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Abstract
Managing healthcare demand and capacity is especially difficult in the context of the COVID-19 pandemic, where limited intensive
care resources can be overwhelmed by a large number of cases requiring admission in a short space of time. If patients are unable to
access this specialist resource, then death is a likely outcome. In appreciating these ‘capacity-dependent’ deaths, this paper reports on
the clinically-led development of a stochastic discrete event simulation model designed to capture the key dynamics of the intensive
care admissions process for COVID-19 patients. With application to a large public hospital in England during an early stage of the
pandemic, the purpose of this study was to estimate the extent to which such capacity-dependent deaths can be mitigated through
demand-side initiatives involving non-pharmaceutical interventions and supply-side measures to increase surge capacity. Based on
information available at the time, results suggest that total capacity-dependent deaths can be reduced by 75% through a combination
of increasing capacity from 45 to 100 beds, reducing length of stay by 25%, and flattening the peak demand to 26 admissions per day.
Accounting for the additional ‘capacity-independent’ deaths, which occur evenwhen appropriate care is availablewithin the intensive
care setting, yields an aggregate reduction in total deaths of 30%. The modelling tool, which is freely available and open source, has
since been used to support COVID-19 response planning at a number of healthcare systems within the UK National Health Service.
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1 Introduction

Coronavirus disease 2019 (COVID-19) is a highly contagious
and virulent infectious disease caused by severe acute respira-
tory syndrome coronavirus 2, otherwise known as SARS-
CoV-2 [1]. Given the speed at which the virus can infect
populations and the severity of the resulting symptoms, it
represents a significant and unprecedented challenge for many
healthcare services; and one with which even the most devel-
oped countries have struggled to cope [2].

Managing a co-ordinated response to pandemics such as
COVID-19 is critical. Unchecked, with a basic reproduction
rate (R0) estimated at various magnitudes up to 6.5 [3, 4] and
up to 14.7% of those infected requiring hospitalisation [5], the
virus can propagate rapidly through a population, leading to
peaks in demand for hospital care which are simply not possi-
ble to match with existing capacity [2, 3]. If, at such times,
patients are unable to access the bedded care required then
otherwise-avoidable death is likely to result [6]. The likelihood
of this is particularly heightened when intensive care beds are
required, since the necessary invasive ventilation and organ
support cannot readily or safely be delivered in other settings
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[7]. Early case fatality rates from Wuhan are not expected to
appreciate these capacity-dependent deaths (i.e. deaths that can
be attributed to a patient unable to access the care they need due
to lack of available capacity), since drastic efforts were taken by
authorities to avoid health services becoming overwhelmed, in
enforcing restrictions on movement and rapidly upscaling ca-
pacity through the building of two new hospitals [8]. Without
improved treatment options, there is little that can be done to
reduce COVID-19 deaths occurring when the patient has oth-
erwise been cared for in the most appropriate hospital setting
(i.e. capacity-independent deaths – see Fig. 1), and so national
and local planners should focus on minimising the capacity-
dependent deaths that are within their influence. That is, efforts
should be made to ensure the right level of care is available to
patients at the right time.

The principal levers to reduce capacity-dependent deaths
relate to managing the demand for and supply of intensive care
resources. On the demand side, in absence of the means to treat
or prevent disease, the slowing down of cases requiring admis-
sion using measures such as school closures and social distanc-
ing can reduce peak excess demand for intensive care, the so-
called ‘flattening the curve’ [1]. On the supply side, efforts to
create new and expand existing intensive care units increases
the capacity to care for critically ill COVID-19 patients,
resulting in fewer patients rejected with either no care or care
in a sub-optimal setting (which increases the risk of death).

The ability to use a mathematical or computer model to
experiment with ‘what if’ scenarios involving these levers is
crucial to planners on the ground, in ensuring deaths over the
course of the pandemic can be kept at a minimum. Public
health authorities need to know what effect their policies on
social distancing, home isolation and school closures (i.e. pol-
icies to reduce the effective reproduction number R from the
basic reproduction number in absence of intervention R0) can
have on decreasing or changing the shape over time of

demand and, in turn, capacity-dependent deaths. Healthcare
service planners and managers need to be cognisant of the
likely benefits of their options around the flexing of bedded
capacity, especially regarding the allocation between acute
and intensive care beds (where the substantial efforts involved
in increasing the latter must be well justified). With an appro-
priate model, the effect of these scenarios can be projected and
used to make better informed strategic decisions when plan-
ning the response to the COVID-19 pandemic.

There has been much interest in the quantitative and mathe-
maticalmodelling of COVID-19 for purposes of epidemiological
forecasting [3, 9, 10], risk prediction [11], and health system
vulnerability [12]. However, to the best of the authors’ knowl-
edge there has been no explicit modelling of capacity-dependent
deaths based on predicted demand. While Ferguson et al. [3]
provide a detailed model of demand and the resulting deaths
under various mitigation strategies, their work assumes a fixed
mortality rate that is not dependent on the available capacity of
the healthcare system. Our study addresses this limitation by
estimating the excessmortality resulting from demand exceeding
intensive care capacity under several mitigation scenarios.

Computer simulations of patient flow, demand and capacity
have been used extensively to inform decision-making in
healthcare [13–16]. This is especially true for the stochastic,
discrete-event approach to simulation, as it is particularly suited
to situations where entities (e.g. patients) ‘compete’ for limited
resources such as hospital beds and operating room time [17].
Many simulation studies that have tackled questions around de-
mand and capacity in healthcare, both under typical health sys-
tem conditions (for example [18, 19]) and in periods of increased
pressure such as mass casualty events [20] and winter bed crises
[21, 22]. Specifically in the context of intensive care, simulation
studies have addressed bed requirements by using the system
dynamics simulation approach to evaluate different management
policies [23], and applying analytical queuing models and

Fig. 1 Illustrated difference
between capacity-dependent and
capacity-independent deaths (see
Sect. 2 for further description of

the probabilities Prej
d and Padm

d )
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simulations to the management of patient flow [24, 25]. For a
general guide of how simulation modelling may be used in
responding to the challenges of COVID-19, refer to [26].

This paper reports on the development and early real-life
application of a purpose-built computer simulation model, de-
signed for evaluating scenarios to mitigate capacity-dependent
deaths in intensive care resulting from theCOVID-19 pandemic.
The remainder of this paper is structured as follows.
Development of the model is covered in Sect. 2 alongside data
requirements for model parameterisation and the scenarios con-
sidered for the simulation experiments. Illustrative results, ob-
tained from application to a large teaching hospital in England at
an early stage of the outbreak, are presented in Sect. 3. Finally,
Sect. 4 contains a discussion on practical application, limitations,
and possible further development of the model and tool.

2 Materials and methods

2.1 Model

The COVID-19 intensive care admission process is modelled
as a multi-channel queuing system operating with loss. That
is, patients requiring intensive care are rejected if there is no
available service channel (bed). In Kendall’s notation [27] this
is an M(t)/G/C/C queuing system: that is, in turn, a time-
inhomogeneous Poisson arrivals process representing the ep-
idemic curve for cases requiring intensive care admission; a
general service distribution approximating patient length of
stay in intensive care; C service channels; and a total system
capacity of C patients, i.e. no space for waiting. For rejected
intensive care presentations (lost arrivals), death occurs with

probability Prej
d and survival with probability 1−Prej

d . For ad-
mitted intensive care presentations, death occurs with proba-

bility Padm
d and survival with probability 1−Padm

d .
Implementation of this model is through the iterative three-

phasedmethod of discrete event simulation [28]. In the case of
this study, the types of simulation event consist of:
(a) Arrival of patient requiring intensive care admission (un-

conditional event)
(b) Patient admitted to intensive care (conditional event)
(c) Patient died within intensive care (unconditional event)
(d) Patient discharged alive from intensive care (uncondi-

tional event)
(e) Patient admission rejected and patient died (conditional

event)
(f) Patient admission rejected and patient survived (condi-

tional event)

The basis of the three-phased approach is in maintaining a
calendar of unconditional events. The first phase is to step to the
next chronological event in the calendar. This could be arrival or

intensive care discharge or death (i.e. event type a, c or d as
above). In the second phase the selected event is executed. In
the third phase, any associated conditional event is also execut-
ed. So, for example, if a patient arrives (event type a) and there is
an available service channel (e.g. a free intensive care bed) then
the conditional event is that the patient is admitted (event type b)
and the associated bed is flagged as unavailable. If, instead, there
is no available service channel (bed) then the admission is
rejected and the simulated patient either dies (event type e) or
ultimately survives (event type f).

As the simulated events progress with each iteration, it is
necessary to capture the state of the system over time. This
keeps the event calendar up-to-date. For instance, if one of the
events within an iteration involves a patient entering service
(event type b), then the time at which they are discharged
(sampled from the given length of stay distribution) is record-
ed in the calendar, as a future unconditional event of type d.
Capturing the state of the system is also necessary in the gen-
eration of performance measures of interest, such as occupan-
cy levels and patient outcomes.

During the simulation, events are iterated in line with the
three-phased method until some terminating criterion is met.
Here, this is given by the time at which some outcome has
been reached for all simulated admissions for the given epi-
demic curve (for cases requiring intensive care admission), i.e.
each sought admission has been either rejected or admitted
and discharged or died (event types c-f). In other words, and
given the time-inhomogeneous nature of the epidemic curve,
this is a transient simulation model. As such, and in contrast to
simulation models exploring steady-state behaviour, an other-
wise necessary warm-up period is not required [29].

Running this simulation from start to finish offers just one
possible explanation of how the pathway dynamics can play
out and so, in order to capture the inherent stochasticity, it is
necessary to perform an ensemble of replications. Each repli-
cation repeats the simulation with a different stream of random
numbers from which the simulated arrivals, lengths of stay,
and rejection probabilities of death and survival are generated.
Outputs are then aggregated across these replications, with
central estimates (based on the mean) and confidence intervals
(at the 95% level) calculated for all simulation measures.

Note that the Strengthening the Reporting of Empirical
Simulation Studies (STRESS) research checklist for discrete-
event simulation studies (STRESS-DES) is provided within
the supplementary material.

2.2 Application, data, and calibration

The model was applied to intensive care services at a major
public hospital in England during the early stage of the outbreak
in the UK (late March and early April 2020). Demand for inten-
sive care admission at the hospital was estimated through local
interpretation of nationwide projections contained in [3], which
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were made publicly available on 16 March 2020. This involved
adjusting for local population size, demographics and hospital
catchment area (Table 1) in our effort to interpret the national
demand profiles. As similarly performed in [30], such data pre-
processing was necessary given the absence of more granular
projections during the early stages of the outbreak. The model-
ling reported in this studymade use of two hypothetical strategies
contained in [3] – a ‘do nothing’ and one involving ‘case isola-
tion, home quarantine, and social distancing of those over 70’.
The modelling also considers a ‘flattened’ version of this latter
strategy, in order to appreciate the possibility that measures
would have a greater effect than envisaged in slowing transmis-
sion of the disease, with the same level of demand but over a
50% longer period of time (Fig. 2).

At the collaborating hospital there are typically 45 beds
available for patients requiring intensive care (21 general
and 24 cardiac). In the first instance, plans were in place for
capacity to be increased to a maximum of 76 beds, through
making use of operating theatres and other specialist bays
(which have become available due to the cancellation of rou-
tine surgery). There remained some potential to increase this
number further, should additional surge capacity be required
(this is considered within the scenario analysis of Sect. 3).

At the time this studywas conducted, there was an insufficient
number of COVID-19 patients that had been admitted to inten-
sive care at the hospital, and so information regarding intensive
care length of stay is taken from the literature. A gamma distri-
bution (used also in fitting to COVID-19 intensive care length of
stay in [30]) was parameterised based on fitting to length of stay
data for 4078 COVID-19 intensive care admissions in England,
Wales and Northern Ireland [31]. The shape and rate parameters
were estimated atα= 1.66 and β= 0.206 respectively, giving rise
to amedian of 6.52 days andmean of 8.07 days (note themean is
similar to the 8 day mean used in [30]). The probability of death

resulting from rejected admission to intensive care (Prej
d ) was also

informed by the literature. Given the pivotal dependence of sur-
vival on mechanical ventilation [6] and already substantial mor-
tality rates for cases actually receiving such intervention [31], it

was assumed that all but a very small minority of rejected admis-
sions would result in death. For the simulation study conducted

here, a figure of Prej
d ¼ 0:99 is used based on the clinical advice

received from practicing intensive care consultants (noting the
assumption that transfer to another hospital with available inten-
sive care capacity could not take place). Finally, the probability
that a COVID-19 patient admitted to intensive care dies within

intensive care (Padm
d ) is estimated at Padm

d ¼ 0:507, based on
such a proportion of intensive care admissions having died as
sourced from the afore-mentioned observational report
representing 4078 intensive care admissions [31].

2.3 Scenario analysis

A number of scenarios relating to possible COVID-19 miti-
gations were modelled in order to inform planning of intensive
care services at the hospital during the early stage of the out-
break. These relate to changes in the epidemic curve for cases
requiring intensive care (informed by government-led strategy
regarding isolation, quarantine and social distancing), capaci-
ty at the hospital in terms of number of intensive care beds,
and patient length of stay in intensive care. The No isolation
strategy involving no government-led effort with respect to
isolation, quarantine and social distancing is considered with-
in Scenario 1, alongside the current available capacity of 45
beds and the literature-informed gamma-distributed length of
stay with mean 8.07 days [31]. Given the UK Government’s

Table 1 Distribution of age within estimated hospital catchment area

Age bands Proportion of hospital catchment

0–9 11%

10–19 10%

20–29 21%

30–39 15%

40–49 10%

50–59 10%

60–69 7%

70–79 6%

80+ 11%

Fig. 2 Epidemic curve for cases requiring intensive care, derived from
modelling results in Ferguson et al. (2020). The No isolation strategy
assumes no non-pharmaceutical intervention; Isolation strategy assumes
case isolation, home quarantine, and social distancing of those over 70;
and Isolation (flattened) represents a flattening of the Isolation strategy
over a 50% lengthened period of time
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decision on 16 March 2020 to implement isolation measures,
the remainder of scenarios (2 through 8) were configured on
the basis of this afore-mentioned Isolation strategy (Sect. 2.2).

Scenarios 3 and 4 model the hospital’s actual planned in-
creases in intensive care bed numbers to surge capacities of 76
and 100 respectively. Scenario 5 models the potential benefits
of reducing COVID-19 length of stay by 25% through use of
weaning protocols for patients receiving mechanical ventila-
tion, as estimated in a previous study [32]. In exploring sen-
sitivity of model outputs to length of stay, an increase of 25%
was also considered (Scenario 6) in order to appreciate the
effect of possible delays to discharge that reasonably may
exist [33]. In appreciating the possibility that non-
pharmaceutical interventions would have a greater effect than
envisaged in slowing transmission of the disease under the
Isolation strategy, the remainder of considered scenarios are
based upon the ‘flattened’ version as introduced in Sect. 2.2
(Fig. 2). Scenarios 7 through 9 account for this in respect of
the various surge capacities (45, 76, 100 beds), with Scenario
10 presenting the ‘best case’ option in bringing together this
flattened demand accompanied by increased capacity to 100
beds and 25% reduced length of stay.

In order to gauge the ‘ideal world’ capacity required to
readily accommodate all demand for intensive care admission,
additional scenarios are considered for which no constraint on
the number of beds is assumed. This is with respect to the
8.07 day mean length of stay and demand profiles equivalent
to the No isolation, Isolation, and Isolation (flattened)
strategies.

2.4 Simulation

Key simulation output measures of interest consist of the du-
ration of time at maximum capacity (to inform workforce
requirements), peak capacity-dependent and capacity-
independent deaths per day (for mortuary planning), and total
deaths over the course of the pandemic (as an ultimate marker
of intervention efficacy, in balancing demand and capacity).
Confidence intervals, at 95% level, were calculated based on
the variation in output measure observed across the 1000 rep-
lications performed for each scenario, with each replication
using a different stream of random numbers. This number of
replications was selected based on the resulting reduction of
simulation error to magnitudes deemed sufficiently negligible
(<0.25%) when assessed against the output measures of inter-
est (this was performed using different seeds for which the
random number streams were drawn for each replication with-
in the simulations considered). The model was implemented
as a package within 64-bit R version 3.6.0. For each scenario,
computational timewas approximately 5 min when performed
on a Windows 10 desktop computer.

3 Results

Estimates for the key output measures of interest are presented
alongside each of the considered scenarios in Table 2.
Transient outputs corresponding to each of these key areas
of interest are presented in Fig. 3 across all scenarios,
highlighting the key dynamical relationships between these
variables. For instance, when full capacity is reached (left
plots) then capacity-dependent deaths start to occur (middle-
left plots) based on the extent to which demand continues to
exceed supply; with the magnitude of this determining the rate
at which deaths accumulate (middle-right plots).

In the absence of any intervention to reduce the effective
reproduction number (R) from the basic reproduction number
(R0) through case isolation, home quarantine and social dis-
tancing (i.e. the No isolation strategy of Scenario 1), the esti-
mated total death toll is significantly higher than in other sce-
narios. Employing these measures reduces capacity-
dependent deaths by an estimated three-fifths and cuts the
peak daily capacity-dependent deaths by 69% ceteris paribus
(Scenario 2). Incorporating capacity-independent deaths (oc-
curring within intensive care following admission), total
deaths over the pandemic are reduced by 2182 (54%).
Increasing capacity from 45 to 76 intensive care beds
(Scenario 3) further reduces capacity-dependent deaths by
307 (20%), with total deaths reducing by a lesser 150 (8%)
given the additional capacity-independent deaths that conse-

quently occur (recalling Padm
d ¼ 0:507 ). This also starts to

reduce the number of subsequent days at maximum capacity,
from 76 to 64 (16%). This is brought down further (to 56 days)
should capacity increases to 100 beds be possible (Scenario
4), which also brings down capacity-dependent deaths to un-
der 1000 and reduces total deaths by approximately 100.
Curtailing mean length of stay by one-quarter appears to have
a relatively small improvement to the total number of deaths
(Scenario 5 c.f. Scenario 2), which is in part due to the right-
skewed nature of the length of stay distribution (i.e. the num-
ber of longer-staying patients in the tail is unchanged since the
shape of the distribution is presumed unaltered). When inten-
sive care length of stay is increased by one-quarter (Scenario 6
c.f. Scenario 2), the additional 98 (6.5%) capacity-dependent
deaths are offset by fewer capacity-independent deaths given
the reduced intensive care throughput, resulting in a lesser 47
(2.5%) total deaths.

Should any additional government-led isolation strategies be
effective in further flattening the epidemic curve for cases re-
quiring intensive care, then a substantial reduction in peak
capacity-dependent deaths from 33 to 20 would be expected
(i.e. Scenario 7 c.f. Scenario 2). However, without increases to
capacity this simply spreads the deaths over a longer period of
time, rather than reducing the total by a significant amount
(1750 c.f. 1849). To achieve a significant reduction in total
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deaths then any further ‘flattening’ of demand must be accom-
panied by increases in capacity. If first and second surge capac-
ity levels can be met then total deaths reduce by 198 (11%) and
322 (18%) respectively (i.e. Scenarios 8 and 9 c.f. Scenario 7).
Finally, if second surge bed numbers can be accompanied by
the afore-mentioned one-quarter reduction in length of stay
then total deaths can be reduced by 454 (26%), peak
capacity-dependent deaths reduced to ten per day, and the du-
ration of time operating at full capacity shortened by one half
(Scenario 10 c.f. Scenario 7). Note that while further ‘flatten-
ing’ of demand and accompanying capacity increases lead to
greater capacity-independent deaths (due to higher numbers
admitted) this is more than offset by the reduction in
capacity-dependent deaths, meaning total deaths are reduced.

These mortality projections can be contextualised against
those theoretically achievable were intensive care bed capac-
ity not a constraint.With an 8.07 daymean length of stay, total
deaths are estimated at 2191 (95% CI 1822 to 2564) for No
isolation and 1111 (920 to 1311) for both Isolation and
Isolation (flattened), noting of course that these figures are
composed solely of capacity-independent deaths. Thus under
an Isolation (flattened) strategy with 25% reduced length of
stay and 100 beds (Scenario 10), the total number of deaths is
within 185 (15%) of the theoretical lower bound (at least in the
absence of vaccine or treatment). The peak bed requirement
corresponding to these lower bound mortality estimates under
the three strategies are 853 (704 to 1012), 303 (243 to 363)
and 206 (163 to 250) respectively (Fig. 4).

4 Discussion

4.1 Application

This paper details the approach taken to evaluate the effect of
various potential mitigations on COVID-19 deaths resulting
from a lack of intensive care capacity at a hospital in England.
Performed at an early stage of the outbreak, the analysis pre-
sented here has allowed intensivists and planners insight into
the number and cause of deaths that could result under various
scenarios informed through clinical opinion and early findings
within the literature. In implementing the model as an open
source tool, the approach has been used across a number of
healthcare systems within the UK National Health Service.
This has been facilitated through making the model code pub-
licly available as an R package [34] and promoting the tool
through social media and national webinar series [35].

Modelling insights have proved valuable to decision-
making in a number of ways. First, it has enabled a more
objective assessment of the potential gain from efforts re-
quired to convert existing clinical areas to intensive care spec-
ification. This has allowed consideration of the opportunity
cost of such actions, e.g. if theatre space is used then thisTa
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may limit the ability to perform emergency surgery. Second, it
has facilitated consideration of the gain from investing in ef-
forts to reduce length of stay through potentially-effective
weaning protocols [32]. Third, it has enabled consideration
of the effect of delays to discharge that may reasonably exist

from intensive care to downstream services [33], particularly
in the COVID-19 setting where other acute and community
services may be overwhelmed. Fourth, it has informed an
understanding of workforce requirements, through measuring
the duration of time at maximum occupancy (and thus

Fig. 3 Simulation output results for intensive care bed occupancy and
projected capacity-dependent and capacity-independent deaths (per day
and cumulative) across the ten scenarios considered. Black solid lines

represent the mean and grey bands the 95% confidence intervals from
1000 replications per scenario. Dashed lines represent inputted capacity
associated with the respective scenarios
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estimating staff burnout [36]). Fifth, through sharing the
modelling results with public health colleagues at various
stages of the modelling, it has informed the capacity require-
ments of temporary mortuaries within the region. And sixth,
through estimating the reduction of COVID-19 related occu-
pancy, it has facilitated consideration of the timing and scale
of when certain elective surgeries may resume.

4.2 Limitations

Turning to limitations, any modelling study performed during
the early stages of outbreak of a novel disease must address
the lack of available data and information [26]. The modelling
of this study was based upon the same projections which
prompted the UK Government’s movement towards ‘lock-
down’ [3]. These estimates appear to have forecasted demand
for intensive care at many multiples of available supply (even
at surge levels), yet it has become clear in the weeks that have
followed that these projections were over-estimates [31]. The
model can, however, be readily updated in response to the
latest projections. Doing so has ensured modelled results have
continued to reflect the best-known information at the time.

Another limitation relates to the assumption that all inten-
sive care beds are available for newly-arriving COVID-19
patients. While elective procedures requiring post-operative
intensive care have been postponed [37], there remains other
sources of non-elective non-COVID-19 demand. Estimations
of this, once the effect of societal isolation becomes apprecia-
ble (e.g. any reduced road traffic accidents, alcohol-related

injuries), can be incorporated within the capacity parameter
simply by deducting the average beds occupied by such
patients.

An additional possible limitation relates to the assumption
that death occurs immediately if a bed in the required setting is
not available. Realistically, death is unlikely to be immediate
[38], yet at an early stage of the pandemic no reliable data
exists to meaningfully capture this parameter in the model.
This has no effect on the ultimate number of deaths estimated,
but will affect their specific timing and the thus, the peak daily
number.

4.3 Further research

It is important to acknowledge that capacity has been consid-
ered only with regard to the number of beds within intensive
care, and not the size or quality of clinical workforce. If the
higher volumes of patients being looked after, as produced
here through scenarios in which more beds are converted to
intensive care specification, are not met with proportionate
increases in the numbers of suitably-qualified doctors and

nurses, then poorer patient outcomes (i.e. greater Padm
d ) and

longer lengths of stay may result [39]. Further research is thus
required to investigate and incorporate the effect of workforce
size and skill-mix on these model parameters. On the demand
side, these parameters may also be affected by the possible
implementation of an intensive care triage policy, which
would result in a different case-mix admitted to intensive care.
Additional modelling may thus be needed to understand the
effects of rejecting intensive care admissions from patient co-
horts known to have negligible survival likelihood, in the
interests of maintaining available beds for those known to
have more favourable chances. If those patients less likely to
benefit from admission are triaged-out (as considered in [6,
40]), then modelling would need to capture the different out-
come and length of stay distributions for the new patient co-
hort. Ultimately, such a policy could potentially reduce further
the total deaths over and above those considered in this study.

Further work may also investigate how the effect of dis-
charge delays from intensive care to the acute wards can be
better captured in the modelling. Firstly, any confounding in
the empirically-calibrated length of stay distribution should be
assessed, in examining the extent to which discharge delays
are already accounted for within the length of stay data. This
would require patient-level data including admission date and
date ready for discharge alongside ultimate discharge date.
While a 25% (2-day) addition to length of stay has been con-
sidered here (Scenario 6), further research could consider
modelling the downstream acute bed base in order to assess
the capacity required to reduce delays to discharge to a given
length of time (with greater fidelity achievable throughmodel-
ling the conjoint admission and discharge process between

Fig. 4 Simulation output results for no constraint to bed number
availability. This shows the number of intensive care beds that would
be required to satisfy all demand
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intensive care and the acute wards, within a pathway model
similar to that of [16]).

A greater understanding of the dynamics between intensive
care and the acute bed bases could also permit further work
regarding the timing and magnitude of intensive care surge
capacities. Converting existing specialist beds to intensive
care specification for periods of time when there are relatively
few COVID-19 presentations could reduce the availability or
quality of service for other elective and emergency proce-
dures. Through simulating the performance of elective path-
ways [41], modelling is now being performed at the authors’
organisation in order to more optimally balance the capacity
allocated to these various competing demands.
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