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Abstract
Many hospital supply chains in the US follow a “stockless” structure, often implemented with the acquisition of new systems
promising improved efficiencies and responsiveness. Despite vendor promises, supply chain gains from new technology are
often unfulfilled or result in a reduction of performance. A critical component of achieving promised gains is the hospital’s
ability to accurately and consistently capture hospital inventory use. In practice, recording demand with perfect, 100%
accuracy is infeasible, so our models condition on the level of accuracy in a particular hospital department, or point-of-
use (POU) inventory location. Similar to previous literature, we consider actual net inventory and recorded net inventory
in developing the system performance measures. We develop two models, optimizing either cost or service level, and we
assume a periodic-review, base-stock (or par-level) inventory policy with full backordering. In addition to choosing the
optimal order-up-to level, we seek the optimal frequency of inventory counts to reconcile inaccurate records. Results from
both models provide insights for supply chain managers in the hospital setting, as well as hospital administrators considering
the adoption of similar technologies or systems.
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Article Highlights

• As healthcare decision-makers consider inventory
levels and their related inventory systems, inaccuracy
at the point-of-use can create significant operational
hurdles when trying to either reduce costs, or to
maintain high service levels.

• We present two inventory decision models that consider
inaccuracy, specifically in a hospital setting where
front-line patient care staff use an open-bin barcode or
button-scan inventory system prevalent in hospitals in
the United States, which is also tied to patient billing.
These specific types of inventory systems have not been
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studied through the lens of inaccurate records elsewhere
in the literature, though inaccuracy has been considered
in other models.

• The models presented both perform well in seeking
to optimize costs and meet service-level requirements,
showing that it is possible to still provide timely patient
care without perfectly accurate inventory – though the
costs and operational impacts can be significant as
increased inventory levels will use up more valuable
hospital space, and increased counting frequencies will
have a direct impact on labor costs.

• While the structure of the models are not unimodal,
the incremental solution process is shown to perform
well, finding the optimal solution 98% of the time in the
shortage cost model and 74% of the time in the service
level model. Non-optimal solutions were less than 2.4%
away on average from optimal values, with the shortage
cost model showing better performance.

• This research should give insight to both hospital
inventory managers and medical clinicians as they
consider their joint role in ensuring patients have access
to the supplies necessary for timely and effective care.
Additionally, operational symptoms described within
the paper may direct decision-makers to consider the
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potential impact that inaccuracy is causing on their
hospital supply chain and how to address the impact.

1 Introduction

Inaccurate inventory records can lead to increased costs,
unexpected delays in demand fulfillment, and lost revenue.
Inventory record inaccuracy is also one of the many
sources of unnecessary health care costs across the US,
and creates the additional risk of delayed patient care. This
research presents a model based on personal experiences
by the authors with the inventory system of a 580-bed
Alabama hospital, where inventory record inaccuracy was
found to significantly affect the supply chain, leading to
both overstock and daily shortages throughout the facility.
This situation led the Materials Manager to adopt a daily
inventory counting policy requiring additional employees,
yet still failed to resolve the inventory problems. In
this case, inaccurate records failed to account for nearly
half a million US dollars per year in consumed medical
supplies, which represents a patient reimbursement value
of about two million US dollars annually. This financial
impact is especially risky, as some hospitals experience a
larger impact on the cash conversion cycle from inventory
issues rather than patient care issues, especially during the
COVID-19 pandemic [32].

Many of the hospital’s staff associated with patient care
do not feel responsible for inventory management, and yet
expect inventory to always be available when needed - a
situation which is a common reality in US hospitals [25].
Conversely, the material management staff are tasked with
(and measured against) ensuring inventory is available at
each point of care, so that patients receive care in a manner
and time that is most beneficial. Their ability to optimize
inventory availability hinges on the accuracy of recorded
inventory use as consumed by patient care.

Our research here intends to provide two structured
models that can give insight to healthcare decision-
makers seeking to maintain service levels or to minimize
costs when inventory record accuracy is causing logistical
problems. Our models attempt to capture, and demonstrate,
the necessity for patient care staff to follow inventory
management standards - specifically, to accurately record
inventory usage by properly using the system(s) installed
in each care location. As 100% accuracy is not always
feasible, our models successfully balance cost and service
levels through inventory policy decisions in light of patient
care staff compliance levels.

The situation we experienced in Alabama was the main
motivation behind our research, however, our experience
suggests this situation among hospitals is not unique, as bar-
code or button-scan inventory systems are used in hospitals

across the United States and are heavily reliant on patient
care staff to accurately capture inventory use. Research is
being done now to study how wide-spread these issues
are occurring, as well as the impact on costs and stock
availability within healthcare systems more broadly.

1.1 The hospital supply chain

Traditionally, hospitals managed two tiers of their supply
chain, where one was internal and the other external [24].
The internal supply channel includes inventory and logistics
from the hospital’s on-site warehouse to the several point-
of-use (POU) inventory locations within the hospital. The
external supply channel includes the flow of inventory from
the supplier to the hospital’s on-site warehouse as shown
in Figure 1. In such cases, inventory control policies are
required both for the warehouse and for each of the POU
locations.

Rivard-Royer et al. [24] discuss that, during the 1990s,
hospitals in the US and Canada moved away from the
classic hospital supply chain approach, and trended toward
a stockless management system, as portrayed in Figure 2.

The stockless system transforms the external supply
channel into a direct replenishment stream from the supplier
to the POU inventory locations, essentially removing the
need to keep stock in an on-site warehouse. Based on direct
demand information from each POU, the supplier ships
materials in unit quantities directly to the POU. Stockless
systems have been shown to drastically reduce inventories
by as much as 70% to 80%, as well as reduce the material
handler full time equivalents (FTEs) by as much as 30% to
45% [24]. This accounts for several hundreds of thousands
of dollars in annual savings for the hospitals involved.

However, the stockless system is not without its
drawbacks. It requires up-to-date and accurate transmission
of supply needs, a short lead time to ensure minimal
inventory at each POU (or sufficient inventory capacity at
each POU), and an ability to adapt to variation in product
mixes and seasonality of demand. In many instances,
hospitals are required to make costly systems upgrades or
expand POU inventories to qualify for the stockless system.
In other cases, hospitals that experience relatively longer
lead times from the supplier are required to keep large
amounts of inventory on-hand between available shipments.
Rural hospitals and not-for-profit hospitals fall into the
group of hospitals that may have difficulty in implementing
or affording the changeover to a stockless system. [24]

Other researchers have approached the topic of inventory
management in hospitals, with a similar structure studied
in [15], where they compare costs between automated and
traditional POU inventory systems. More generally, [35]
and [18] address issues in the hospital supply chain from
an empirical standpoint by surveying representatives from
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Fig. 1 Classic hospital supply
chain

several hospitals. Both empirical studies cite a need for
additional research regarding the hospital supply chain, as
well as the complexity of such supply chain systems.

Some researchers, such as [8, 9, 11, 13, 15, 26] and
[12] provide specific case studies or numerical analyses,
where a hospital, or hospitals, are measured before and after
an implementation of different supply chain modifications.
While insightful, researchers fail to address inaccuracy or
optimization of the system. For example, [15] considers a
supply chain structure almost identical to the one considered
here, however, instead of formulating a model and seeking
optima as is done here, they compare explicit costs and
recommend using an Economic Order Quantity (EOQ)
approach to select control parameters. The simulation

model provided by [11] focuses on medication inventory
management and compares the results across four different
inventory policies that use varying weights on criticality,
availability and expiration window to determine optimal
policies. While information accuracy is mentioned in the
paper, the authors refer to pharmacy order information
rather than accuracy of available on-hand stock. A more
recent article from this group focuses on the application of
Lean Thinking to improve inventory control in a specific
case, but also suggests the improvements only work with
adequate information sharing without a solution to address
information accuracy [12].

An important finding is presented by [13], where the
human “intuition” approach does not perform near as

Fig. 2 “Stockless” hospital
supply chain
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well as optimized decisions in a hospital setting - with
their models showing that optimal policies generated by
expert systems improve the outcomes by as much as 47%.
However, this level of improvement can only be realized
if decision makers (or their expert systems) have visibility
into actual availability and usage patterns. Similar to our
experiences, the author suggests that even with an expert
system that can provide better inventory policies, many in
the hospital setting do not trust the system and instead
circumvent the suggested expert policies, leading to a
decline in service levels and increased costs. In practice,
inaccurate inventory led to a distrust of the system and
to disregard for expert system suggestions. Our models
provide a structure and an example of how inaccuracy
impacts performance, but also how awareness of the issue
can inform decision makers - or designers of expert systems
- to improve accuracy, counting policies and/or inventory
replenishment policies.

Recent papers that have focused on the optimization of
hospital inventory include [1, 3, 4, 6] and [27]. A Markov
decision approach is used in [3] to optimize two models,
one focused on meeting specific service level requirements,
and the other maximizing service levels within constrained
inventory storage space. The model presented in [1]
considers storage capacity and physical inventory size for
a group of stockless items. The model uses average daily
inventory usage for each item rather than stochastic demand,
as is used here. Similarly, a simulation optimization model
is presented by [4], but their focus is on highly specialize
inventory related mainly to high-risk heart surgery. The
recent work by [6] looked at how the number of Kanban bins
affects the optimal inventory solution using a mixed-integer
model and deterministic demand. In this recent research, the
models explicitly rely on the assumption that the behavior
of hospital staff maintains perfect operational conditions - in
that the authors hope that the nurses do not misplace Kanban
cards. The authors suggest a future opportunity to research
how staff behavior may affect hospital inventory models.
Lastly, the authors in [27] present and compare robust
stochastic inventory models in an Automated Dispensing
Machine (ADM) environment within a hospital, where
different replenishment mechanisms are considered. The
main focus of their paper is the concept of dual-sourcing,
and the authors find that coordinated joint replenishment
policies perform better than hybrid policies that are not
coordinated. In addition to the models presented, [27]
discuss how increased inventory visibility can improve
inventory outcomes, though this is tied to assumptions about
ADM machines, which in some cases, are cost-prohibitive
in practice. Overall, though the importance of hospital
inventory is explored in each of these models, none consider

the direct impact of inaccuracy as a part of their inventory
models the health care setting.

For comprehensive reviews of health care related
inventory or supply chain models, see [2, 19, 28, 29,
34] and [12]. In [34], the authors focus on literature
that is quantitatively oriented and suggest several areas
of potential future research. Research focusing on POU
inventory models with unpredictable demand is a future
research opportunity, and our models here provide an
example of this. The authors in [34] also suggest that
there is a lack of research addressing up-to-date stock
information. Looking at the review provided by [19], there is
potential for new research to develop more effective internal
supply chain performance measures that lead to overall
improvement of internal hospital logistics. The authors also
indicate that there remains difficulty within industry of
maintaining up-to-date inventory management parameters.
Beyond the case study discussed previously, [12] also
provides a comprehensive, well-organized list of articles
that address healthcare inventory models in recent years.

Additional, the review provided by [29] captures a broad
perspective of analytical modeling techniques as they are
applied to hospital inventory systems, considering both
costs and service-levels. Their paper includes a classifica-
tion system that provides an overview of modeling tech-
niques, solution approaches and a variety of applications
in a hospital setting. Our paper would be classified as a
stochastic programming model, where both the demand
and the accuracy of recording demand are represented with
stationary stochastic distributions.

The authors in [2] focus their review on papers that
study surgical supplies and sterile instruments destined for
operating rooms, with an emphasis on models that seek
cost savings. They suggest that previous articles can be
classified as either planning and scheduling or as inventory
management research. Hospital inventory models that
account for operational or disruption risk were identified as
an important future research opportunity. A similar research
opportunity was suggested by [29], where research that
considers behavioral uncertainties is lacking.

To explore the future opportunities suggested by [2] and
[29], our research presents two inventory management models
to address the situation when inventory-tracking behavior of
medical staff can lead to disruption or operational risk.

Additionally, we find that none of the reviews mentioned
research that has been done to address the inaccuracy of
inventory within the hospital setting, so our research seeks
to fill this gap. In the next section, however, we will
introduce some potentially overlooked literature focused
on inventory inaccuracy, including a doctoral thesis that
considers inaccurate inventory in a healthcare setting [21].
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1.2 Inaccurate inventory

Although there are not many hospital-centric inventory
models that address inaccuracy, the generalized concept
is not new to the literature [14]. We categorize related
generalized literature into two main categories: analysis or
optimization.

Analysis-focused literature is either empirical in nature,
or it does not present a specific model nor its optimization.
Empirical research focusing on inaccuracy can be found in
[20, 31] and [22], while [10] present a simulation study and
share results and insights. One article found that inaccuracy
amounted to 10% of profits over a certain period for a select
case [22].

The simulation developed by [10] studied the effect of
inventory inaccuracy on the performance of a three echelon
supply chain. In their model, they consider several factors
that may cause inventory inaccuracy, but do not include
transaction errors. Similarly, [20] focus on the situation
where recorded inventory is greater than actual inventory
(overstatement error). They describe how overstatement
errors can cause a system to postpone replenishment,
leading to lower service levels. While our service level
model provides similar insights to [20], we also provide
a cost model that considers the impact of inventory
inaccuracy on overall costs and the resultant service levels.
Additionally, our research assumes a discrete Poisson
demand, rather than a continuous normal distribution as
used previously in [20]. Our insights also provide more
targeted guidance to the healthcare field, as our models are
informed by the unique situations within hospital supply
chains.

Optimization-oriented literature addressing inaccuracy
includes work spanning 1972 through 2020. We have
included references to three types of optimization mod-
els: replenishment policy-focused [23], inspection policy-
focused [30], and those that include both types of policy
decisions [7, 14, 16, 21] and [5].

A newsvendor model developed by [23] focused on a
retail store where they optimize the replenishment policy
when inaccurate inventory is considered in one case, and
where the firm is assumed to have perfect inventory
information in another case, due to utilizing a Radio
Frequency Identification(RFID) tracking system.

Conversely, [30] ignores replenishment decisions to
focus on the costs of both counting inventory and
investigating the causes of inventory discrepancies in
a supermarket or convenience store environment. They
differentiate the objective to find the minimum cost,
giving the optimal cycle count frequency between annual
accounting audits.

Lastly, we discuss articles that present inventory models
where replenishment and inspection policies are adjusted to
address inaccurate records, as it represents research that is
most similar to our own.

The first quantitative research regarding inaccurate
inventory records was provided by [14], where they
develop an optimization model with the assumption that
a replenishment policy is given. However, they modify
the given replenishment policy by setting a buffer stock
level sufficient to cover all probable inventory record errors
until the next inventory count. In their model, [14] do not
allow for backordering and they assume the magnitude of
record errors is not dependent on the magnitude of demand.
In our paper, errors are handled using a probability that
particular demand event is recorded, though when physical
stock is not available all demand is backordered. As such,
we assume full backordering, and we seek an optimal base
stock level rather than a buffer stock quantity under a given
replenishment policy.

Similar to our own research, [16] develop a model for
inaccurate inventory where they make joint inspection and
replenishment decisions to minimize system costs. The
inspection decision is triggered dynamically, and it perfectly
aligns the inventory record with on-hand inventory. A base-
stock replenishment policy is shown to be optimal, where
both replenishment and inspection are tied to the level
of inaccuracy in the system. By comparison, the research
we present here also assumes a base stock replenishment
policy, but we choose a static counting frequency before the
planning period begins, which is different than in [16] who
utilize a dynamic inspection rule. Furthermore, our research
includes an additional model where we seek to optimize the
inventory system based on service-level requirements rather
than on total cost.

Similar to a previously cited paper by [23], the
researchers in [7] develop a model based in a retail setting,
but where they propose a modified inventory record using
a Bayesian approach. Their research is different from our
own, as they assume inventory inaccuracy with lost sales
(instead of backordering) as they attempt to optimize the
auditing frequency and replenishment policy.

Research conducted in the North East United States
provides a comprehensive, multi-method approach to
study inaccuracies in a hospital inventory system utilizing
Automated Dispensing Machines (ADMs) [21]. The author
includes an empirical study to classify the sources of
inventory inaccuracy, a simulation that models the inventory
system to understand the effect of the inaccuracies on
product availability, an analytical model that demonstrates a
generalization of the simulation study, and an applied case
study for implementing improvements at a specific hospital.
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While we do consider inaccuracy as a significant influence
on product availability, we do not consider ADMs in our
model. Thus, our research provides insight for hospitals
that use a bar code or button scanning system in an open-
inventory environment - as is often used for standard
inpatient care inventory stores at the POU. Furthermore, we
present a model that also considers the cost implications
of inaccurate records, in addition to a model that considers
inventory availability as in [21]. Aside from our research,
[21] is the only research we could find that considered
inaccurate inventory in a hospital setting, but they do not
consider costs as we do, and their research depends on data
from an ADM system whereas our model better mimics the
prevalent barcode or button-scan systems with open bins at
the POU.

Most recently, [5] provides another example of a study
that seeks to understand the impacts of inventory inaccuracy
in a general setting. The authors assume an (R, Q) policy
with lost sales, and allow for incoming and outgoing
transaction errors, random demand and uncertain supply and
lead time. They provide two models, one with the goal of
adjusting safety stock to counter inaccurate inventory, and
the other to adjust the recorded inventory level in an attempt
to trick the system to maintain sufficient on-hand inventory.
Their model also includes an analysis of a triggering
process to initiate inventory counts for reconciliation of
records (similar to [16]). They use a best case and a
worst case to give boundaries to a detailed analysis of
how inaccuracy affects the supply chain, suggesting that
improved methods of addressing inventory inaccuracy can
decrease total inventory levels while maintaining sufficient
stock to satisfy demand. They suggest the need for a cost-
based structure for future research, which our model does
consider.

2 General model assumptions

After reviewing the literature, we have found our research
to be novel. We are the first to propose an inventory model
for a hospital supply chain that addresses inaccuracy, when
inventory is managed by a bar code or button-scan electronic
inventory system at the POU - which is a widely used system
in the health care industry. (The open-bin electronic tracking
system considered here is different than ADM systems that
securely manage access to inventory within an automated
locking cabinet.) Among the inaccuracy-related inventory
literature, we are the first to seek improvements to both
replenishment and inspection policies where 1) the random
demand is assumed to be discrete, 2) transaction errors are
assumed to generate only positive (overstatement) error in
recorded inventory, 3) both a cost-minimization model and

a service-level model are presented, and 4) the situation is
based on the health care industry.

We assume the hospital operates under a stockless supply
chain structure, as given by Figure 2. As is the case
in the Alabama hospital, nurses and staff at the POU
inventory locations are responsible for recording supply
usage through the use of an electronic inventory tracking
system that utilizes button-scan technology. If the user fails
to properly record the consumption of a particular supply
item, the recorded inventory level within the electronic
system remains unchanged while actual available inventory
decreases. In the literature, this type of error has been called
an overstatement error, where the recorded system inventory
level is consistently greater than or equal to the actual
inventory level.

In an overstatement-error situation, the system attempts
to order up to the par level for the next period, but the
recorded inventory level shows more inventory on-hand
than is actually on hand. For example, an inventory item
with a par level of 30 might show 25 units on hand in the
system, but may only have 12 units in the bin because 13
units were consumed without being recorded. The system
would only order 5 units, instead of 18 units - leading to
a likely stockout and backorder event(s) during the next
period.

We define p to represent the probability that a demand
event is successfully recorded, and we call this probability
the accuracy level or the level of recording accuracy. For
example, if the accuracy level is 65% (i.e. p = .65), then
there is a 65% probability that demand is recorded. This
means that the recorded net inventory will be greater than
actual inventory, since actual inventory will decrease at a
faster rate than recorded inventory.

In an attempt to create a stockless hospital supply chain,
a hospital may desire to use the electronic inventory system
mentioned above to automatically place regular orders
for replenishment, as well as to simultaneously assign
inventory items to patient bills - assuming patient care
staff successfully record use. However, when the system is
inaccurate, orders are delayed and the quantities ordered
may be insufficient, causing backorders. It is important
to note that it is not the backorders that equate to failed
reimbursement, but rather, when an item used in patient care
is not recorded, and thus, not assigned to a patient bill. In
other words, the patients cannot be charged for the use of
that supply item, as there is no record generated on their
patient bill. This is how inaccurate inventory records lead to
failed reimbursement, to ineffective ordering, to stockouts,
and sometimes to delays in patient care.

We now present two inventory models for a hospital
that is attempting to operate according to a stockless
supply chain, but must deal with inaccurate inventory
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records (given an accuracy level, p). We assume a periodic-
review base stock inventory replenishment policy with full
backordering, and we seek the optimal base stock level to
minimize costs in the first model. In the second model,
we seek the smallest base stock level required to meet a
predetermined customer service level.

In Section 3 we present the cost-minimization model
with its optimal solution. In Section 4 we discuss the
service-level model with a solution approach. In Section 5
we discuss the solution approaches for both models,
including heuristics for near-optimal solutions. Section 6
we present the results of seeking optimal and near-optimal
solutions for both models. We conclude in Section 7 with an
Appendix in Section 8.

3 Cost model

In this section, we introduce the inventory model with a cost
objective which we will later seek to minimize. First, we
discuss the physics and structure of the supply chain while
introducing some of the notation and assumptions. Then
we present the formulation with the cost objective we later
minimize.

3.1 Model structure

As stated previously, the following model is based on the
inventory operations of the Alabama hospital that motivated
this work. We develop the periodic-review inventory
model for a single item at a single POU location, where
replenishment comes directly from an external supplier.
Thus, the replenishment of POU inventory bypasses the
hospital’s main storeroom.

To model the described inventory system, we assume that
time is divided into daily periods, where each period, t ,
represents a 24-hour time interval. Orders are assumed to
arrive 24 hours after being placed, so lead time, L, is one
period, L = 1. At the beginning of each period, the POU
receives the incoming order from the supplier. Immediately
following order receipt, an order is placed with the external
supplier through an automated system. Therefore, both
receiving and ordering occur at the beginning of every
period and in that sequence, respectively. This is basically
what occurs in practice, but the events do not occur
instantaneously, as is assumed here.

The automated replenishment system is responsible
for electronically-generating orders each period with the
external supplier according to a base stock policy with
order-up-to level S (often referred to as the par level). The
actual order quantity is based on the difference between the
current recorded inventory level, I ′, and S. For explanatory

purposes, we define Ī ′
i to be the recorded inventory at the

end of period i. We also define I ′
i to be the recorded

inventory at the beginning of period i, after the outstanding
order arrives. That means that when the system places an
order at the beginning of period i, it will place an order of
size S−I ′

i . This order will arrive at the beginning of the
following period.

During a particular period(day), nurses and nursing staff
personally remove inventory from the POU to use for patient
care. Upon removing the inventory, the person taking the
supplies is supposed to manually record which item is taken,
and which patient will be billed for the item. There are
several different automated POU inventory systems on the
market, each with its own method for recording usage -
some easier than others. At this hospital, the recording
process takes a matter of seconds, but it requires the use
of a “data wand” that is used to touch preprogrammed e-
tags on the patient charge board and on the inventory supply
bins. We have already defined p to be the probability that
this usage-recording process occurs for a particular demand
instance.

So, during each period, i, there is a portion of demand
that is successfully recorded, which we define as the
recorded demand in period i, RDi . It is crucial to note,
that the recorded inventory, I ′, is depleted only by recorded
demand. This gives the following relationships, which are
given for explanatory purposes:

Ī ′
i = I ′

i − RDi (1)

I′i−1 = S − RDi−2 (2)

I ′
i = Ī ′

i−1 + (S − I ′
i−1) = Ī ′

i−1 + RDi−2 (3)
Equation 1 shows how recorded inventory at the end of
period i is affected by recorded demand. It is simply the
recorded inventory at the beginning of period i, less the
demand recorded during period i.

Equation 2 gives the relationship of the previous period’s
beginning recorded inventory with the prior period’s
recorded demand. The recorded demand quantity for period
i − 3 was ordered at the beginning of period i − 2 to bring
recorded inventory back to S. This quantity, RDi−3, will
arrive at the beginning of period i − 1, but the system will
have seen additional demand over the recent period, i − 2,
given by RDi−2. Thus, once the order of RDi−3 arrives,
the beginning recorded inventory in period i − 1 is given by
Eq. 2.

Equation 3 shows how the recorded inventory at the
beginning of period i is affected by recorded demand. Since
there is a one-period lead time, and orders are placed at the
beginning of a period based on the prior period’s recorded
demand, the recorded inventory at the beginning of period i
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will be the incoming order added to the recorded inventory
from the end of the prior period.

However, when inventory is removed, but its use is not
recorded, the automated replenishment system has no way
of knowing where it went, or if it was even removed. Due
to this transaction-error inaccuracy, the recorded inventory
level will differ from what is physically available or
officially on backorder. This is why we define the actual net
inventory, I . Here, we define actual net inventory at the end
of a period, i, given by, Ii . Actual net inventory at the end
of period i reflects the depletion of stock by both recorded
demand (RDi) and unrecorded demand (UDi). This total
demand in a period is given by:

Di = RDi + UDi (4)

We assume that total demand, Di , occurs according to
a Poisson distribution, with rate λ, and we call this
day i actual demand, denoted Di ∼ Poisson(λ). Since
demand is recorded with probability p, we can say that
RDi ∼Poisson(pλ) and UDi ∼ Poisson((1 − p)λ).

The above distributions are approximations of the actual
distributions of RDi and UDi since demand is not recorded
in the electronic tracking system when there is no physical
inventory on hand. In fact, the automated inventory system
is not used to manage backorders in practice, and so
the recorded inventory in the system will never reflect
backorders. Instead, when a particular item is out of stock,
a checksheet is posted near the bin so that nursing staff
can record how many items have been needed while the bin
was empty. Because we are assuming there is no emergency
supply, this checksheet captures backorders (and thus, actual
net inventory), and the patient care staff will wait for that
particular supply to arrive before using it in patient care
(assuming non-emergent care). The material management
staff, in practice, will spend extra time placing specific
orders for backordered stock - a practice that would help to
estimate the cost of backordering. To simplify our approach,
however, we allow for recorded demand to potentially
register the recorded inventory level as negative as well.
In such cases, the model will allow for ordering up to the

par level and also satisfy the recorded backorders. Still, the
model only applies the costs to backorders based on actual
net inventory, which will not align with recorded inventory
until just after a reconciling count of inventory. We provide
a justification for our approximation of the distributions of
RDi and UDi in the appendix.

Now that we have defined how demand occurs, we
briefly mention the handling of incoming orders. We assume
that the only inflow of stock to the POU is the incoming
replenishment order at the beginning of the period. We
assume that there are no errors in the receipt of incoming
orders, and so both recorded inventory and actual inventory
reflect identically-sized incoming order quantities each
period. Therefore, transaction error (failure to record usage)
is the only source of disparity between recorded inventory
at the end of period i, Ī ′

i , and actual net inventory at the end
of period i, Ii . The following equations help to define the
general relationship between actual net inventory at the end
of period i, and recorded inventory.

Ii = Ii−1 + (S − I ′
i−1) − Di = Ii−1 + RDi−2 − Di (5)

Ī ′
i = Ī ′

i−1 + (S − I ′
i−1)−RDi = Ī ′

i−1 +RDi−2 −RDi (6)
In Eq. 5, we are showing actual net inventory at the end
of some period i. Assuming that we know the actual net
inventory at the end of period i − 1, we can compute actual
net inventory at the end of period i. Remembering the timing
of events (as shown in Figure 3 and as discussed above),
we know that the automated system will place an order of
size (S−I ′

i−1) = RDi−2 at the beginning of period i − 1,
and it will arrive at the beginning of period i. So, the actual
net inventory will be increased by this amount exactly, since
we have assumed that orders are received without error.
And finally, by the end of period i, total demand will have
depleted actual net inventory by Di .

Equation 6 is simply a rewrite of Eq. 1, using the recorded
inventory at the end of period i − 1 as the reference point.
Again, the arriving order is RDi−2. However, in the case of
recorded inventory, it is reduced by the recorded demand,
RDi ≤ Di . So if we assume that both recorded inventory

Fig. 3 Event timeline
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and actual inventory are equal at the end of period i − 1,
then clearly, Ii ≤ Ī ′

i . And in fact, when p < 1.0 the
hospital found that the relationship was strictly Ii < Ī ′

i . This
difference in values is the source and meaning of inaccurate
inventory records, and it leads to greater shortages and an
inability to maintain a “stockless” inventory system.

To reconcile the differences between recorded inventory
and actual inventory at the POU, a physical inventory count
must be performed. We assume that physically counting
inventory is an error-free process that does not create
additional inaccuracy. We defineN to be the number of days
between physical inventory counts.

Note in Figure 3 the timing of events over a planning
cycle of N periods (days).

Figure 3 shows that counting occurs at the beginning of
period 0 after the incoming order is received, and before
an order is placed. The next time counting occurs is at
the beginning of period N . We will be modeling the daily
expected cost over periods 1 through N .

After a count, recorded inventory is reconciled so that
I ′ = I at that instant. Thus, when the order is placed at
the beginning of period 0, it is based on accurate inventory
records. In other words, an order of size S−I ′

0 is placed
when I ′ = I at that instant. If no demand were to occur
during period 0, then the incoming order would bring
inventory (both actual and recorded) back up to the order-
up-to level, S. Because demand does occur during period
0, recorded inventory at the beginning of period 1 will be
S − RD0, but actual inventory in the beginning of period
1 will be S − D0. We can say precisely what the actual net
inventory will be at the end of the first period after a count
- simply the beginning period 1 inventory less period 1 total
demand:

I1 = S − D0 − D1 (7)

Subsequent inventory values for actual net inventory at the
end of periods 2 . . . N can be derived recursively using
Eq. 5.

To apply cost consistently throughout the N periods of
the planning cycle, we must define backorders and on-hand
inventory at the end of each period. Backorders in a period
are based on actual net inventory at the end of the period,
and are given by the negative part, I−

i . Similarly, on-hand
inventory is based on actual net inventory at the end of the
period, and is simply the positive part, I+

i . We use the actual
net inventory for an obvious reason - it represents the actual
physical state of the inventory. System inventory costs are
applied to the physically available inventory, and that is not
what the automated system necessarily reflects.

Having presented the physics of the inventory system, as
well as the planning cycle, we now present the cost model
formulation.

3.2 Model formulation

In developing the cost minimization model, we now
introduce the costs associated with this inventory system.
We assume a fixed cost, k, for conducting physical inventory
counts. This fixed cost is applied once over the planning
cycle of N periods.

As we are assuming full backordering, we define cb to
be the backorder cost per unit per day. Similarly, holding
cost per unit, per day, is given by ch. Both the holding and
backordering costs are applied at the end of each period,
after demand occurs. Actual net inventory is the source of
holding and backordering costs, as recorded inventory may
not reflect the physically available inventory or the backlog.
We combine Eqs. 7 and 5, applying the relationship given
by Eq. 4, to give the following definition for actual net
inventory at the end of period i, given some count frequency
N .

Ii =
⎧
⎨

⎩

S − D0 − D1 for i = 1

S − ∑i
j=i−1 Dj − ∑i−2

j=0 UDj for i = 2 . . . N

(8)

You will note that for i = 2 . . . N , actual net inventory is
not represented by a recursion as in Eq. 5. The validity of
the transformation can be easily shown and we include the
derivation in the Appendix.

Then, using the definition for backorders and on-hand
inventory, we can give the total cost of the system over N

periods:

N · C(S, N) = k +
N∑

i=1

ch

[
E

[
I+
i

] + cbE
[
I−
i

]]
(9)

Equation 9 includes the cost, k, to count once over the cycle
N , and the expected holding costs and expected backorder
costs that are incurred at the end of each period, i. Because
we are assuming that demand occurs according to a Poisson
distribution, we can simplify the expectations in the cost
equation. Also, we will be minimizing the expected daily
cost, C(S, N), which will require both sides of Eq. 9 to be
divided by N . Simplifying the expectations and averaging
over the N periods gives the following daily expected cost
objective:

C(S, N) = k+(ch+cb)
∑N

i=1 G1(S;μi)

N

+ch

(
S − μ − (N−1)(1−p)λ

2

)
(10)

Recall that total demand Di ∼ Poisson (λ). As demon-
strated in Eq. 36 in the Appendix, and based on the relation-
ship defined in Eq. 8, we define Poisson demand rate for
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the first period μ = 2λ, and after accounting for system-
replenished inventory for any period, i, μi = μ+(i−1)(1−
p)λ.

Similarly, referring to Eq. 38 in the Appendix, we
derive the first-order loss function as the expected value
of the positive part of demand less the par level, S,
E

[
(μi − S)+

] = G1(S; μi), which is the resultant first
order loss function for a Poisson distribution with parameter
μi and par level S. As previously stated, the derivation of
Eq. 10 and the development of the new terms can be found
in the Appendix.

We now want to find the optimal order-up-to level, S, for
a given N . To do this, we take the first difference, over S,
of Eq. 10. That first difference is denoted �SC(S, N) and
is given below:

�SC(S, N) = − (ch + cb)
∑N

i=1 G0(S; μi)

N
+ ch (11)

Here, G0(S; μi) is the cumulative cdf for the Poisson
distribution, and results from taking the first difference of
the Poisson first-order loss function. However, we would
achieve the same result for any discrete demand distribution,
as we have applied the properties of first order loss functions
for discrete ransom variables. Now, we want to find the
smallest S that makes �SC(S, N) ≥ 0. Therefore, we
define S∗

N as the smallest integer such that the following
inequality holds:
∑N

i=1 G0(S; μi)

N
≤ ch

ch + cb

(12)

Note that the left-hand side (LHS) of the above equation is a
non-increasing function of S. So for larger values of S than
S∗

N , the inequality will continue to hold. Since the inequality
hold is equivalent to Eq. 11 remaining nonnegative, this
shows that S∗

N is the global minimum, and not just a local
minimum for a particular N .

To find the optimal N∗, we need to explore the optimal
solutions, C(S∗

N, N), for a range of values for N. It may be
that when C(S∗

N+1, N + 1) ≥ C(S∗
N, N) we have found the

optimal solution, with order-up-to level, S∗
N , and counting

frequency, N∗ = N . However, we still need to explore the
structure of the model computationally to see whether this
is the case.

4 Service level model

In our service level model, we will assume a similar
operational structure as described previously. However, as
backorder costs are notoriously difficult to estimate, our
service level model will forgo backorder costs and instead
use a fill rate constraint while minimizing holding and
counting costs. We are still assuming an inventory system

for a single item at a single POU location with probability,
p, that demand is recorded.N represents the number of days
between inventory counts, and S is the order-up-to level.
All the parameters are identical, but we do not assume a
backorder cost.

In this case, we must define the actual net inventory at the
beginning of each period, i, denoted NIi . Since the actual
net inventory at the end of some period i is given by Eq. 8,
we simply remove the term for period i demand and we get
the actual net inventory at the beginning of period i, after
the incoming order is received:

NIi =
{

S − D0 for i = 1
S − Di−1 − ∑i−2

j=0 UDj for i = 2 . . . N
(13)

To derive the fill rate for a particular period, we need to
compute the number of units short each period, denoted
USi . If we begin a period with outstanding backorders
(NIi < 0), then clearly the number of units short will
be the demand in that period, Di . If there is on-hand
inventory available, than the number of units short will be
the positive part of the difference between demand and
available inventory, (Di −NIi)

+. This idea is formalized in
the following equation:

USi =
{

Di if NIi < 0
(Di − NIi)

+ if NIi ≥ 0

=

⎧
⎪⎨

⎪⎩

Di if NIi < 0
(

Di − S + Di−1 +
i−2∑

j=0
UDj

)+
if NIi ≥ 0

(14)

Note the special case when i = 1. Following the convention
that the summation is zero when the upper limit falls below
the lower limit, the relationships still hold true in the model.

From Eq. 14 we can compute the expected number of
units short in period i, which turns out to be:

E[USi] =
S∑

k=−∞
E [USi |NIi = k]Pr(NIi = k)

=
−1∑

k=−∞
λg(S − k; λi + λ)

+
S∑

k=0
E

[
(Di − k)+

]
g(S − k; λi + λ)

= λG0 (S; λ(i(1 − p) + p))

+
S∑

k=0
G1(k; λ)g(S − k; λ(i(1 − p) + p))

(15)

In the above equation, we have λi = (i−1)(1−p)λ, similar
to what was used previously. Also, g(x; y), G1(x; y),
and G0(x; y) represent a pmf, first-order loss function,
and cdf, respectively. The y parameter in the previous
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statement represents the mean of the respective Poisson
distributions for each case, and the x parameter represents
the independent variable in each case.

Now that we have the expected number of units short in
period i, we can compute the fill rate for period i, denoted
FR(S, i). It is simply the compliment of the expected
number of units short divided by the expected daily demand,
as shown below:

FR(S, i) = 1 − G0 (S; λ(i(1 − p) + p))

−
S∑

k=0
G1(k;λ)g(S−k;λ(i(1−p)+p))

λ

(16)

With the fill rate defined for each period, i, we can now
address the service level problem. So, instead of using an
explicit backorder cost, we define a fill rate constraint. With
N days in a cycle, we want the fill rate in the last day of the
cycle, FR(S, N) to be at least as much as some specified
value, FRmin, for example. That constraint is given below:

FR(S, N) ≥ FRmin (17)

Notice that the holding costs are increasing in S, therefore
we will be minimizing holding costs subject to a minimum
service level constraint. So, we choose the smallest integer
value of S, denoted as S′

N , that satisfies the service level
constraint. Then we simply choose the N to minimize
the modified cost objective based on Eq. 10, where we
substitute S ′

N for S and remove the backorder costs, cb. This
“service level” cost is denoted CSL(S′

N, N), and is given
below:

CSL(S′
N, N) = k+ch

∑N
i=1 G1(S′

N ;μi)

N

+ch

(
S′

N − μ − (N−1)(1−p)λ
2

) (18)

To minimize, we would like to choose the smallest N where
CSL(S′

N+1, N + 1) ≥ CSL(S′
N, N), if it is a unimodal

function of N . However, the effectiveness of this approach
needs to be explored computationally, as will be seen in a
later section.

5 Solution procedure

In this section, we describe the problem instances to be
analyzed. We then explore the structure of the cost objective
in each model, in relation to the length of the counting cycle,
N . Based on the structural findings, we provide solution
procedures for each model. In the next section, we explore
the physics of the minimizing solutions.

5.1 Problem definitions

For each model we will be considering 891 problem
instances. The holding cost, ch, counting cost, k, demand
rate, λ, and accuracy level p, vary identically between
both models. The difference between the models is the
minimum fill rate constraint, FRmin, in the service level
model, and the backorder cost, cb, in the cost-only model.
The parameters vary as follows:

ch = 0.05, 0.30, 0.60

k = 20, 40, 100

λ = 8, 15, 20

p = 0.45, 0.50, 0.55, . . . , 0.90, 0.95

FRmin = 0.90, 0.95, 0.99

cb = 3, 6, 12

The values for ch, cb, and k used in this model reflect
potential magnitudes of differences that might be seen
between holding, backordering and counting costs - but
do not reflect actual costs in practice. The values for
p represent real accuracy ranges seen in practice, with
some departments showing accuracy levels as low as 45%,
and others as high as 95%, however, the numbers do
not represent actual data from the process. Similarly, the
demand rates shown reflect the rate at which some products
are used in patient care, ranging from as low as 5 units
per day to upwards of 30 units per day, depending on the
supply item. We believe these arbitrary values we chose
represent an acceptable range of values for the purposes of
our study - which is to provide insight into how the varying
situations and solutions can inform better decision-making
within similar environments.

Notice that the parameter for the accuracy level, p,
ranges from 0.45 up to 0.95 in increments of 0.05, leading
to 11 variations in p. Combined with the three levels of
parameter settings for the remaining four parameters, gives
a problem set with 11 · 34 instances for each model. Before
we can seek solutions for these sample problems, we must
explore how the cost behaves in N .

5.2 Structural findings

For both models described in this paper, we have defined
optimality conditions for finding S∗

N for a given N and S′
N

for a given N and a given fill-rate constraint. However, we
need to explore how the related cost objectives for both
models behave over changing values of N . If the objectives
C(S∗

N, N) and CSL(S′
N, N) are unimodal over values of

N , then we can claim that our solutions are optimal using
the previously described approaches. Therefore, we will
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explore each model computationally to test whether they
might be unimodal over N .

After we know the structure of each model, we can
proceed with a solution procedure that will minimize the
cost objective. For the service level problem we will
minimize cost, subject to the fill-rate constraint for period
N .

5.2.1 Shortage cost model

To begin our look at the structure of the cost objective, we
apply the basic algorithm as described previously. That is,
we incremented N until C(S∗

N+1, N + 1) > C(S∗
N, N),

for each of the 891 problem instances. Then, once we had
the potential N∗, we continued to increment N beyond N∗
until it was clear that the cost would not decrease below the
minimum value. In this way, we explored unimodality while
seeking optimal solutions.

The results of this effort showed that by incrementing
N until C(S∗

N+1, N + 1) > C(S∗
N, N) we were able to

find the optimal solution in all but 15 problem instances.
The average relative solution distance was just 0.03%
above the optimal solution for those 15 non-optimal cases.
Furthermore, while we found that the cost function was not
unimodal in N for all problem cases, it was non-decreasing
in our search range beyond N∗ for all but 26 problem
instances. We cannot say, then, that the function is unimodal
in N for all problem instances.

We found that the above method is easy to implement
and it also performs quite well, as it found the optimal
solution in 98.3% of the test cases and was only off by an
average of 0.03% the other 1.7% of the time. Therefore, in
the next section we will analyze the results given by using
the above method to find optimal or near-optimal solutions
to the shortage cost model.

5.2.2 Service level model

For the service level model, we will be looking at how
the cost, CSL(S′

N, N), behaves over values of N . Initially,
suppose that we set N∗ to be the smallest integer such that
CSL(S′

N+1, N + 1) > CSL(S′
N, N). We want to see how

close we can get to the optimal with this simple approach,
as with the previous model.

The Service Level model was not found to be unimodal
over N , and just over half of the problem instances were
found to be non-decreasing after finding N∗. Those that
were non-decreasing in our search area found the optimal
solution using the simple incrementing approach. For the
remaining problem instances, we incremented N beyond
N∗ enough to see the function turn upwards in a seemingly
non-decreasing path. Over this range we took the minimum
cost solution to be the optimal.

With this approach, we found that about 74% of the
problem instances were able to find optimal solution at N∗.
The remaining 26% of the problems had an N∗ that was, on
average, about 2.4% away from the optimal solution.

As such, the incremental approach performed modestly,
but additional work should be done to improve the
minimization technique. We leave this additional work for
later research, and proceed with our analysis of the results.
We hope to gain both structural and managerial insights
through our analysis that are useful to both practitioners and
academicians.

6 Numerical results

In this section we explore how the parameters affect the
minimizing solutions to both the service level problem and
the shortage cost problem. As discussed previously, the
parameters were largely the same for the separate models,
but the shortage costs and fill rate constraints were not
present in both models.

6.1 Shortage cost model analysis

As the first model is based on minimizing shortage costs as
well as holding and counting costs, we will first look at how
the parameters influence cost. We are also interested in the
fill rate associated with the different shortage costs, and so
we will discuss that later on.

6.1.1 Accuracy level, p

The accuracy level had the same influence on cost as seen
in the Regional Hospital’s inventory system. When p was
greater, the optimal cost was lower. In fact, as p increases
linearly from 45% towards 95% accuracy, the cost decreases
at a somewhat parabolic descent. If we look at the sensitivity
to p, as given by

�C/C

�p/p

we find that as p increases, the sensitivity to changes in
p also increases. Specifically we found that for small p, a
1% increase in the accuracy level equates to only a 0.31%
reduction in cost, but when p is large, a 1% increase can
mean up to a 3.6% decrease in cost.

Managerially, one would see only minor cost benefit
when moving from an accuracy level of, say 45% up to
60%. Once accuracy has been improved sufficiently, the
cost is more easily influenced by further improvements in
accuracy.

The accuracy level also strongly influences the counting
cycle length, N∗. The cycle length seems to increase
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exponentially as accuracy increases beyond 80% or 85%,
as it is highly sensitive to the value of p. Using the same
type of measure as above, we find that for large p, a 1%
change in accuracy can lead to an 8% change in N , whereas
1% changes to lesser values of p may only imply 0.45%
increases in N .

It is obvious that the sensitivity of the counting frequency
to p is the source of the sensitivity in cost. This is an
intuitive result, since perfect accuracy would, in theory,
require no counting. So, as p approaches 100%, N∗ should
approach ∞, which would rapidly reduce the cost of
counting stock.

The opposite is true for the base stock inventory level. As
p increases, we are required to hold less stock. However,
since there is a lead time to replenish stock, we are still
required to hold stock to meet demand between daily order
arrivals, even when accuracy is very high. The data suggest
that p influences the base stock level very similarly to the
way cost is influenced.

6.1.2 Shortage cost, cb

The backorder cost, cb, was found to have less influence
on the minimizing solutions than intuition suggests. That
is, as the shortage cost increases almost 400%, there
is only a slight increase (16%) in the average cost of
the minimizing solution. This finding demonstrates that
the decision variable solutions are successfully reducing
shortages, which was the goal of the model.

The shortage cost had similar but opposing effects on the
cycle length, N , and the base stock level, S. The base stock
level increases slightly with the shortage cost parameter’s
increase, while the cycle length decreases slightly. With a
higher cost for backorders, it is wise to increase inventory
and count more frequently to guard against shortages due to
inaccurate records and low on-hand inventory quantities.

While computing cost for the shortage cost model, we
also computed the resultant fill rate for each minimizing
solution. We found the shortage cost to have a significant
influence on the resulting service level, in period N , of the
cost-minimizing solution. As the shortage cost increases,
so does the fill rate. Unfortunately, there doesn’t appear
to be a specific shortage cost value in the cost-minimizing
model that corresponds to a specific fill rate constraint
in the service level problem. Instead, it seems as though
a combination of counting frequency, holding cost, and
shortage cost values would correspond to specific fill rate
constraints.

It is also interesting to note, that the shortage cost
value has no influence on how other parameters affect the
resulting cost. We find this same type of relationship later
when discussing the service level model.

6.1.3 Holding cost, ch

The analysis shows that holding cost does not greatly
influence the results of the minimization. As holding cost is
increased by a factor of 12, the cost also increases, by only
a factor of 2.5. If we look at cost’s sensitivity to ch, we find
that for every 1% increase in holding cost there is only a
0.35% increase in total cost.

An interesting aspect about the holding cost, is that as ch

is increased, both the cycle length, N , and the base stock
level, S, are decreased. This means that for higher holding
costs, total cost is minimized by counting more frequently
and holding less in stock. Basically, this result shows the
tradeoff between holding costs and counting costs. If we
count more frequently, then we pay the fixed counting cost
more often. Therefore, we would reduce holding costs by
holding less inventory, which would be safe since counting
more frequently ensures that the records maintain enough
accuracy to keep shortage costs low.

If we look at the combined influence of holding cost and
accuracy level, we find that lower values of holding cost, ch,
lead to a lower cost sensitivity to the accuracy level. That
is, for higher ch, improving the accuracy has a greater affect
on cost. This is probably due to the relationship between
accuracy and the optimal base stock level, S.

6.1.4 Fixed counting and reconciliation cost, k

As just mentioned for holding cost, an increase in counting
costs affects both cycle length and base stock level in a
similar fashion. For k, however, the influence is in the
opposite direction. So, when k is increased, both S and
N are increased. Again, this shows the tradeoff between
holding cost and counting cost. If it costs more to count,
then one would count less and hold more inventory as a
result of the decreased accuracy of the ordering system
stemming from less frequent reconciliation.

The fixed counting cost also affects total cost in a direct
fashion. As k increases, so does the minimized total cost.
Although, the overall cost is about as sensitive to k as it is
to ch. This means that a 1% change in k equates to about a
0.3% change in total cost.

We can also see a second-order influence between
counting cost and accuracy level. Similar to the relationship
between ch and p, when k is higher, then changes in p have
a stronger impact than when k is lower.

6.1.5 Daily demand rate, λ

The Poisson rate for random daily demand was an
interesting parameter to explore. It actually had opposite
effects on the minimizing solutions of S and N . That is,
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as the demand rate increased, S was increased to meet
increased demand, while the cycle length decreased to
ensure reconciliation happened more frequently.

We also find that as demand rate increases, overall
cost is also increased. However, it is interesting that as
demand increases, the period N fill rate (for the minimized
solution) is actually increased. So as demand increases, the
minimizing solution is more likely to alleviate shortages.
This result is almost counter-intuitive.

6.1.6 General insights

These results indicate that holding costs, shortage costs, and
counting costs can be successfully balanced using the model
structure employed here. Managerially, it is wise to have a
dynamic cycle length, N , and base stock level, S, based on
the accuracy level, p.

Some of the minimizing base stock levels were found
to be quite high, and in some cases over 250 units. This
amount of stock seems excessive where there is a one period
lead time, and where we assume demand has a highest
average demand rate of 20 units per day. As a result, a lot
of space may be necessary to store certain items in stock.
In the hospital setting, where space is valuable and scarce,
this may not be feasible. Another type of model, or an
adjustment of this model, may be useful to explore for those
items which require a lot of space to store the minimizing
quantity.

Furthermore, the backorder costs and holding costs
chosen in this analysis were arbitrary. A more accurate
estimate of actual costs would provide additional insight
into this inventory model, and may prove to be more useful
to practitioners. We nowmove on to discuss the service level
model.

6.2 Service level model analysis

In analyzing the results of minimizing cost subject to a fill rate
constraint, recall that our solution approach found the optimal
solutions approximately 74% of the time. As a result, about
26% of our results are near-optimal solutions that were
about 2% higher than the optimal solution on average.

We now proceed with our analysis, we use the same pattern
as was used in the previous model. We consider the parameters
of holding cost, ch, counting cost, k, demand rate, λ, and the
fill rate constraint, FRmin, as applied to period N .

6.2.1 Fill rate analysis

It was validated, in every case, that our solution approach
did find solutions that met fill rate constraints in every 891
problem instance considered. Remember that the fill rate
constraint was applied to the last period of the cycle, period

N , but we are ensured that the resultant fill rates in previous
periods (i.e. periods 1, . . . , N − 1) were higher than the
constraint.

In analyzing just the fill rate, only the constraint, FRmin,
had noticeable influence on the resultant fill rate of the
minimizing solution. In fact, there is almost a one-to-one
correspondence to between the constraint and the resultant
fill rate. This means that the fill rate was a binding constraint
in the model. While this seems intuitively obvious, never
was there an example where meeting a higher fill rate was
less costly than meeting a lower fill rate.

In comparison to the shortage cost model, we find that
the fill rate constraint has the same type of effect on cost
and minimizing values of S and N as the shortage cost.
The difference is that the constrained fill rate generates
minimizing solutions with a clear minimum value for the
resulting period N fill rate. This is not the case for the
resulting periodN fill rate from the minimized shortage cost
model. In fact, comparing the structure of the fill rate results
between models shows significantly different distributions
around the average values.

We also found that inventory inaccuracy, counting cost
and holding cost were all not shown to influence the
resultant fill rate in period N . However, each of the
parameters did affect the minimized cost value and the
value of the decision variables, S and N , in the minimizing
solution. We explore these influences next.

6.2.2 Other parameters: p, ch , k ,λ

Compared to the shortage cost model, the other parameters
in the service level model behave nearly identically. For
instance, not only does cost increase as accuracy increases,
but as accuracy increases, so does the cost sensitivity to
the accuracy parameter, as was seen in the previous model.
Similarly, the holding cost and counting cost have opposite
effects on S and N , as in the previous model. Even the
second order effects, which were discussed previously,
are found to generate basically the same results in the
minimizing solutions.

Similar to the previous model, the resulting base stock
levels were quite high, in relation to how a hospital stores
and uses inventory. In fact, as in the previous model, there
were several cases of the minimizing solution to require a
base stock level higher than 200 units. This may not be
feasible in a real industry setting, and so there may be some
require modifications to the model to address this issue.

7 Conclusion

We develop two healthcare inventory models that allow
for full backordering and are based on the use of an
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automated inventory replenishment system that is prone
to inaccuracy. While the premise of the model is similar
to other inaccuracy-related literature, we are the first to
introduce both a cost-minimization model and a fill-rate
constrained model where demand is random and discrete.

The solution approach we develop was shown to find
the optimal base-stock policy for a given counting cycle
length. In most test cases, our solution approach also finds
the optimal counting cycle length, thus minimizing cost
under either shortage costs or fill rate constraints. More
specifically, our approach found the optimal solution in 98%
of the test cases for the shortage cost model and about 74%
of the test cases for the service level model. On average, the
near-optimal solutions were off by about 2%.

The models developed here are unique to healthcare
management literature, as the unique challenges of the
healthcare industry supply chain are underrepresented in
the literature. The hospital supply chain considered here
operates according to a stockless inventory system, similar
to the type defined in [24].

To analyze the effectiveness of the inventory system
and of our solution approach, we considered a total of
1782 problem instances, evenly split between the service
level model and the shortage cost model. We found that
where accuracy, p, is low, there is a crippling affect on
the inventory system performance, that is - service level is
decreased and cost is increased. We also saw that initial
efforts in addressing accuracy (i.e. improving from p =
0.45 to p = 0.70) will not see as significant results as
when improvements are made at higher values (i.e. from
p = 0.80 to p = 0.95). This should be motivation for
adopters of a stockless inventory system to strive for only
high accuracy values, as the cost savings have been shown
to be significant at higher levels of improvement. This
should also inform decision-makers on the critical necessity
of coordinating with patient care staff to maintain high
accuracy in recording inventory.

An application of such findings could likely provide a
basis for putting monetary value on inventory accuracy in
similar settings in industry. There is currently a thriving
industry of inventory system providers that purport to
reduce inaccuracy in the inventory system by recording
inventory in innovative ways. Having a way to validate
these cost savings may strengthen the position of the
hospital in making system purchase decisions. Similarly,
understanding the model presented here may lead systems
providers to assess the effectiveness and value of their own
offerings.

The results of the model also show that the base stock
inventory system, which is generally used in healthcare,
may require a significantly higher base stock level than
space allows. In the healthcare industry this would not
be feasible, as space is often costly or limited. Previous

articles in the literature have explored space limitations in
the hospital environment, but do not consider inaccuracy as
an obstacle [17, 33]. In a later article currently in progress,
we hope to present a model with a modified structure to
support lower inventory levels while still keeping costs low.

7.1 Future work

It will also be interesting to study the pervasiveness of
inaccuracy in the healthcare industry, as it is already planned
as future research. The results of such a study could
show how inaccuracy effects both profitability (as in the
shortage cost model) and patient care (as in the service level
model). As medical supplies are in high demand and are
of high value, it is likely that the healthcare industry can
see enormous savings in addressing the accuracy issue, as
shown in our results and throughout our interaction with
industry.

Other future work that applies to what has been done
here, may include a modified heuristic approach to increase
the possibility of finding optimal solutions. Additionally, we
may consider the resultant “hybrid” supply chain that arises
when the stockless system cannot be fully implemented,
leaving the supply chain network stuck in a kind of
operational limbo.

In the research presented here, we employed Maple
12 mathematical programming language to perform our
analysis and computation. It may be that other methods of
implementing our model my prove to be more efficient.

Appendix

Justification of the approximate distributions used
for UDi and RDi

The Alabama hospital is using an automated replenishment
system that does not record backorders, while the actual net
inventory can incur backorders. Because of this, recorded
demand, RDi is dependent on the amount of actual
inventory, I , on hand in the POU. Once actual inventory is
depleted, demand can no longer be recorded in the system.
Similarly, the recorded demand cannot exceed total demand,
Di . In other words, 0 ≤ RDi ≤ min(I, Di). The Figures
below demonstrate this idea when Di > I and Di < I .

When a demand event occurs, and stock is available in the
POU inventory location, then the probability that demand is
recorded is p. However, if there is no stock on hand when
a demand occurs at the POU, the demand is not recorded in
the automated ordering system. In practice, the demand is
backordered until the next incoming replenishment arrives,
leading to a delay in patient care. In the end, the automated
system sees neither the backorder, nor its fulfillment. As
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Fig. 4 When RD vs. I

a result, the recorded demand is dependent on the level of
on-hand stock and the amount of total demand seen. The
figures below demonstrate this concept, where the recorded
demand, RD is constrained by either the total demand, D,
or the available on-hand inventory, I .

Basically, the recorded demand can be no larger than the
smaller of on-hand inventory (Figure 4) versus total demand
(Figure 5). This can be written as the following relation:

0 ≤ RD ≤ Min(D, I) (19)

From a demand standpoint, we want to derive the
distribution for recorded demand in a particular shift i and
day j . Due to the complexity of the actual distribution
of recorded demand, we use an approximation of this
distribution. We condition on total shift i demand, Dij ,
which follows a Poisson distribution. Doing this will
allow us to derive the approximate distribution of recorded
demand, RDij . The basic distribution equation follows,
though we ignore the ij index without loss of generality:

Pr[RD = j ] =
∞∑

k=0

Pr[RD = j |D = k] ∗ Pr[D = k]

(20)

Since we need to also know the value of available inventory,
I , we will be using its value as a reference point as we
expand Eq. 20, as follows. Note that we also substitute
the Poisson probability as total demand follows a Poisson

Fig. 5 When RD vs. D

distribution with parameter λ.

Pr[RD = j ] =
I∑

k=0
Pr[RD = j |D = k] e−λλk

k!

+
∞∑

k=I+1
Pr[RD = j |D = k] e−λλk

k!

(21)

Since each demand event has probability, p, of being
recorded, we can say that the conditional distribution of
recorded demand, RD is simply binomial with probability

p. IfD ≤ I then it will be Pr[RD = j |D] =
(

D

j

)

pj (1−
p)D−j and if D > I , then it will be Pr[RD = j |I ] =(

I

j

)

pj (1 − p)I−j . This relationship affects Eq. 21 as

follows:

Pr[RD = j ] =
I∑

k=j

(
k

j

)

pj (1 − p)k−j e−λλk

k!

+
(

I

j

)

pj (1 − p)I−j
∞∑

k=I+1

e−λλk

k!

(22)

Note that the first term in Eq. 22 is in effect when D = k ≤
I , and the second term when D = k > I . The first term can
be simplified as follows:

I∑

k=j

(
I

j

)

pj (1 − p)k−j e−λλk

k!

= pj e−λ

j !
I∑

k=j

[(1−p)λ]k−j λj

(k−j)!

= (pλ)j e−λ

j !
I−j∑

k=0

[(1−p)λ]k

k!

(23)

Equation 23 can now be written as

Pr[RD = j ] = (pλ)j e−λ

j !
I−j∑

k=0

[(1−p)λ]k

k!

+
(

I

j

)

pj (1 − p)I−j

(

1 −
I∑

k=0

e−λλk

k!
)

(24)

Because we cannot condition on I since we do not know its
distribution, we consider how Eq. 24 behaves as I → ∞.
This will provide us with an asymptotic approximation.
The second term will clearly become zero as I approaches
infinity. The summation element of the first term has the
limit: eλ−pλ as I → ∞. So, we finally get the following
approximate distribution for recorded demand:

Pr[RD = j ] = (pλ)j e−pλ

j ! (25)

Therefore, we approximate the recorded demand distri-
bution using the Poisson distribution with parameter pλ.
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Remembering the indexing used, we define the recorded
demand in shift i of day j to be RDij ∼ Poisson (pλi).
To be consistent with Dij ∼ Poisson(λi), we see that for
unrecorded demand, UDij ∼ Poisson((1 − p)λ).

In our simulation and our approximate cost versions
of the model, we use the above approximations for the
distributions of recorded demand and unrecorded demand.

Justification of the actual net inventory equation

Ii =
⎧
⎨

⎩

S − D0 − D1 for i = 1

S − ∑i
j=i−1 Dj − ∑i−2

j=0 UDj for i = 2 . . . N

The above equation is a reprint of Eq. 8 from the text and is
derived using the recursive relationship given in Eq. 5 from
the text. We want to show that the two forms are identical.
First, we look at the case for I2 and I3. Then we can prove
by induction by assuming true for Ii , i = 1, . . . , n, and then
by showing true for In+1.

We already have that the actual net inventory at the
end of the first period is given by I1 = S − D0 − D1.
At the beginning of period 2 we know that an order will
arrive based on the recorded inventory use from period 0,
RD0. Briefly explained, this order of size RD0 is placed
at the beginning of period 1 with a one period lead time.
Then, during period 2, actual demand reduces the actual net
inventory byD2. This gives the following recursive equation
for the actual net inventory at the end of period 2:

I2 = I1 + RD0 − D2 (26)

Substituting the value of actual net inventory from the
previous period we have:

I2 = S −D0 −D1 +RD0 −D2 = S −
2∑

i=1

Di −UD0 (27)

which we can say by applying Di = UDi + RDi .
Now, for I3 we have, by the same reasoning:

I3 = I2 + RD1 − D3

= S − D0 − D1 + RD0 − D2 + RD1 − D3

= S −
3∑

i=2

Di −
1∑

i=0

UDi (28)

Now we can see the form given in Eq. 8. We now assume it
is true for all periods i from i = 1, . . . , n. This means, that
at the end of period n + 1, we have the following recursive
equation:

In+1 = In + RDn−1 − Dn+1 (29)

The above equation shows the incoming order at the
beginning of period n + 1 based on period n − 1 recorded

demand. It also shows total demand in period n + 1, Dn+1,
reducing the actual net inventory. Substituting the value of
period n ending actual net inventory, we have:

In+1 = S −
n∑

i=n−1
Di −

n−2∑

i=0
UDi + RDn−1 − Dn+1 (30)

= S −
n+1∑

i=n

Di −
n−2∑

i=0
UDi + RDn−1 − Dn−1 (31)

= S −
n+1∑

i=n

Di −
n−1∑

i=0
UDi (32)

where we get Eq. 31 by pulling a demand element from the
second term of the RHS, and include the demand element
from period n + 1 in the second term. Then, we apply
Di = UDi + RDi to get Eq. 32. And we see that the
relationship holds for period n + 1, and we have shown
that the recursive relationship for end-of-period actual net
inventory is identical to Eq. 8.

Justification of the expected daily cost, C (S , N)

The notation is the same here as in the main text, though we
introduce some new terms. The idea in this section of the
Appendix, is to begin by deriving cost for cycle lengths of
1 and 2, as given by C(S, 1) and C(S, 2). From there we
use induction to derive cost for any cycle length, N , given
by C(S, N), and throughout we develop the optimality
conditions for the model solution.

Before we begin, we reiterate some of the assumptions of
the model. We are assuming that inventory is counted and
reconciled at the beginning of the day prior to the start of
the cycle. That means that inventory would have reached S

when the order arrived at the beginning of the day 1, but
during day 0 there was a total demand seen of D0. This
means that net inventory at the beginning of day 1 will
always be given by:

I 1 = S − D0 (33)

With the above starting point, we can now discuss the
development of the expected daily cost objective we seek to
minimize.

Counting inventory daily

The cost to count inventory every day includes the fixed
cost to count, k, added to the holding and backorder costs,
both applied to the end of period actual net inventory, I1.
Remember that:

I1 = I 1 − D1 = S − D0 − D1 (34)

Therefore, when we compute the cost, it will be based on
actual net inventory at the end of the period. Note that actual
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net inventory is a random variable, which is why we seek to
optimize the expected daily cost, C(S, 1), as given below:

C(S, 1) = k + E
[
chI

+
1 + cbI

−
1

]
(35)

The above equation gives the expected daily cost, since our
cycle is of length N = 1 days. To generate the change
in daily expected cost over changes in S, we have to first
expand the positive part of net inventory into a computable
form. But first, we define the following term:

μ = E
[
Di−1 + Di

] = 2λ (36)

where Di−1 and Di are independent and identically
distributed Poisson random variables as previously defined
for all periods i.

We now have the derivation of expected daily cost in a
computable form:

C(S, 1) = k + E
[
chI

+
1 + cbI

−
1

]

= k + E
[
ch

(
I1 + I−

1

) + cbI
−
1

]
(37)

= k + chE [S − μ] + (ch + cb)G
1(S; μ)

where the first-order loss function is defined as:

G1(S; μ) = E
[
(μ − S)+

]
(38)

Where μ is a Poisson demand rate as given above.
We can define the change in daily expected cost over

decision variable, S, when counting inventory daily. The
following equation applies the definition of a first difference
for a first-order loss function to give the first difference of
expected daily cost:

�SC(S, 1) = ch − (ch + cb)G
0(S; μ) (39)

where G0(S; μ) is the ccdf of the Poisson distribution with
rate μ and minimum value S. This means that when S

increases, the value of G0(S; μ) decreases, so that it is a
non-increasing function. To optimize the cost function, we
form the following inequality:

G0(S; μ) ≤ ch

ch + cb

(40)

We then find the smallest S that satisfies the above
inequality, and we call it the optimal value for S when
counting daily, denoted S∗

1 .
We will now take the same approach as we look at

counting every other day.

Counting inventory every two days

Now we look at the case when N = 2. We still have that
inventory is counted and reconciled at the beginning of day
0, so that our starting inventory on day 1 is the same as when
we counted daily. Similarly, we still have the same value

for day 1 ending inventory, I1, but now we need actual net
inventory at the end of day 2. This is given below:

I2 = I1 + RD0 − D2 = S − D1 − D2 − UD0 (41)

Since the order placed at the beginning of day 1 is based on
recorded inventory, that is the size of the order that arrives
at the beginning of day 2. Then, throughout day 2, regular
demand occurs which reduces net inventory by D2. When
we expand and apply the relationship D0 = RD0 + UD0,
we end up with what is given for I2.

Having a way to describe actual net inventory at the end
of day 2, we can now compute the expected cost over a two-
day cycle. Recall that we have defined C(S, j) to be the
expected daily cost over a cycle of length j . Therefore, we
can write the following equation:

2 · C(S, 2) = k + E

[
2∑

i=1

(
chI

+
i + cbI

−
i

)
]

(42)

From the above equation, we want to now derive the
expected daily cost over a cycle of length N = 2. The
following shows the intermediate steps taken to derive
C(S, 2).

2·C(S, 2) = k+E

[
2∑

i=1

chIi

]

+E

[
2∑

i=1

(ch + cb)I
−
i

]

(43)

2 · C(S, 2) = k + E [chI1] + E [chI2]

+E
[
(ch + cb)I

−
1

] + E
[
(ch + cb)I

−
2

]

= k + ch(S − μ) + ch(S − (μ + (1 − p)λ))

+(ch + cb)G
1(S; μ)

+(ch + cb)G
1(S; μ + (1 − p)λ) (44)

= k + ch(2(S − μ) − (1 − p)λ)

+(ch + cb)

2∑

i=1

G1(S; μi) (45)

C(S, 2) = k/2 + ch((S − μ) − 1/2(1 − p)λ)

+1/2(ch + cb)

2∑

i=1

G1(S; μi) (46)

To get Eq. 43 we simply apply the definition of Ii = I+
i −

I−
i , as was done when counting daily, and then combine like
terms.

Equation 44 expands the summations for the next
step, given by Eq. 44, where we substitute E [I2] =
E [S − (D1 + D2 + UD0)] = S −μ− (1−p)λ as defined
by Eq. 41. Note that the values relating to period 1 are
the same as when counting daily. Similarly, while the first
order loss function is the same for period 1, we introduce
G1(S, μ+(1−p)λ) as the first order loss function for period
2.
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To explain Eq. 45, we introduce the following definition
which will be used hereafter:

μi = μ + (i − 1)(1 − p)λ (47)

Equation 47 defines the Poisson rate at which actual net
inventory, Ii , is depleted over the counting cycle.

We substitute (47) into (44) to get Eq. 45. After doing
so, we can then solve for the expected daily cost for a cycle
of length N = 2 days. This is given in Eq. 46. From this
point, we can employ the same approach to compute the
difference, and we have that:

�SC(S, 2) = ch − 1/2(ch + cb)

2∑

i=1

G0(S; μi) (48)

Similar to the previous case, we define S∗
2 to be the smallest

integer value for S that satisfies the following inequality:

2∑

i=1
G0(S; μi)

2
≤ ch

ch + cb

(49)

Counting inventory every N days

We now conjecture that the following equation represents
the expected daily cost of the inventory system with a
counting frequency of N . It is given below:

C(S, N) = k
N

+
(ch+cb)

N∑

i=1
G1(S;μi)

N

+ch(S − μ − 1/2(N − 1)(1 − p)λ)

(50)

We can actually prove the above conjecture by induction.
Since we have already shown the above for N = 1 and
N = 2, we will assume that it is true for N = 1, . . . , n, and
then show it is true for N = n + 1.

We first consider the actual net inventory at the end of
day n + 1, as given by:

In+1 = S −
n∑

i=0

Di +
n−1∑

i=0

RDi − Dn+1 (51)

which can be explained using the same arguments for period
2. We have seen actual demand, Di for every period through
n + 1, and we have seen replenishment arrive based on
recorded demand, RDi , from all periods up to n − 1. If
we apply the relationship in Eq. 4 we can reduce the above
equation to:

In+1 = S −
n−1∑

i=0

UDi − Dn − Dn+1 (52)

We can then compute the total cost of the individual day
n+1 by using the following two formulas as in the previous

cases:

chE
[
In+1

] = ch (S − μ − n(1 − p)λ) (53)

(ch + cb)E
[
I−
n+1

] = (ch + cb)G
1(S; μn+1) (54)

Now, we will add the costs for day n+1 to the total cost over
n days, nC(S, n). This sum we will denote (n+ 1)C(S, n+
1), and we will simplify and combine terms. Then, dividing
both sides of the resulting equation by n + 1, we have the
form we need, given below (completing the proof):

C(S, n + 1) = k
n+1 +

(ch+cb)
n+1∑

i=1
G1(S;μi)

n+1

+ch

(
S − μ − (n) 12 (1 − p)λ

)
(55)

which proves the conjecture from above.
Knowing the expected daily cost for any counting cycle

length, N , allows us to derive the optimality conditions for
S∗

N .
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