of admissions within the emergency depart-
ment. Lastly, there is an opportunity to explore the repur-
posing of our forecasting tool beyond the pandemic to other 
scenarios such as the impact on ward-level demand during 
the flu-season from respiratory illnesses or the impact on ER 
bed demand during heightened seasonal periods.

https://stpaulhospital.shinyapps.io/hospital_planning/
https://stpaulhospital.shinyapps.io/hospital_planning/
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Appendix 1

 10

Fig. 10  VGH – Lag Analysis 
of the Daily Reported Cases 
in VCHA and total COVID-
19 patients (Red and Yellow 
wards). VGH – Lag Analysis of 
the VCHA Positivity Rate and 
total COVID-19 patients (Red 
and Yellow wards). SPG – Lag 
Analysis of the VCHA Positiv-
ity Rate and total COVID-19 
patients (Red and Yellow wards)

VGH – Lag Analysis of the Daily Reported Cases in VCHA and total COVID-19 patients (Red and 

Yellow wards)

• Red ward  • Yellow ward  • Red+Yellow wards

VGH – Lag Analysis of the VCHA Positivity Rate and total COVID-19 patients (Red and Yellow wards)

• Red ward  • Yellow ward  • Red+Yellow wards

SPG – Lag Analysis of the VCHA Positivity Rate and total COVID-19 patients (Red and Yellow wards)

• Red ward  • Yellow ward  • Red+Yellow wards
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Appendix 2

 11

Fig. 11  Capacity planning 
module integrated within a 
ward-level forecasting tool
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