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Abstract
The coronavirus infection COVID-19 killed millions of people around the world in 2019-2022. Hospitals were in the forefront
in the battle against the pandemic. This paper proposes a novel approach to assess the effectiveness of hospitals in saving
lives. We empirically estimate the production function of COVID-19 deaths among hospital inpatients, applying Heckman’s
two-stage approach to correct for the bias caused by a large number of zero-valued observations. We subsequently assess
performance of hospitals based on regression residuals, incorporating contextual variables to convex quantile regression. Data
of 187 hospitals in England over a 35-week period from April to December 2020 is divided in two sub-periods to compare
the structural differences between the first and second waves of the pandemic. The results indicate significant performance
improvement during the first wave, however, learning by doing was offset by the new mutated virus straits during the second
wave. While the elderly patients were at significantly higher risk during the first wave, their expected mortality rate did not
significantly differ from that of the general population during the second wave. Our most important empirical finding concerns
large and systematic performance differences between individual hospitals: larger units proved more effective in saving lives,
and hospitals in London had a lower mortality rate than the national average.

Keywords Convex regression · COVID-19 · Healthcare management · Hospital performance

1 Introduction

The coronavirus infection (henceforth COVID-19) started to
spread from Wuhan, China, at the end of 2019 [1]. During
the first half of 2020, it quickly spread all over the world
and turned into a pandemic. By February 2022, almost six
million people around theworld had lost their lives to this dis-
ease.1 While there has been considerable research interest in
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COVID-19 in the literature of operational research and man-
agement science [2–4], thus far there has been little attention
on the performance of hospitals, which are in the forefront in
the battle against the pandemic. Although human resources
such as doctors and nurses and capital equipment such as
motorized ventilation beds and protectivemasks are critically
important, efficient organization and management of these
resources is critical to save lives (cf., [5]). Identifying the
best-performing hospitals and gaining better understanding
of the factors that influence hospitals’ efficiency in dealing
with the COVID-19 would be important for managerial and
policy decisions to organize the hospital operations.

A large stream of operational research and management
science literature considers efficiency, productivity and the
returns to scale and scope in hospital operations [6–9]).
While the present study is inspired by those previous stud-
ies on resource efficiency, this paper approaches hospital
performance from a different perspective of effectiveness of
outcomes. Instead of trying to model the production function
of hospitals, which is a highly complex task with multi-
ple parallel operations that interact creating spillovers [8],
we consider a simpler task of modelling the COVID-19

123

/ Published online: 9 May 2023 

Health Care Management Science (2023) 26:447–460 

http://crossmark.crossref.org/dialog/?doi=10.1007/s10729-023-09634-7&domain=pdf
http://orcid.org/0000-0001-9232-5387
https://covid19.who.int/


T. Kuosmanen et al.

mortality among hospital inpatients. We use the term “pro-
duction function of death” to highlight the fact that we are not
modelling the production function of hospitals, but indeed,
that of the COVID-19 virus. 2 We subsequently use the resid-
uals of the empirical production function of death to assess
performance of the COVID-19 care units.

Empirical implementation of the proposed conceptual
idea involves at least two methodological challenges. The
first challenge concerns the appropriate specification of the
functional form of the production function and themodelling
of contextual variables to capture the observed heterogene-
ity of hospitals and their operating environments. Building
on the insights from the nonparametric frontier estimation
literature [12, 13], the first methodological contribution is
to extend the convex quantile regression [14–16] to incor-
porate contextual variables that characterize the operating
environment of the COVID-19 care units. The quantiles pro-
vide a robust nonparametric approach to classify hospitals to
performance groups (e.g., top 5%, 85-95%, · · · , bottom 5%)
without imposing any parametric distributional assumptions.
In contrast to the context dependent data envelopment anal-
ysis [17] that iteratively peels off the best-performing units,
the quantiles allowus to effectively utilize all data and control
for the size of the performance groups. This paper combines
the convex quantile regression with a partial linear model of
contextual variables [12, 18] to allow the effects of operating
environment differ across different levels of performances.

The secondmajor challenge relates to the fact that approx-
imately one half of the observations in the current study
had zero COVID-19 related deaths. We would argue that
the zero-valued outputs are a more significant problem
than most empirical production studies recognize. In the
estimation production functions, it is standard to apply log-
arithmic transformations ln(y) to model heteroscedasticity
with respect to size of the unit [18]. Since ln(0) is unde-
fined, the appropriate modelling of zero-valued observations
forms a major methodological challenge in this context. A
commonly used practical remedy is to add some small con-
stant c to all observations (i.e., use ln(y+ c) [19]). However,
we find that the regression results are highly sensitive to the
specific choice of the constant c. 3 To address this problem,
we propose to exclude the zero-valued observations from the
performance analysis, applying Heckman’s two-step estima-
tor [20, 21] to correct for the resulting sample selection bias.

With more than 127 thousand confirmed COVID-19
deaths, more than 1,800 deaths per million inhabitants, the
UnitedKingdom (UK) ranks among themost hard-hit nations

2 This article synthesizes the conceptual idea, methodological devel-
opments, and the empirical insights of the two working papers [10, 11]
written during height of the COVID-19 pandemic in 2020.
3 See the working paper Kuosmanen et al. [10] for more detailed dis-
cussion and evidence.

in per capita terms. The empirical contribution of this study
is to study the performance of English hospitals during the
first and second waves of the COVID-19 pandemic using the
unique data of the National Health Service (NHS) of Eng-
land. More specifically, we focus on a 35-week period from
April to December 2020 to investigate the performance of
187 hospitals in dealing with this virus, to shed light on the
following empirical questions:

1) Were there systematic performance differences in the
COVID-19 care at the regional or hospital levels?

2) Were there increasing or decreasing returns to scale in the
COVID-19 care?

3) Did performance of COVID-19 care improve over time
due to learning by doing?

4) Were there significant structural differences between the
first and the second waves of the COVID-19 pandemic?

From the management point of view, the methodological
and empirical results of this study could help the NHS and
other national health service providers to develop system-
atic monitoring and benchmarking routines to identify and
disseminate best practices more efficiently. In the event of
possible future pandemics, more efficient identification and
dissemination of best practices has potential to save thou-
sands of lives.

The general approach developed in this paper could be
readily applied in other countries and jurisdictions for which
similar data are available at the hospital or regional level, not
only in the context of the COVID-19 pandemic, but also for
other hospital and health care operations such as emergency
care or ambulance services. Indeed, the novel approach to
performance analysis focusing on effectiveness of outcomes
rather than resource efficiency forms the main contribution
of this paper.

The structure of the paper will be organized as follows.
Section 2 describes the empirical case and introduces the
production function of death at the conceptual level. Section 3
introduces the theoreticalmodel and the estimation approach,
and proposes the methodological improvements. Section 4
presents the data sources and model variables. Section 5 and
6 present and discuss the results andmanagerial implications.
Section 7 presents the concluding discussion. The GAMS
code used in the computations is available onGitHub (https://
github.com/ds2010/Covid-19).

2 Empirical case

2.1 COVID-19 epidemic in the UK

The first confirmed cases of COVID-19 in the UK were on
the 29th January 2020, when two Chinese nationals fell ill
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in York. The earliest known person to contract COVID-19
within the UK is believed to be a 75-year-old woman from
Nottinghamshire, who tested positive on the 21st February
2020 [22]. She is also understood to be the first victim of
COVID-19 in the UK. In the end of February and during
the first weeks of March 2020, both the daily number of
positive cases aswell as the daily death toll showed adramatic
increase, particularly in London.

After some initial hesitation, the UK government decided
to issue a national lockdown, starting on the 23rd March 2020.
As a result, the epidemic started to slow down, and by the
end of May there was a notable decline in the daily new pos-
itive cases and the death toll. The easing of the lockdown
began on the 23rd June. From the beginning of September,
however, there was again a substantial increase in the num-
ber of daily positive cases. Fortunately, the mortality rate
has been lower than the one of the first wave of the epi-
demic in the Spring 2020. During the second wave, the most
affected areas include such cities as Liverpool, Manchester,
Sheffield and Leeds in the Northern part of England. Since
the number of COVID-19 cases was rising alarmingly, the
government decided to issue another national lockdown on
the 5th November 2020. The NHS started its vaccination pro-
gramme in December 2020, and more than 34 million had
received the first dose by the end ofApril 2021. The first steps
in easing the UK’s lockdown begun in March by allowing
children to return to school. In England, all restrictions were
lifted on the 19th July 2021. However, travel restrictions and
the mandatory use of face masks on public transport and at
shops were reintroduced in November 2021 – January 2022
due to the wildly contagious Omicron variant.

The key objective of the lockdown and other restrictions
introduced during the pandemic has been to slow down the
spread of the COVID-19 virus in order to spare the hos-
pital capacity to provide sufficient care to the COVID-19
infected patients and hence reduce the mortality of COVID-
19 patients. Of course, the restrictions come at an enormous
social cost, affecting not only the economic growth, but also
human wellbeing in general. How effectively the hospitals
can facilitate the recoveryof the patients has a decisive impact
on how harsh measures are required to slow down the spread
of the Covid-19 virus.

2.2 National Health Service

Established in 1948, the NHS is a governmental health care
service that provides care to all the UK citizens: health care
is tax financed and free at the point of use. The funding
for health services in England comes from the department
for Health and Social Care’s budget. The planned spending
for 2021/22 was £190.3 billion, this included 33.8 billion

extra funding in response to the COVID-19 pandemic.4 The
NHS is one of the largest employers in the world, with 1.1
million full-time equivalent employees in England. In May
2021, there were 131,831 doctors, 346,582 nurses and health
visitors (including midwives and health visitors), 35,256
managers out of total workforce of 1,193,666 (all figures
are in full-time equivalent).

The NHS consists of a number of organizations that work
both at the national and local levels. The Secretary of State
for Health and Social Care is responsible for setting relevant
policies for the NHS, including the waiting times, funding
and staffing targets. Almost two thirds of the total NHS bud-
get is controlled by the commissioning groups, which are run
by general practitioners, nurses, and consultants. The com-
missioning groups have the responsibility of commissioning
health care services for their local areas based on the assessed
needs of the people, including primary care services, men-
tal health, ambulance, social care, and hospital services. The
budget of the commissioning groups is overseen by the NHS
commission board, which has a number of regional offices
around England. To promote competition, in 2006 the NHS
mandated that all patients requiring treatment can choose
between five different hospitals, and adopted a payment sys-
tem in which hospitals are paid fixed, regulated prices for
treating patients [23]. In 2012, the government introduced
a series of further reforms to the NHS under the health and
social care act, which gave greater freedom for the general
practitioners to run the NHS budgets in their local area.

The care commissioned by the commissioning groups is
provided by the NHS foundation trusts. As of April 2020,
there are totally 219 foundation trusts. Each foundation trust
is further divided into acute trust, mental health trust and
ambulance trust. The responsibility of the acute trust is to
make sure that they provide high-quality healthcare and
resources are allocated in an efficient way. In comparison,
the mental health trust is responsible for providing health
and social care services to people with mental health prob-
lems. Finally, the ambulance trusts are mainly responsible
for providing emergency access to healthcare.

2.3 Modellingmortality of hospital inpatients

Since the early stages of the COVID-19 pandemic, there has
been a lot of research on the mortality rate of this new virus
[24, 25]. It is important to drawadistinction between themor-
tality rate in the general population and among the hospital
inpatients because many infected individuals get relatively
mild symptoms and recover at home. Estimating the mortal-
ity rate among hospital inpatients is not as straightforward as
it might appear. Ideally, one should systematically follow a

4 Source: https://www.kingsfund.org.uk/projects/nhs-in-a-nutshell/
nhs-budget
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cohort of patients admitted during a given time period until
every patient of the cohort has either recovered or passed
away, cf., [24]. Since the duration of hospital stay can vary
from a few days tomonths, and since the criteria of admission
vary across hospitals andbetween countries and jurisdictions,
there is little comparable evidence about the mortality rate
of COVID-19 among hospital inpatients.

Tomodel the dynamics of theCOVID-19mortality among
hospital inpatients, we adapt the notion of production func-
tion fromeconomics as follows. Firstly,we consider the stock
of inpatients as an input factor, analogous to the capital stock.
We measure this input by the average number of beds occu-
pied by the confirmed COVID-19 patients during a week,
drawing a distinction between the regular hospital beds and
the MV beds. The outflow of patients from the hospital can
occur only through their discharge or death. Therefore, we
consider the following two flow variables: i) the number
of COVID-19 infected patients discharged from the hospi-
tal (weekly sum), and ii) the number of COVID-19 infected
patients who died (weekly sum). The former can be regarded
as a desirable output and the latter as an undesirable out-
put. Note that in contrast to the input variables that measure
the stock of inpatients during a given week, the outputs are
flow variables that capture the outflow of inpatients from the
stock. We therefore quantify the inputs by the weekly aver-
age, whereas the weekly sum is used as the flow variables.

The, NHS data also allows us to control for some con-
textual variables that represent the observed heterogeneity
of hospitals and their operating environments. Most impor-
tantly, it is important to control for the share of senior patients
in the stock of inpatients because the senior patients are
known to be associated with a higher mortality rate when
infected by COVID-19.5 To this end, we consider two con-
textual variables to capture the share of 65–84 year-old
inpatients and the share of over 85 year-old inpatients. Since
the NHS data does not report the bed occupancy statistics by
age group, the shares of the two senior patient groups were
approximated for each hospital in each week of the study
period as the average share of senior inpatients among the
new COVID-19 diagnoses and the admissions of COVID-
19 diagnosed inpatients. In other words, we use the data of
inflow of elderly patients to a hospital to approximate the
stock of elderly inpatients in the hospital during a givenweek.
Therefore, these two contextual variables capture the share
of senior patients in the inflow to the inpatient stock.

5 The question of causality is immaterial for performance comparison
of hospitals, which is the main objective of the present study. For exam-
ple, the age and mortality are positively correlated, but we do not make
any claims about their causal relationship.

Finally, we also want to control for the staff absence in the
hospitals, which was a serious concern during the peak of the
first wave of the pandemic (see, e.g., [26] for further discus-
sion and evidence from Sweden). The NHS data reports the
total number of staff members absent, but it is important to
make this number proportionate to the total bed capacity of
the hospital; absence of one nurse in a small hospital with ten
nurses is a more serious problem than in a large hospital with
hundreds of nurses. Assuming the hospitals were operating
at or near their full capacity during the peak of the COVID-
19 epidemic, we use the ratio of the total staff absence and
the average weekly bed occupancy during the busiest week
as our third contextual variable.

3 Theoretical model and its estimation

3.1 Production function of death

To operationalize conceptual model outlined in Section 2.3,
consider the standard model of a single-output production
function with contextual variables and stochastic noise [12,
13]

lnyit = ln f (xi t ) + z′
i tδ + εi t (1)

where the subscripts refer to the production unit i in week t ,
output yit is the total number of deaths in the hospital i during
week t . The vector of input variables xi t includes the average
occupancy of hospital beds byCOVID-19 diagnosed patients
(x1i t ), and the average occupancy of motorized ventilation
(MV) beds by the COVID-19 diagnosed patients (x2i t ). The
four contextual variables included are the share of 65–84 old
patients (z1i t ), the share of+85 old patients (z2i t ), the ratio of
staff absence to bed capacity (z3i t ), and the time trend (z4i t =
t). The production function f is assumed to be monotonic
increasing and concave, but no specific functional form is
assumed a priori. The random variable εi t is a composite
error term that encompasses inefficiency and random noise,
in other words, εi t does not necessarily have a zero mean or
constant variance.

Note that the inputs of function f do not include the
usual labour and capital inputs. To highlight the fact that
f is not the hospital production function, we refer to func-
tion f as the production function of death. In contrast to
the efficiency analysis, our main objective is not to isolate
inefficiency from noise, but rather, examine properties of the
production function f and the impacts of contextual vari-
ablesδwhile recognizing that the empirical data are typically
perturbed by inefficiency and noise. Note that the input vari-
ables x must be scalable, ratio-scale measures, whereas the
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contextual variables z are scale-invariant dummy variables,
ratios or percentages.

3.2 Quantiles and expectiles with contextual
variables

To empirically estimate model (1), we propose to apply the
shape-constrained semi-nonparametric regression subject
to monotonicity and concavity constraints, also referred to
as one-stage data envelopment analysis [18] or stochas-
tic nonparametric envelopment of z-variables data [12]. To
gainmore insightonhow the effects of the contextual variables
interact with the level of performance, we also consider a
more general approach referred to as convex quantile regres-
sion (CQR) [14, 16]. The first methodological contribution
of this paper is to incorporate contextual variables to CQR.

More specifically, given the data generating process (1),
the τ th conditional quantile ofmortality, conditional on inputs
x and contextual variables z, is a function

Q(τ |x, z) = f τ (x) · exp(z′δτ + F−1
ε (τ ))

where F−1
ε denotes the inverse cumulative distribution func-

tion of the error term ε and τ ∈ (0, 1). The superscript
τ is used to indicate that, in general, the τ th conditional
quantiles of the production function f and the parameter
vector δ can differ across different levels of τ . We have
f τ (x) = f (x) and δτ = δ for all τ ∈ (0, 1) if and only
if the error term ε is homoscedastic. Therefore, possible
differences in the production function and the impacts of con-
textual variables across empirical quantiles can be attributed
to heteroscedasticity of the error term ε. One potential source
of heteroscedasticity is the presence of systematic perfor-
mance differences across hospitals.

Several recent studies have developed methods to esti-
mate the conditional quantile function Q(τ | x) in the absence
of contextual variables. Wang et al. [14] formulate a linear
programming (LP) problem that makes use of monotonicity
and concavity constraints developed for the convex regres-
sion [27]. However, solution to the LP problem is not
necessarily unique, especially if the sample contains multi-
ple observations with identical inputs. To guarantee a unique
solution, Kuosmanen et al. [15] propose to resort to convex
expectile regression (CER),which can be solved by quadratic
programming. Recently, Kuosmanen and Zhou [16] propose
an indirect approach to estimate quantiles by converting the
estimated expectiles to the desired quantile, making use of
the intimate connection between the quantiles and expec-
tiles [28]. In this paper we resort to the indirect approach
that employs CER to estimate the CQR model, and extend it
to the log-transformed specification that allows us to intro-

duce the contextual variables z using a semi-nonparametric
specification by Johnson and Kuosmanen [12].

For a given τ , there exists a unique transfer function h such
that h(τ ) = τ̃ , where τ̃ is the corresponding expectile [28].
For a given τ̃ , the CER estimator is defined as the optimal
solution to the following asymmetric weighted least squares
problem, which in the present case is a nonlinear program-
ming (NLP) problem due to the logarithmic transformations:

min
φ,α,β,ε+,ε− (1 − τ̃ )

n∑

i=1

T∑

t=1

(ε−
i t )

2 + τ̃

n∑

i=1

T∑

t=1

(ε+
i t )

2 (2)

s.t . ln yit = ln(φτ̃
i t + 1) + z′

i tδ
τ̃ + ε+

i t − ε−
i t ∀i, ∀t

φτ̃
i t = ατ̃

i t + x′
i tβ

τ̃
i t − 1 ∀i, ∀t

ατ̃
i t + x′

i tβ
τ̃
i t ≤ ατ̃

hs + x′
i tβ

τ̃
hs ∀i, h; ∀t, s

φτ̃
i t ≥ 0 ∀i, ∀t

0 ≤ βτ̃
i t ≤ 1 ∀i, ∀t

ε+
i t ≥ 0, ε−

i t ≥ 0 ∀i, ∀t

where φτ̃
i t + 1 is the predicted value of the f τ̃ ,6 and βτ̃

i t are
its gradient vectors in point xi t . The inequality constraints of
problem (2) characterize f τ̃ as a piece-wise linear function
that is monotonic increasing and concave [27]. Note that the
standard convex nonparametric least squares (CNLS) estima-
tor is the special case where τ̃ = 0.5, which is one appealing
feature of the CER specification (2). In the present context,
coefficients βτ̃

i t can be interpreted as the expected mortality
rates of the COVID-19 patients in the regular beds and the
MV beds, respectively. Since the mortality rate cannot be
negative or greater than one, we restrict the coefficients βτ̃

i t
to the closed interval [0, 1]. Similar constraints are widely
used in the literature of data envelopment analysis, referred
to as weight-restrictions or assurance regions.

We could adapt the direct quantile formulation by Wang
et al. [14] to the present setting by replacing the objective
function of (2) by

(1 − τ)

n∑

i=1

T∑

t=1

ε−
i t + τ

n∑

i=1

T∑

t=1

ε+
i t

Note that the resulting optimization problem must be solved
using NLP due to the logarithm function in the first set of
constraints. The main advantage of the indirect estimation
of quantiles based on the CER regression of expectiles τ̃

is to ensure uniqueness of the optimal solution. The esti-
mated CER expectile τ̃ can be subsequently converted to the
corresponding quantile τ using the transfer function h; see

6 We add the value of one to ensure that the logarithm function is
well-defined, but subtract it in the next constraint.
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Kuosmanen and Zhou [16] for a more detailed discussion.
We will utilize the conversion of the estimated expectiles to
the empirical quantiles in Section 5.3.

3.3 Heckman correction of zero-valued observations

The NHS dataset (introduced in Section 4) includes a large
number of observations where the output yit or the inputs xit
are equal to zero; approximately one half of the observations
have yit = 0.A commonly used practical remedy to avoid the
logs of zeros is to add some constant c to all observations and
use ln(y + c) instead of ln(y). Rocke and Durbin [19] refer
to it as the “started logarithm”. Sometimes c is specified as a
small number, say 0.0001, some studies set c = 1, but both
choices are equally arbitrary. Unfortunately, the parameter
estimates prove highly sensitive to the specific choice of the
constant c used for the started logarithms to avoid the problem
of zero values [10]. Recently, Ekwaru and Veugelers [29]
propose to treat c in the ln(y + c) as a model parameter,
and jointly optimize it together with other model parameters.
While this choice of constant c is not arbitrary, introducing
an additional model parameter can contribute to overfitting.

Note that simply excluding the zero-valued observations
would not only decrease the sample size, but also cause bias
due to the truncation of the dependent variable. Suppose we
simply exclude the zero-valued observations and estimate
the model using the truncated data of x > 0. The logarithm
function is nowwell-defined, but the truncation of the sample
would cause bias. The situation is analogous to the sample
selection bias examined by Heckman [20, 21]. Heckman’s
key insight is to approach sample selection as a form of
omitted-variables bias. Building on this insight, we propose
to exclude the problematic zero-valued observations from the
estimation, and correct for the resulting sample selection bias
using the Heckman’s two-step estimator.

More specifically, the stepwise estimation procedure can
be stated as follows:

• Step 1: Define the binary variable Yit = {1 if there occurs
one ormoreCOVID-19 related deaths in hospital i during
week t , and 0 otherwise}. Estimate the probit regression
model

Yit = �(x′
i tγ + z′

i tδ) + εi t

Given parameter estimates of γ, δ, compute the inverse
Mills ratios [30]

I Mit = φ(x′
i t γ̂ + z′

i t δ̂)/�(x′
i t γ̂ + z′

i t δ̂)

where φ and � denote the density function and the
cumulative distribution function of the standard normal
distribution N (0, 1).

• Step 2: Include IMi t as one of the contextual vari-
ables z. For the sub-sample D = {i = 1, · · · , n; t =
1, · · · , T | Yit = 1} and expectile τ̃ , estimate the CER
model (2). For the subsample D, predict the number of
deaths in hospital i in week t by

ŷi t = (α̂τ̃
i t + x′

i t β̂
τ̃

i t ) · exp(z′
i t δ̂

τ̃
)

Relative performance of hospital i in week t can be mea-
sured in multiplicative form as

Mper fit = yit/ŷi t

or in the additive form as

Aper fit = yit − ŷi t

• Step 3: For the subsample O = {i = 1, · · · , n; t =
1, · · · , T | Yit = 0}, predict the number of deaths in hos-
pital i in week t by using

ŷi t = min
h,s

(α̂τ̃
hs + x′

i t β̂
τ̃

hs) exp(z
′
i t δ̂

τ̃
)

Subsequently, we can assess relative performance of hos-
pital i in week t by

Aper fit = yit − ŷi t

Note that for the subsample O the multiplicative perfor-
mance measure Aper fit is equal to zero by construction.

This procedure allows one to discard the problematic zero-
valued observations in the estimation of production function
without adding an arbitrary constant term. We correct for the
resulting truncation bias by using the Heckman two-step pro-
cedure. Following Heckman, we use the probit regression in
step 1, but one could alternatively apply the logistic regres-
sion (logit), or the panel data variants of probit or logit. Step 2
can be modified for estimating the convex regression, expec-
tiles, or quantiles. One can also impose further properties
such as constant returns to scale, or relax assumptions such
as monotonicity or concavity [31]. Finally, the production
function is estimated using the subset of data where yit is
strictly positive, but for the purposes of performance assess-
ment, the zero-valued observations should not be ignored: in
the present setting, zero deaths is obviously the best possi-
ble outcome. Therefore, in Step 3, we compute the predicted
number of deaths corresponding to those zero-valued obser-
vations. Note that the multiplicative performance indicator
MPerf is equal to zero by construction, and hence, we pro-
pose to use the additive performance measure APerf for the
zero-valued observations.
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Fig. 1 Development of the
COVID-19 deaths and the
motorized ventilation bed
occupancy during the study
period (weeks 1-35, from 2nd

April to 2nd December 2020)

4 Data

The data of the English hospitals over the period from the
2nd of April 2020 to 2nd December 2020 was obtained from
the NHSwebsite,7 covering the first and second waves of the
pandemic. The NHS reports the hospital data at daily level,
however, the daily variations are very large. To average out
the arbitrary daily variations and weekday effects, we model
the production function using weekly totals for the flow vari-
ables and weekly averages for the stock variables. Excluding
hospitals with missing values, the final dataset includes 187
hospitals observed over a period of 35 weeks, which yields
a balanced panel with 6545 observations. These hospitals
are distributed across 7 different regions in England: East
of England, London, Midlands, North East and Yorkshire,
North West, South East and South West.

Table 1 presents the descriptive statistics of the inputs,
outputs and contextual variables of the sample. We note that
the average weekly number of regular beds occupied by the
COVID-19 patients was almost ten times higher than the
corresponding MV bed occupancy. The average number of
deaths was 5.5 per week. Regarding to the contextual vari-
ables, we notice that the share of COVID-19 patients aged
between 65 and 84 was on average 16% of the total COVID-
19 patients, while the share of COVID-19 patients aged 85 or

7 https://www.england.nhs.uk/statistics/statistical-work-areas/covid-
19-hospital-activity/ and https://www.england.nhs.uk/statistics/
statistical-work-areas/covid-19-daily-deaths/ (downloaded on 16th

December 2020).

higher was on average 8%. Finally, we observe that the staff
absence proportional to the bed capacity shows considerable
differences across the hospitals in the sample.

To illustrate the development of the pandemic during the
study period, Fig. 1 plots the weekly COVID-19 deaths and
the MV bed occupancy during the study period. The sample
period starts at the peak of the first wave of the pandemic in
April when the weekly death toll was at its maximum level;
unfortunately, hospital-level data prior to the 2nd April are
unavailable.

Figure 1 illustrates how the number of COVID-19 deaths
started to rapidly decrease during the first ten weeks of the
study period as the hospitals improved their operations and
became more effective in saving lives of the COVID-19
infected patients. While throughout the summer of 2020,
there were constantly more than 2,000 COVID-19 patients
with severe symptoms treated in the MV beds, at best there
were less than 50 deaths per week in July. Unfortunately, the
death rate started to surge again since mid-September (week
25) as the virus had mutated to form new strains, which are
considered to be more contagious.

To assess the possible structural changes between the first
and the second waves of the pandemic, we partition the sam-
ple period in half at week 18 (30th July- 5th August), and
refer to weeks 1-18 as the first wave, and weeks 18-35 as the
second wave, respectively. This division is justified by two
observations. First, the average MV bed occupancy reached
its minimum level during the week 18, which is included in
both sub-periods in our empirical analysis. Second, by com-
paring the two subperiods of equal length, we effectively
avoid the possibility that differences in the sample sizes of
the subperiods would add bias to our estimates.
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Table 1 Summary statistics;
sample size n = 6545

Variables Mean Std. Dev. Min Max

Inputs (weekly averages)

Bed occupancy by COVID-19 patients 32.29 56.29 0 689

MV bed occupancy by COVID-19 patients 3.79 9.24 0 142

Output (weekly sums)

Deaths of COVID-19 patients 5.51 12.58 0 218

Contextual variables (ratios)

Share of 65–84 year-old COVID-19 patients 0.16 0.15 0 0.5

Share of over 85 year-old COVID-19 patients 0.08 0.11 0 0.5

Average staff absence per maximum bed occupancy 0.73 0.49 0 5.9

5 Results

5.1 Probit regression

We first apply random-effects panel data probit regression to
predict the probability of at least one death during the period
of one week in all the 187 NHS hospitals in the sample.
Table 2 reports the parameter estimates and their robust stan-
dard errors computed using the Stata 15 software package.

All the coefficients have the expected signs and are sta-
tistically significant. The probability of deaths occurring
increases as the number of inpatients increases, if the share
of elderly patients increases, or if there is staff absence.
In contrast, the probability of death significantly decreases
over time. We also include regional dummy variables choos-
ing London as the reference category. Table 2 indicates that
there are significant regional differences in the probability of
deaths across regions.

The parameter estimates reported in Table 2 are used for
computing the inverse Mills ratio for the subsample of 3260
observations in which the number of deaths was strictly pos-
itive. Including the inverse Mills ratio as an explanatory
variable in the subsequent regression models corrects for the
truncation bias caused by excluding the observations with
zero deaths.

5.2 Convex regression

Having excluded the zero-valued observations and included
the inverseMills ratio as a contextual variable, we next apply
the CNLS estimator, which is the special case of the CER
formulation (2) obtained by setting τ̃ = 0.5. We divide
the sample period into two parts, representing the first and
the second waves of the pandemic (weeks 1–18 and 18–35,

Table 2 Probit estimates;
sample size n = 6545

Coefficient Robust std. error

Intercept -2.007*** 0.166

Bed occupancy 0.074*** 0.005

MV bed occupancy 0.069** 0.030

Share of 65–84 year-olds 1.322*** 0.143

Share of +85 year-olds 1.103*** 0.196

Staff absence / max weekly bed occupancy 0.279*** 0.096

Weekly time trend -0.008** 0.003

London reference category

East 0.406** 0.178

Midlands 0.532*** 0.158

North East 0.529*** 0.175

North West 0.631*** 0.191

South East 0.643*** 0.179

South West 0.558** 0.166

Log pseudolikelihood -2052.91 –

*** indicates statistical significant at 1% significance level, ** refers to 5% significance, * is 10% significance
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respectively), but we also consider the entire study period
(weeks 1–35). The resulting NLP problems were solved
using GAMS/KNITRO (12.2.2) on Aalto University’s high-
performance computing cluster Triton with Xeon@2.8 GHz
processors, 13 CPUs, 80GBRAMper CPU; the GAMS code
used in the computations is available on GitHub (https://
github.com/ds2010/Covid-19).

Table 3 summarizes the CNLS results. The top part of the
table reports the average values of the observation-specific
coefficients that characterize the nonparametric production
function f . The bottom part reports the regression coeffi-
cients of the contextual variables z modelled in a parametric
fashion. The bottom row of the table reports the coefficient
of determination R2.

Recall that coefficients βi t differ across the observa-
tions (Table 3 reports average estimates), and represent the
expected mortality rates of inpatients. We find a notable
decrease in the expected mortality from the first wave to
the second one, especially for the patients treated in the MV
beds. Since theMV bed occupants are typically patients with
the most severe COVID-19 symptoms, the decrease in the
expected mortality rate from 0.53 to 0.23 is quite remark-
able, increasing the probability of survival of average patient
in the MV bed from less than 50% to more than 75%.

The estimated intercepts αi t are systematically greater
than zero for all the observations, which indicates decreas-
ing returns to scale. In the present context, the decreasing
returns imply that the larger units have been more effective

in saving lives of the COVID-19 patients, consistent with the
previous empirical literature on hospital efficiency [8]. This
would suggest that the hospitals that care for a larger number
ofCOVID-19 patients appear to bemore effective in avoiding
death. However, we cannot tell if the number of COVID-19
patients correlates with the size of the hospital, or whether
the size of the hospital has a direct effect on the mortality rate
(e.g., larger hospitals may have better equipment, personnel,
procedures or management). There may be several kinds of
selection effects in play, for example, the most efficient hos-
pitals might be assigned larger numbers of patients, or the
patients with the most severe symptoms could be isolated to
the smaller units. The underlying sources of the significant
economies of scale found in this study would clearly warrant
further investigation.

The estimated coefficients of the contextual variables also
reveal interesting patterns. During the first wave, the elderly
inpatients of age 65–84 years or more than 85 years were at
significantly higher risk of dying than the younger patients.
During the second wave, the shares of elderly inpatients are
no longer significant predictors of death. Possible explana-
tions include the improved hospital practices, but also the
mutated straits of COVID-19 that are considered to be more
contagious among younger people.

We find a significant negative time trend during the first
wave. The absolute value of the time trend coefficient is rel-
atively large, which points to rapid learning by doing during
this period (see, e.g., [32] for an insightful discussion of the

Table 3 CNLS estimates for the
first wave, second wave, and the
full study period

1st wave 2nd wave Full period

Nonparametric part Average estimates of αi t ,βi t

Intercept 1.132 1.015 0.968

Bed occupancy 0.093 0.079 0.081

MV bed occupancy 0.533 0.23 0.397

Parametric part Estimates of δ

Share of 65–84 year-olds 0.848*** 0.057 0.274***

Share of +85 year-olds 0.849*** -0.399 0.068

Staff absence / max weekly bed occupancy -0.048* -0.059* 0.088***

Weekly time trend -0.084*** 0.002 -0.009***

London reference category

East 0.298*** 0.247*** 0.272***

Midlands 0.405*** 0.235*** 0.233***

North East 0.470*** 0.317*** 0.307***

North West 0.482*** 0.338*** 0.267***

South East 0.323*** 0.215*** 0.250***

South West 0.148** 0.141** 0.207***

Inverse Mills ratio 0.254*** -0.278*** -0.242***

R2 0.786 0.782 0.759

Sample size 1938 1355 3260

*** indicates statistical significant at 1% significance level, ** refers to 5% significance, * is 10% significance

123

455

https://github.com/ds2010/Covid-19
https://github.com/ds2010/Covid-19


T. Kuosmanen et al.

role of learning by doing in productivity growth). Interest-
ingly, the time trend is no longer significant during the second
wave.

Staff absence has a significant positive effect on COVID-
19 deaths according to the pooled model that includes the
entire study period. Somewhat surprisingly, the signs of the
staff absence coefficient turn to negative when we only con-
sider the two sub-periods representing the first and the second
wave of the pandemic. However, these negative coefficients
are statistically insignificant and small in magnitude.

Finally, we apply regional dummy variables to test if there
were significant performance differences across regions. The
reference category is London, which is the best-performing
region. All the other NHS regions had significantly higher
expected mortality rates. Applying the exponential function
to the coefficients of the regional dummy variables (e.g.,
exp(0.482) = 1.62), we find that during the first wave in the
North East and North West, the expected mortality rate was
more than 60% higher than in London, keeping all the other
factors constant. The comparison of the two subsamples rep-
resenting the first and the second waves indicates a positive
result that the performance gaps to London decreased over
time, but the North East and North West had still the highest
expected mortality rates.

The best performance of the London hospitals is not sur-
prising as such, given the large number of hospitals in close
proximity to one another, and the high concentration of top
hospitals and physicians, cf., [23]. However, the large perfor-
mance gaps to other regions are alarmingly large, and call for
an explanation. Although our analysis is based on hospital-
level data, wemust stress that the regional organization of the
health care system can also influence the performance gaps.
For example, inadequate ambulance services at regional level
can cause delay in the admission to hospital,whichmay result
as highermortality rate of COVID-19 inpatients, and show as
poor hospital performance in our analysis. Thus, the observed
performance differences cannot be solely attributed to the
hospital management, the organization and management of
the health care system at the regional level can also affect
hospital performance. Moreover, differences in the popula-
tion, including the age distribution and comorbidities such as
diabetes, obesity, or kidney disease, may also contribute to
performance differences across hospitals. While the role of
comorbidities could be significant at the hospital level, at the
aggregate level of regions, individual and local differences in
comorbidities tend to cancel out. The observed performance
gaps at the regional level are so large that regional differ-
ences in comorbidities seems a highly unlikely explanation.
We stress that the main contribution of the present paper is
to provide evidence that such performance gaps existed. To
avoid excess mortality in possible future pandemics, it would
be important to investigate the underlying reasons behind
such large regional differences in the expected mortality of

COVID-19 inpatients more thoroughly, but such an investi-
gation falls beyond the scope of the present study.

5.3 Expectiles and quantiles

Togain deeper understanding of the possible structural differ-
ences between the best performing hospitals and the weakest
performers, we next apply the convex expectile regression
formulation (2) with six alternative parameter values τ̃ =
0.05, 0.15, 0.25, 0.75, 0.85, and 0.95. We are particularly
interested in whether the estimated coefficients of the con-
textual variables z differ across different expectiles. Recall
that the differences in these parameter estimates across dif-
ferent expectiles reflect heteroscedasticity of the composite
error term ε with respect to the contextual variables z:
if ε is homoscedastic with respect to a given contextual
variable, then the CER estimates of the corresponding δ

should be relatively constant across expectiles. Further, since
heteroscedasticity of ε is associated with asymmetric perfor-
mance differences, possible differences in the effects of the
contextual variables across expectiles can shed light on the
underlying drivers of performance differences.

Table 4 reports the parameter estimates for the six quan-
tiles noted above, which in the present context represent the
best performance and the worst performance, respectively.8

Recall that the case of the average performance τ̃ = 0.5
was already considered in the previous sub-section. To gain
further intuition, we have also converted the expectiles to
the corresponding empirical quantiles τ using the empiri-
cal strategy suggested by Efron [33]. For example, Table 4
indicates that the quantile τ̃ = 0.05 corresponds approx-
imately to the quantile τ = 0.12, which means that the
left-most column of Table 4 refers to the coefficients of the
best-performing decile of observations. Further, the weakest
performance in this comparison, τ̃ = 0.95, corresponds to
the quantile τ = 0.76; in other words, the right-most col-
umn of Table 4 refers to the bottom quartile of observations
in terms of performance. The main purpose of Table 4 is to
illustrate how the effects of the contextual variables depend
on the level of performance.

Consider first the shares of the elderly inpatients, the coef-
ficients of which are reported on the first two rows of Table
4. Interestingly, the elderly inpatients had a slightly lower
expected mortality rate in the top decile of observations (the
left-most columns ofTable 4), but unfortunately, the expected
mortality rates of the elderly increase as we move to the
bottom quartile of observations, especially for the group of
65–84 year-old patients. Note that a hospital may rank in the

8 Normally the best performance would be associated with the highest
values of τ , but since we here estimate the production function of death,
saving lives of inpatients requires making COVID-19 as inefficient as
possible.
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Table 4 Estimates of the contextual variables for the selected expectiles/quantiles, the full study period (weeks 1-35, 3260 observations)

Best performance Worst performance
Expectile τ̃ = 0.05 τ̃ = 0.15 τ̃ = 0.25 · · · τ̃ = 0.75 τ̃ = 0.85 τ̃ = 0.95
=Quantile τ = 0.12 τ = 0.21 τ = 0.27 · · · τ = 0.56 τ = 0.64 τ = 0.76

Share of 65–84 year-olds -0.063 0.106 0.17 0.326 0.326 0.344

Share of +85 year-olds -0.156 -0.032 0.004 0.09 0.073 0.015

Staff absence / 0.016 0.043 0.063 0.1 0.098 0.091

max weekly bed occupancy

Weekly time trend -0.009 -0.009 -0.009 -0.01 -0.011 -0.013

London reference category

East 0.178 0.235 0.251 0.269 0.267 0.271

Midlands 0.164 0.226 0.234 0.224 0.217 0.203

North East 0.202 0.275 0.293 0.308 0.307 0.31

North West 0.187 0.238 0.252 0.27 0.274 0.286

South East 0.153 0.219 0.238 0.241 0.235 0.225

South West 0.16 0.196 0.207 0.196 0.185 0.16

Inverse Mills ratio -0.282 -0.306 -0.297 -0.158 -0.102 0.013

top decile during some weeks, but fall to the quantiles dur-
ing other weeks. This is why we refer to the top decile of
observations rather than specific hospitals.

Staff absence has a positive effect on expected mortality,
but its impact is considerably lower among the best perform-
ing observations than in the worst ones. The weekly time
trend has a relatively stable negative effect across all expec-
tiles, which suggests relatively homogenous rate of learning
by doing. However, the worst performers have a slightly
smaller coefficient, which may be associated with catching
up the best performing units.

Considering the regional performance differences, Table 4
highlights the fact that the regional differences aremuchmore
pronounced among theworst performers than among the best
performing hospitals. This would support the hypothesis that
performance differences likely occur at the hospital level: the
best performing hospitals just happen to be located in Lon-
don and the worst performers are in the North East and North
West. The observed regional differences just reflect differ-
ences in the average performance of the hospitals located
in those specific regions, but there are not necessarily any
inherent regional differences in the population, the hospital
management, or the COVID-19 virus itself.

6 Managerial implications

When the first cohorts of COVID-19 infected patients were
admitted to hospitals, all medical teams were inexperienced
in the care of this unprecedented disease. During the first
wave of the pandemic, our results indicate a sharp decrease
in the expected mortality of COVID-19 inpatients: mortality

decreased 8% per week on average based on the estimated
time trend. This impressive performance improvement can be
attributed to learning by doing. Unfortunately, in the absence
of systematic performance management and benchmarking,
there was a large gap between the best performing and the
weakest performing hospitals. Presence of such large perfor-
mance gaps, both at the regional and hospital levels, would
suggest that inefficient practices and slow diffusion of infor-
mation caused loss of life that could had been avoidable by
better management. The empirical results of our study have
three key managerial implications with a view towards more
effective management of possible future pandemics, but also
to better management of other hospital operations such as
emergency care or ambulance services.

First, the performance assessment approach proposed in
this study would enable NHS and similar health care orga-
nizations around the world to monitor hospital performance
virtually in real time, utilizing the data that is already col-
lected andpublishedbyNHS. Identifying the best performing
hospitals forms the first step of best practice benchmark-
ing, which could help medical teams to identify specific
practices that help to save lives of COVID-19 inpatients,
and disseminate information about these practices across
all hospitals. During the first weeks of the COVID-19 pan-
demic, medical teams gained valuable experience on how to
best utilize the MV bed capacity and in which position to
lay the COVID-19 inpatients in hospital beds.9 Systematic

9 NHS: Coronavirus - how lying on your front can help get more
oxygen into your body. Retrieved from: https://www.wsh.nhs.uk/
CMS-Documents/Patient-leaflets/Coronavirus/6628-1-Coronavirus-
how-lying-on-your-front-to-can-help-get-more-oxygen-into-your-
body.pdf.

123

457

https://www.wsh.nhs.uk/CMS-Documents/Patient-leaflets/Coronavirus/6628-1-Coronavirus-how-lying-on-your-front-to-can-help-get-more-oxygen-into-your-body.pdf
https://www.wsh.nhs.uk/CMS-Documents/Patient-leaflets/Coronavirus/6628-1-Coronavirus-how-lying-on-your-front-to-can-help-get-more-oxygen-into-your-body.pdf
https://www.wsh.nhs.uk/CMS-Documents/Patient-leaflets/Coronavirus/6628-1-Coronavirus-how-lying-on-your-front-to-can-help-get-more-oxygen-into-your-body.pdf
https://www.wsh.nhs.uk/CMS-Documents/Patient-leaflets/Coronavirus/6628-1-Coronavirus-how-lying-on-your-front-to-can-help-get-more-oxygen-into-your-body.pdf


T. Kuosmanen et al.

performance monitoring and benchmarking could help to
identify such valuable information on best practices quicker,
and disseminate it more systematically across hospitals. Sys-
tematic performance monitoring and benchmarking would
also create strong incentive to the hospital managers, in par-
ticular to the ones that were not performed very well in
this pandemic, to further improve and develop their man-
agement practices. While public reporting and transparency
of hospital performance in COVID-19 care might help to
incentivize the hospitals for better performance, cf., [34], we
would attribute the performance gaps identified to inefficient
policy and management at the higher level of the health care
system (cf., [35]). Establishing performance monitoring and
benchmarking systems is our first managerial lesson with a
view towards the future pandemics.

Second, our results show that larger COVID-19 care units
were more effective in saving lives of COVID-19 patients
than smaller units. While the volume-outcome effect on
mortality is well-established in the literature [36], to our
knowledge, the economies of scale in terms of the reduced
COVID-19 mortality is a new finding. While the underlying
factors behind the economies of scale in the COVID-19 care
would warrant further research, we suspect that superior per-
formance of larger units may relate to more efficient capacity
utilization, better team work by the medical professionals, as
well as quicker dissemination of best practices. Economies of
scale could also relate to spillover effects between COVID-
19 care and other hospital operations, cf., [8], however, it is
worth to emphasize that the size of the COVID-19 unit is
not necessarily perfectly correlated with size of the hospital.
The key managerial lesson is to try to allocate COVID-19
patients to larger units where feasible.

Third,wefind large systematic regional differences in hos-
pital performance, both during the first and the second waves
of the pandemic. In particular, expectedmortality of COVID-
19 patients was significantly lower in London hospitals than
in all other regions. Even after controlling for the size of
the COVID-19 unit, the share of senior patients, and staff
absence, hospitals in the North East and NorthWest had 60%
higher expected mortality rate than London hospitals during
the first wave of the pandemic, decreasing to 40% during the
second wave. Such large regional performance differences
indicate significant inequalities between the patients hospi-
talized in different NHS regions. These results also suggest
that more efficient identification and dissemination of infor-
mation on best practices from the best performing London
hospitals to the other NHS regions might had saved thou-
sands of lives. While the significant performance differences
during the first wave of the pandemic were to some extent
unavoidable, there was sufficient time to identify best prac-
tices and disseminate information prior to the secondwave of
the pandemic.While the reforms ofNHSover the past decade
have given greater freedom and independence for the local

authorities, the policy reformmay have reduced coordination
and oversight at the national level.

In conclusion, based on our empirical results we would
encourageNHSand other national health service providers to
1) establish systematic performance monitoring and bench-
marking procedures to identify and disseminate best prac-
tices; 2) utilize economies of scale by allocating patients to
larger units when feasible; and 3) ensure sufficient coordi-
nation between the regional care providers to facilitate more
efficient dissemination of best practices not only locally but
nationwide.

7 Conclusions

Hospitals around the world were in the forefront in the battle
against the COVID-19 pandemic, however, thus far there has
been little attention on the performance of hospitals in saving
lives. This study proposed to assess performance fromanovel
perspective, introducing the conceptual notion of the produc-
tion function of death that approaches hospital performance
from the perspective of the effectiveness of outcomes instead
of the conventional notions of efficiency and productivity.

To apply the proposed approach to the empirical data,
this study addressed two methodological challenges. First,
we incorporated contextual variables to the convex quan-
tile regression to gain further insights on the impacts of the
contextual variables at different levels of performance. Sec-
ond, we developed a theoretically new approach to model
the zero-valued observations, making use of Heckman’s two-
step approach to correct for the sample selection bias. While
the zero-valued outputs present a major challenge in this spe-
cific application,wewould argue that the zero-valued outputs
are rather common in the empirical studies and that inappro-
priate modelling of zero outputs can cause serious bias in the
empirical results. The two-stage bias correction proposed in
this study could be readily applied in other production studies
to alleviate such bias.

Our empirical findings reveal a significant negative trend
in the production function of death during the first wave of
the pandemic. We also find significant decreasing returns
to scale, which implies that the larger COVID-19 units are
more effective in saving lives. The mortality rate of inpa-
tients is also significantly and positively associated with the
share of senior patients aged 65 and above. Comparing the
hospital performance among different areas of England, we
find that the hospitals in London had lower mortality than
the national average, while the ones in the North East and
North West showed weakest performance. Finally, there are
large and systematic performance differences between indi-
vidual hospitals, which would warrant further investigation.
We found the quantile approach a useful complementary tool
to gain deeper insight on the structural differences between
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the best performing and the worst performing hospitals. In
particular, the best performing hospitals excelled in saving
lives of elderly patients, but also managed to cope with staff
absence better than the worst performing hospitals. Interest-
ingly, the regional performance differences were also more
pronounced for theworst performing hospitals. This seems to
suggest that the performance differences may actually occur
at the hospital level: there are not necessarily any inherent
regional differences, however, the best performing hospitals
are located in London. Our empirical analysis revealed sev-
eral structural differences between the first and the second
waves of the pandemic in England. It is fortunate that the
expected mortality rates have decreased notably over time,
especially for the elderly inpatients and those with the most
severe symptoms. The doctors, nurses and other hospital
staff have demonstrated impressive ability to improve per-
formance through learning by doing. Unfortunately, there
are significant performance differences both across the NHS
regions and individual hospitals, which cannot be explained
by the staff absence or the share of senior patients.

We hope that the findings of this line of research could
help the NHS to identify and disseminate more broadly the
best hospital practices in saving lives. After the study period
considered in this paper, the daily number of the positive
COVID-19 cases kept increasing, peaking at more than 68
thousand on the 8th January 2021. As a result, the UK issued
another national lockdown from the 6th January 2021 to
March 2021. The NHS started its COVID-19 vaccination
programme on the 8th December 2020. The approved vac-
cines are expected to be effective against the UK strain of
COVID-19, but while writing this, it is too early to declare
the battle against COVID-19 to be over at the global level.

Considering possible future pandemics, it would be crit-
ically important to gain better understanding of the factors
influencing hospital performance during the COVID-19 pan-
demic to be better prepared when another unprecedented
virus appears. While our empirical analysis focused on the
NHS hospitals in England, the general approach developed
in this paper could be readily applied to other countries and
jurisdictions for which similar data are available at the hospi-
tal or regional level. While the approach has been developed
in the context of the COVID-19 pandemic, it is more broadly
applicable to analysing performance of hospitals or other
healthcare providers in saving lives, for example, in emer-
gency care or ambulance services.
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