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Abstract
We investigate the capability of information from electronic health records of an emergency department (ED) to predict
patient disposition decisions for reducing “boarding” delays through the proactive initiation of admission processes (e.g.,
inpatient bed requests, transport, etc.). We model the process of ED disposition decision prediction as a hierarchical
multiclass classification while dealing with the progressive accrual of clinical information throughout the ED caregiving
process. Multinomial logistic regression as well as machine learning models are built for carrying out the predictions.
Utilizing results from just the first set of ED laboratory tests along with other prior information gathered for each patient
(2.5 h ahead of the actual disposition decision on average), our model predicts disposition decisions with positive
predictive values of 55.4%, 45.1%, 56.9%, and 47.5%, while controlling false positive rates (1.4%, 1.0%, 4.3%, and
1.4%), with AUC values of 0.97, 0.95, 0.89, and 0.84 for the four admission (minor) classes, i.e., intensive care unit
(3.6% of the testing samples), telemetry unit (2.2%), general practice unit (11.9%), and observation unit (6.6%) classes,
respectively. Moreover, patients destined to intensive care unit present a more drastic increment in prediction quality at
triage than others. Disposition decision classification models can provide more actionable information than a binary
admission vs. discharge prediction model for the proactive initiation of admission processes for ED patients. Observing
the distinct trajectories of information accrual and prediction quality evolvement for ED patients destined to different
types of units, proactive coordination strategies should be tailored accordingly for each destination unit.
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1 Introduction and motivation

Overcrowding has long been identified as a critical issue in emer-
gency department (ED) management [1–4]. In response, various
approaches have been suggested including the adoption of fast-
track units, advanced patient triage strategy, and the implemen-
tation of Six Sigma and “lean” programs to alleviate crowding in
the ED [5–11]. However, prolonged patient “boarding” delays
(i.e., delays experienced by patients admitted into the hospital by
being held up in the ED due to admission, bed coordination, and
transport delays), is known to be one of the most significant
factors contributing to ED crowding [2, 12]. In particular, Pines
et al. have investigated hospitals in 15 different countries and
identified that the common main cause for ED crowding is the
boarding of admitted ED patients [13, 14]. There is also a grow-
ing body of literature reporting the gravity of EDpatient boarding
in different countries and attesting to its negative clinical, opera-
tional, and financial impacts on healthcare management [15–19].
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To improve patient flow out of the ED, different ap-
proaches have been introduced in the field of healthcare man-
agement science and operations research/management.
Saghafian et al. [20] studied a patient streaming strategy that
separates ED patients into two different streams according to
anticipated admission decisions and discussed that the strate-
gy could help alleviate the ED patient boarding issue. Shi et al.
[21] investigated the inpatient unit (IU) discharge process and
suggested that ED boarding delays can be reduced by altering
inpatient discharge times. Osorio and Bierlaire [22] analyzed
finite capacity queues to identify sources of bed blocking and
suggest operational implications. Among others, as a potential
remedy to considerably reduce boarding delay, the ideas of
“early task initiation” (e.g., proactively checking admission
criteria and seeking admission approval from hospitals) or
“proactive resource preparation” for admission (e.g., prepar-
ing an inpatient bed for an impending admission) have re-
ceived increasing academic and industrial attention [23–26].
The underlying premise is that modern-day electronic health
record systems can support the realization of real-time hospital
admission prediction models while the patient is still under-
going ED treatment. The rationale behind this proactive strat-
egy for patient flow coordination is that bed request and prep-
aration to admit a patient are often delayed until admission is
certain [23]. When there are a large number of patient dis-
charges at IUs combined with high demand for clean IU beds
for admissions, bed management becomes a prioritization
problem where environmental service staff (responsible for
cleaning and turning around beds) should be dispatched ac-
cording to admissions coming into each IU. This is symptom-
atic of most EDs for IU discharges tend to surge around mid-
day (after morning rounds by providers) and environmental
services struggle to keep up with the rate of patient discharge
and are forced to clean beds based on admission priority lists
rather than turning around beds as they become vacated. The
patterns in Fig. 1 illustrate this situation routinely occurring
within the ED-to-IU workflow of a leading level-1 trauma
healthcare facility in the United States Midwest, where this
study is conducted (HEM/ONC/BMP stands for hematology/
oncology/blood and marrow transplant unit.). The ED suffers
from severe crowding (indicated by the dashed line with the
secondary y-axis) influenced by the increasing levels of pa-
tient boarding (indicated by the solid line with the primary y-
axis) in the afternoon and evening (Fig. 1a). Even though there
are unoccupied inpatient beds during the same period (Fig. 1b)
generated by the high rate of IU patient discharges in the
afternoon (Fig. 1c), less effective (i.e., reactive) bed manage-
ment leads to excessive boarding delays.1 It is under these

circumstances that ED patient admission predictions com-
bined with proactive coordination can limit the trajectory of
boarding delay by judiciously allocating resources and proac-
tively initiating tasks for predicted admissions [27–30].

While there has been some progress with ED patient ad-
mission prediction modeling research to enable proactive co-
ordination [23, 26, 31–37], the models are lacking in their
granularity to allow operationalization of prediction outcomes
in real-world settings. Just predicting that a patient will be
“admitted” will not necessarily allow full proactive coordina-
tion of resources across the ED-to-IU workflow for stream-
lined patient admission and flow since in most cases the allo-
cation of necessary resources, e.g., inpatient beds, requires
information on “which IU the patient is likely to be admitted”.
Generally, inpatient care can be categorized into three main
types based on the intensity of required care [38]: general care
(least intensive care), telemetry/stepdown care (intermediate
care), and intensive care. They in turn define the three main
types of IUs, i.e., general practice unit (GPU), telemetry unit
(TU; also known as stepdown unit), and intensive care unit
(ICU). While GPU and ICU constitute traditional and well-
established inpatient care units in hospitals, TU has been in-
creasingly adopted in hospitals for providing an interme-
diate level of care for patients with requirements between
that of GPU and ICU. The comparable settings can be
readily found in the literature describing other healthcare
institutes, where we observe that the inpatient care struc-
ture comprised of GPU, TU, and ICU is becoming com-
mon in many different countries [39–41].

The study hospital has the aforementioned three main types
of IUs for regular IU admissions. While a disposition decision
can further specify the most proper specialty unit within a
main IU for a patient, if all beds in that specialty unit are in
use, the patient is generally transferred to the second most
proper specialty IU and so on (also termed “overflow”) and
the disposition decision is updated accordingly. It is worth
noting that the features of inpatient beds and accessories are
generally common across a main unit, and this in turn con-
strains overflow to happen within the same main unit. In ad-
dition to the overflow policy, most hospitals physically sepa-
rate ICU, TU, and GPU, pooling resources (e.g., beds and
nursing services) within each main unit, exclusively.
Therefore, given routine patient overflow occurring within a
main IU and the resource pooling strategy at the study hospi-
tal, we seek to predict disposition decisions at the level of the
main IUs. In addition, the ED physicians at the study hospital
were only making disposition decisions at the main IU level
about half the time (without further specifying any specialty)
further justifying the prediction approach.

In addition to the IUs, the study hospital also operates
an observation unit (OU) for providing extended care to
patients who finished care processes in the ED. OUs are
increasingly used as a short-stay (< 23 h) clinical decision

1 In Figure 1b, we conservatively exclude the case of having only one unoc-
cupied bed to account for any possibility that a bed is temporarily unavailable
due to, for example, infection concerns from a fellow roomed patient and so
on.
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unit for patients who require further observation and treat-
ment. Even though the OU is not a part of regular IUs in
most hospitals, it plays a significant role to control de-
mand to IUs, and a significant number of ED patients
can be sent to OU (around 6% in the study hospital).

The main goal of this research is to predict disposition
decisions at the level of the main IUs and the OU for facilitat-
ing the unit-specific proactive coordination of admission pro-
cesses to reduce ED patient boarding. Furthermore, our pre-
diction modeling strategy incorporates the progressive nature
of ED care processes, where more clinical information is re-
vealed and accumulated for the patient as he/she goes through
more ED processes (e.g., monitoring and testing) and treat-
ment. This is the first study to conceptualize and evaluate the
ED disposition decision prediction problem in the context of
proactive coordination.

2 Methods

2.1 Study design

In this study, we define three distinct levels of classifica-
tion schemes for modeling disposition decisions, consid-
ering both practical and academic relevance (Fig. 2b). At
the first level (denoted C1), the outcome of ED patient
disposition decision classification is the binary admission
decision (i.e., admission vs. discharge). The OU class pa-
tients are included in the admission class.

The C1 classification scheme has been adopted in most of
the ED disposition decision prediction modeling research to
date [23, 26, 31–37]. Due to its relatively simple structure, it
could produce the most accurate results. At the second level
(C2), the admission class at the C1 classification scheme is
further segmented into two subclasses, i.e., IU vs. OU

admission. While the IU class is regarded as official admis-
sion, OU patients may not be considered as “admitted” de-
pending on the hospital even though OU patients could have
features that are clinically similar to IU patients. Rather, the
OU treatment is often regarded as “extended ED care”, and the
mechanism of patient transfers to OUs is different from regu-
lar IUs in many hospitals. Finally, at the most granular level
(C3), the IU class at C2 is further categorized into three main
IU classes, i.e., ICU, TU, and GPU. We believe that the C3
classification scheme is where the most significant operational
benefit can be derived by enabling the unit-specific proactive
coordination of admission processes across the ED-to-IU
workflow. To provide further justification for the need to mod-
el each classification scheme, we summarize the possible clin-
ical and operations management applications and use cases for
prediction results stemming from each classification scheme
in Table 1. In doing so, we considered general resource allo-
cation practices in hospitals to provide a common and general
description. Note that the table lists the incremental utility of
prediction results at each classification scheme, i.e., utility of
classification at C3 also includes the utility of C2 classifica-
tion; C2 includes the utility of C1.

As discussed earlier, each IU class at C3 can be further
subdivided into specialty subunits. For instance, in the study
hospital, the GPU has 12 distinct subunits based on specialty
of care, including general internal medicine, nephrology, ob-
stetrics/gynecology, neurology, pulmonary, and so on. Besides
the overflow policy, about half the time, ED physicians only
make disposition decisions at the main IU level without fur-
ther specifying any specialty. Therefore, in this study, we fo-
cus on predicting the disposition decision at the level of the
five classes at C3, considering its higher practical relevance.
As expected, as we increase the granularity of prediction (i.e.,
from C1 through C3), the prediction problem becomes more
challenging. Considering how the classes at C3 (the ICU, TU,
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Fig. 1 ED and IUs patient flow graphs. Note: The shaded area indicates
the period within a day when the ED suffers from severe crowding.
During this period, there are unoccupied inpatient beds for most

weekdays that could help alleviate the ED congestion issue when
related processes are proactively coordinated
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GPU, OU, and discharge classes) are defined, the classifica-
tion model should be able to discriminate the “clinical care
intensity” of ED patients, which makes the prediction task
challenging. Moreover, since disposition decisions and clini-
cal care decisions (e.g., ordering laboratory/imaging tests and
other clinical interventions) will not be completely consistent
across different physicians, it is important to check how effec-
tively data-driven machine-based prediction models can
match the actual disposition decisions by exploiting clinical,
demographic, and operational data.

2.2 Study setting and population

The study is based on electronic health record data collected at
the ED of an academic urban level-1 trauma center, which de-
livers comprehensive care services including the fields of cardi-
ology, cardiovascular surgery, neurology, neurosurgery, orthope-
dics and sports medicine, organ transplants, and treatments for
prostate, breast and lung cancers. The data items were collected
for the period fromMay 2014 to April 2016 and covers 184,895
patient visits. After accounting for abnormal departures

n=5,613

(3.2%)

Adm

Root

Dis

TUGPU ICU

IU OU

n=172,809

(100.0%)

n=42,684
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n=130,125
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n=32,373

(18.7%)

n=10,311

(6.0%)
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(11.7%)
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Classification group 
structure:

C1 = {Adm., Dis.}

C2 = {IU, OU, Dis.}

C3 = {GPU, TU, ICU, OU, Dis.}

All visits

(b) Hierarchical structure of multi-classes

(a) Data selection process

Atypical departures (n=9,395):

• Against medical advice (n=1,318)

• Left without completing services 

(n=3,695)

• Transferred (n=3,919) 

• Deceased (n=453)

• Dismissed (n=10)

• Unknown (n=11)

Unusual disposition (n=2,691):

• Catheterization laboratory (n=219)

• Labor and delivery unit (n=1,271)

• Post-anesthesia care unit (n=38)

• Unknown disposition or other minor 

units/laboratories (n=1,163)

n=184,895

Fig. 2 a The data selection
process of the study and b the
hierarchical structure of ED
disposition decision. Note: Adm.,
admission; Dis., discharge

Table 1 Anticipated application and use cases for prediction results of each classification scheme

Classification scheme Prediction classes General description of possible utility of prediction results

C1 Admission, discharge - Mostly within the ED (i.e., differentiate ways to provide care to the two different
patient groups/types)

- Coordination of resources that are common and shared for ED discharge

C2 IU, OU, discharge - Coordination of services that are required regardless of the type of admitted IUs,
including admission approval

- Coordination of resources at the OU

C3 ICU, TU, GPU, OU, discharge - Enhanced treatment for high risk patient groups (e.g., patients likely to be admitted
to ICU) in the ED

- Coordination of resources that require unit-specific coordination including
prioritization in bed preparation and patient transporter dispatch and the early
initiation of inpatient nursing services
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(including patients leaving without completing services, trans-
fers to other facilities, as well as patients who went to units that
are not regarded as regular IUs, e.g., catheterization laboratory
and perioperative unit), 172,809 patients remain in the dataset,
which corresponds to 93.5% of the total visits (Fig. 2a). We
provide general statistics around the study hospital and ED in
Table 2 (based on information from the study data period).
Because our dataset includes no patient-identifying infor-
mation (PII data was removed by information technology
staff before sharing the dataset), the study is exempted by
the institutional review board of the study hospital.

2.3 Study protocol and methodology

We first introduce the proposed classification strategy briefly
with few associated concepts from data science. The ED dispo-
sition prediction inherently presents a hierarchical, mandatory-
leaf classification structure, where no two parent nodes share a
common child node, and the most proper class is always found
at the lowest level (Fig. 2b). The main approaches to tackle
hierarchical classification problems can be classified into two
main categories: “big-bang” and “top-down” [42]. While the
top-down approach starts its classification task from the parent
node and uses the obtained prediction outcomes for classifica-
tion at its child nodes, the big-bang approach classifies the most
proper class for the full problem with a single model. Given the
hierarchical structure of ED disposition and the class member-
ship imbalance at the C1 classification scheme (most patients,
75.3%, are negative [discharged] in the study hospital ED), the
top-down approach would incur serious challenges at the down-
stream levels (C2 and C3). This is because false positive predic-
tions occurring in the dominant negative class (discharge class in
our case) at C1 propagate down the hierarchy and greatly affect
the predictions for minor classes at C3. Especially, when the
problem is of a mandatory-leaf node structure, false positive
cases will spread throughout the hierarchical classification tree.
Therefore, we choose to adopt the big-bang approach for
predicting disposition decisions. Moreover, since each predic-
tion class level could bring about their own operational benefits
(as shown in Table 1), we built classification models at each

level. Hence, we model and analyze the mandatory-leaf node,
tree-structured ED disposition classification problem with the
big-bang classifier per level approach.

In addition, we also consider the temporal aspects of ED
disposition prediction. The diagnosis uncertainty decreases
through the ED caregiving processes [26, 36]. Specifically,
we identify four different ED caregiving epochs: “patient arriv-
al at ED” (denoted T1-Arrival), “triage complete” (T2-Triage),
“first provider encounter” (T3-Initial Assessment), and “first
set of laboratory results returned” (T4-Initial Lab Results),
which is graphically represented in Fig. 3. At T1-Arrival, ED
patients arrive with some basic information such as arrival
time/mode, prior ED visit history, health history (International
Classification of Diseases, Tenth Revision, ICD-10 codes, from
previous ED visits), and demographics. Then, patients go
through triage processes, where the patient’s vital signs and
chief complaints are recorded (T2-Triage). T2-Triage is when
most admission decision prediction models have been built in
the literature [31–35]. At T3-Initial Assessment, ED care pro-
viders examine patients, issue orders for laboratory/imaging
tests and decide on other clinical interventions. We incorporate
only the first set of laboratory/imaging test items ordered and
other clinical interventions provided within 30 min of the pa-
tient’s first encounter with care providers, assuming that these
items are dependent on examination at T3-Initial Assessment
(upon examining the results from these tests, care providers can
order additional tests and provide more clinical interventions
downstream within the ED caregiving cycle, which are outside
the scope of data employed for the T3-Initial Assessment set-
ting). T4-Initial Lab Results indicates the time when the results
for the first set of laboratory orders are fully reported. With the
motivation of this study being “proactive” coordination within
the ED-to-IU workflow, there is no point in making accurate
disposition predictions using information that arrives too late in
the ED caregiving cycle when the final disposition decision is
already available or imminent. Unlike the laboratory tests, the
results for radiology tests are not available electronically in a
form that can be readily coded and are not included in this
study. Considering the progressive nature of information accu-
mulation throughout the ED caregiving process, the pre-
diction model at T2-Triage incorporates predictors gained
until epoch T2-Triage, the prediction model at T3-Initial
Assessment incorporates predictors gained until epoch
T3-Initial Assessment, and the prediction model at T4-
Initial Lab Results incorporates predictors gained until
epoch T4-Initial Lab Results.

Table 3 describes the time spans between these different
ED care epochs in the study hospital over a two-year period
(May 2014 to April 2016). Of note is the median “door to
disposition decision” time of about four and a half hours for
admitted ED patients and the median “disposition decision to
admitted ED patient departure” (i.e., boarding) of about three
hours for admitted patients.

Table 2 General statistics on the study hospital and ED during the data
period

Item Value

Number of beds in the hospital 877

Number of beds in ED rooms 77

Number of extra beds that ED hallways can
accommodate during full occupancy

31

Annual ED visits 92,448

Proportion of ED visits admitted to IUs 17.5%

Annual discharges from IUs 35,383
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While various classification modeling techniques that in-
clude multinomial logistic regression, multilayer perceptron
neural networks, and support vector machines are applied, we
do not see any notable difference in prediction performance that
is worthy of detailed discussion in this study. Also, to enable
rapid model calibration for individual hospitals and
operationalization of the proposed early task initiation scheme,
“simpler” and “explainable” models, such as multinomial lo-
gistic regression, should be favored over complex “black box”
models (such as neural networks). Hence, we present in detail
the results gained by a well-established approach, multinomial
logistic regression in the Results section, and provide modeling
hyperparameters tested in other machine learning models as
well as their results (for the C3 classification scheme at T4-
Initial Lab Results) in the Appendix (Table 11 and Table 12,
respectively). Multinomial logistic regression is an extension of
simple logistic regression for estimating the association be-
tween a set of predictors and a nominal outcome that has mul-
tiple categories (classes). In this study, we model logistic
models that generalize the simple logistic regression by setting
a baseline category among c categories (similar to the simple
logistic regression that introduces a dummy category) with p
number of predictors [43]. Therefore, we solve c − 1 logit equa-
tions having (c − 1) × p parameters as follows:

ln
πij

πi j0

 !
¼ α j þ β jX ; ∀ j≠ j

0 ð1Þ

where j is the category index, j′ is the baseline category, αj is the
intercept for category j, βj is a vector having p coefficients for
predictors, and πij is the probability that the membership of ith

observation is j. The probability can be calculated by rewriting
Eq. 1 as follows:

πij ¼
exp α j þ β jX
� �

1þ ∑
k≠ j0

exp α j þ β jX
� � ; ∀ j≠ j

0
: ð2Þ

The model finds parameter βj by maximizing the likelihood
of the data. The entire dataset is split into two parts: first 85% of
the patient visits for training the models (146,888 visits) and the
rest for testing (25,921 visits). We only report prediction results
obtained from the testing dataset in the Results section.

2.4 Predictor variable transformation and selection

To provide details about the predictors employed by the predic-
tion models, Table 4 presents the information on how each set
of predictors is transformed and entered the models (including
the feature categorization rules from the Centers for Medicare
and Medicaid Services [44] and the National Library of
Medicine at the National Institute of Health [46]). All the fea-
ture selection and categorization methods are applied to the
training dataset to extract the feature transformation rules, then
the rules are applied to the testing data for preprocessing. In
particular, the chi-square test is a fundamental and well-
established approach that canmeasure the extent of dependence
(or independence) among variables having multiple class levels
[47]. The χ2 statistic of variable X is defined as follows:

χ2 Xð Þ ¼ ∑
i
∑
j

Oij−Eij
� �2

Eij
; ð3Þ

• Demographic info

• Arrival methods

• Past ED visit   

history

• Previous ED 

diagnosis

• Vital signs

• Complaints

• Severity score

• ED room    

assignment

• Insurance plan

• Lab test requests

• Imaging test 

requests

• Other clinical

interventions

• Lab test results

T1-Arrival T2-Triage T3-Initial Assessment

ED process 

flow

T4-Initial Lab Results

Electronic 

health record

Fig. 3 Graphical representation
of ED caregiving epochs and
resulting data items considered in
this study

Table 3 Length of time spent by
patients at different ED
caregiving intervals at target
hospital

ED caregiving interval Q1/median/Q3 (in minutes)

T1-Arrival to T2-Triage 11.3/17.6/29.0

T2-Triage to T3-Initial Assessment 19.5/47.5/92.8

T3-Initial Assessment to T4-Initial Lab Results 35.0/55.0/90.0

T4-Initial Lab Results to disposition decision (for admitted patients) 95.7/146.2/195.3

Admission approval to departure (for admitted patients) 102.8/182.5/297.7
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whereOij is the observed frequency count for the ith level of the
categorical variable X for class j, and Eij is the expected

frequency count for the ith level of the categorical variable X
for class j. If variables entail a high χ2 value, it infers that the

Table 4 Summary of feature transformation

Predictor (ED caregiving epoch) Feature type and its transformation Detail

Age (T1-Arrival) From numeric to categorical, according to the age
categorization rule applied for a personal
healthcare spending study conducted by the
Centers for Medicare and Medicaid Services [44].

0–18, 19–44, 45–64, 65–84, and 85 and over.

Gender (T1) Categorical (no transformation).
Arrival time (T1) From time to categorical, bi-hourly. 12 AM–2 AM, 2 AM–4 AM, and so on.
Arrival method (T1) From 61 categories to 15 categories, by aggregating

similar methods.
For example, fire department paramedic services

provided by all different fire departments were
merged into a single “fire department paramedic
services” category. The categories include car,
medical flight, public transportation, fire
department paramedic services, Emergency
Medical Services, walk in, and so on.

Last month ED visit history (T1) Binary, whether a patient has visited the ED within
last 30 days or not.

Super utilizer indicator (T1) Binary, whether a patient has visited the ED five or
more times last year.

Previous ED diagnosis (T1) From ICD-10 code to 23 classes, by extracting the
first letter code (type of injury or disease). Created
“none” category for ED visits having no previous
ED visits.

A~T, Z, and “none” categories.

Emergency severity score (T2-Triage) Categorical, with 5 levels. The Emergency Severity Index triage algorithm
[45] is applied.

Chief complaint (T2) From 758 categories to 168 categories, by
Chi-square feature selection. Created
“unspecified” category for ED visits having no
complaint record.

20 example categories include edema, dizziness,
dialysis, abdominal pain, fever, difficulty in
breathing, nausea and vomiting, shortness of
breath, migraine, blurred vision, COPD, fatigue,
hematuria, pruritus, tachycardia, psychiatric
evaluation, nasal congestion, hypotension,
weakness, and unresponsive.

Insurance plan (T2) From 285 categories to 14 categories, by Chi-square
feature selection.

Each category consists of the names of insurance
provider and benefit plan.

Vital signs (T2) From numeric to categorical, mainly based on the
normal vital sign ranges introduced by the
National Library of Medicine at the National
Institute of Health [46]. Created “not measured”
category for each vital sign item to handle ED
visits that have no data.

Temperature (°C): not measured, < 95.1, 95.1~97.7,
97.8~99.1, 99.2~100, and > 100. Pulse (rpm): not
measured, <60, 60~100, and > 100. Respirations
(bpm): not measured, <12, 12~18, 19~25,
and > 25. Pulse oximetry (%): not measured, <95
and 95~100. Systolic blood pressure (mmHg):
not measured, <90, 90~120, and > 120. Diastolic
blood pressure (mmHg): not measured, <60,
60~80, and > 80. Pain score: not measured, 0~2,
3~4, 5~6, 7~8, and 9~10. Glasgow coma scale:
not measured, <10, 10~11, 12~13, 14, and 15.

Assigned ED care area (T2) Categorical, indicating one of the 6 compartmental
primary care areas that a patient is assigned based
on triage information.

Laboratory test item (T3-Initial Assessment) Binary (whether ordered or not) for each of 150 types
of laboratory test items.

Imaging test item (T3) Binary (whether ordered or not) for each of 152 types
of imaging test items.

Other clinical intervention item (T3) Binary (whether provided or not) for each of 108
types of clinical intervention items.

Laboratory test result (T4-Initial Lab Results) From numerical to pre-set categorical, for the
laboratory test items for which the health
information technology system provides result
flags that automatically categorize numerical
laboratory values into pre-set categories. Created
“not ordered” category for each laboratory test
result item to handle ED visits that
have no data.

For example, magnesium test values (mg/dL) are
categorized into 5 groups: low panic ≤0.9 < low
≤1.8 < normal ≤2.3 < high ≤4.0 < high panic.

For the laboratory test items that do not have result
flags, which are minor tests, binary (whether
ordered or not) variables are used as in T3-Initial
Assessment.
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variables deviate significantly from the independence assump-
tion and regarded relevant to each other.

A chi-square statistic-based filter method is designed and
applied as a feature selection mechanism in this study. In par-
ticular, to handle the predictors having excessively many cat-
egories, we conducted feature selection in two stages, i.e.,
within a predictor and between predictors. First, within-
predictor feature selection is performed when a predictor has
more than 50 categories (including patient arrival mode, chief
complaint, and insurance plan predictors) that would unnec-
essarily increase computational complexity during the
between-predictors feature selection process (the second
stage). Then, in the second stage, supervised feature selection
is performed among predictors obtained through the first stage
selection, by building prediction models and fitting on the
training dataset. This second stage gives the proper threshold
of a chi-square statistic that optimally filters in and out features
based on prediction results gained with the training dataset.
We used prediction accuracy as the performance measure to
be maximized during the second stage feature selection.

The list of all the laboratory/imaging tests and other
clinical intervention predictors is presented in detail in
Table 13 in the Appendix.

3 Data analysis

Table 5 summarizes univariate statistics for demo-
graphics, emergency severity score, and chief complaints
(ten representative complaints). Table 6 reports bivariate
statistics (admission vs. discharge) for categorical vari-
ables including chief complaint, emergency severity
score, and clinical intervention items. We report odds
ratios based on whether a clinical test/intervention is giv-
en or a chief complaint is recorded for a patient or not.
Table 7 presents bivariate statistics for numerical values
from laboratory test results and vital signs. We recognize
that in very large samples, p-values from t-tests can mis-
inform regarding the practical significance of a variable
[48]. Therefore, we computed a well-established

Table 5 Univariate analysis for demographics, emergency severity score, and chief complaints. Note: Q1, 25% quantile; Q3, 75% quantile

Variable Median/mean/count/proportion (Q1, Q3) Notes

Age (median), years 45.0 (27.0, 60.0)
Patient arrivals (median count of arrivals per hour, proportion of arrivals for the interval by day)
12 AM~4 AM 5.0, 8.6% (3.0, 7.0)
4 AM~8 AM 4.0, 6.8% (3.0, 5.0)
8 AM~12 PM 13.0, 21.1% (10.0, 16.0)
12 PM~4 PM 15.0, 24.5% (12.0, 17.3)
4 PM~8 PM 14.0, 22.3% (11.0, 16.0)
8 PM~12 AM 10.0, 16.7% (8.0, 12.0)

Gender (proportion)
Female 54.9%
Male 45.1%

Insurance plan 285 different plans
Patient arrival mode 61 different modes
High utilizer
Visit of a patient with any prior ED
visit within last 30 days

23.1% 0.4 prior visits/patient on average
within last 30 days (across all patients)

Proportion of super utilizers among
total patients (≥5 visits/year)

1.3% 1163 super utilizers among
90,308 patients

Proportion of super utilizers’ visits among
total visits (≥5 visits/year)

11.0% 19,091 super utilizers’ visits
among 172,809 visits

Emergency severity score (proportion of patients categorized into each severity score)
Unspecified 0.5%
Severity score 1 – resuscitation 2.0%
Severity score 2 – emergent 36.3%
Severity score 3 – urgent 54.4%
Severity score 4 – less urgent 6.3%
Severity score 5 – non-urgent 0.5%

Chief complaint (proportion of patients presenting each complaint for the 10 most frequent complaints)
Abdominal pain 10.0%
Shortness of breath 5.5%
Chest pain 5.5%
Back pain 3.6%
Headache 3.3%
Emesis 2.4%
Fall 2.3%
Cough 2.3%
Leg pain 2.1%
Dizziness 1.9%
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alternative, Hedge’s g, to measure the effect size recorded
for the continuous variables. The rule-of-thumb thresh-
olds for interpreting the effect size through the Hedge’s
g statistic are as follows: 0.20, small; 0.50, medium;
0.80, large [49]. According to the thresholds, respirations,
pulse oximetry, BNP (brain natriuretic peptide), PT/INR/
PTT (prothrombin time/international normalized ratio/
partial thromboplastin time), lactate blood, and CBC
(complete blood count) with differential variables present
the small to medium level of effect between the two
classes. Due to space constraints and the size of the fea-
ture set, we do not present data analysis results for all the
variables for all the classification schemes (i.e., C1, C2,
and C3). Rather, we selectively present the multivariate
analysis statistics for some key features for the 5-class
scheme (the C3 classification scheme). The results are
reported in detail in the Results section.

4 Results

4.1 Preliminary data analysis results

We provide the univariate and bivariate analysis results ob-
tained from the whole dataset in Table 5 through Table 7.

4.2 C1 classification scheme

As shown in Table 8, right upon arrival to the ED (at door, T1-
Arrival), without any clinical information, we can predict admis-
sion decision of ED patients with 77.9% (95% confidence inter-
val, CI, of 77.7–78.2) accuracy. While incorporating more infor-
mation allows the model to enhance its performance (from T1-
Arrival throughT4-Initial LabResults), the biggest improvement
is made at triage (T2-Triage) where 56.3% of admitted patients
are correctly predicted with less than 7% of false positives. There

Table 6 Bivariate analysis for categorical variables gathered since triage (representative items)

Variable Discharge Admission Odds ratio (95% CI)
% of discharge samples
with each variable

% of admission samples
with each variable

Chief complaint (10 most frequent complaints)
Abdominal pain 10.2% 9.3% 0.90 (0.86–0.93)
Shortness of breath 3.2% 12.6% 4.4 (4.3–4.6)
Chest pain 4.0% 10.0% 2.7 (2.6–2.8)
Back pain 4.2% 1.7% 0.38 (0.35–0.41)
Headache 3.8% 1.8% 0.47 (0.44–0.51)
Emesis 2.3% 2.6% 1.1 (1.1–1.2)
Fall 2.1% 2.8% 1.4 (1.4–1.5)
Cough 2.6% 1.5% 0.56 (0.51–0.61)
Leg pain 2.2% 1.6% 0.69 (0.63–0.75)
Dizziness 1.8% 2.2% 1.2 (1.1–1.3)

Emergency severity score
Unspecified 0.5% 0.7% 3.3 (2.9–3.8)
Severity score 1 – resuscitation 0.7% 5.7% 18.2 (17.0–19.5)
Severity score 2 – emergent 26.6% 66.0% 5.7 (5.6–5.9)
Severity score 3 – urgent 63.3% 27.4% Reference
Severity score 4 – less urgent 8.4% 0.2% 0.06 (0.05–0.07)
Severity score 5 – non-urgent 0.6% < 0.1% 0.04 (0.02–0.09)

Laboratory test order made after first encounter with doctor (5 example laboratory tests)
Troponin I (ng/mL) 8.6% 44.3% 8.3 (8.1–8.6)
BNP (pg/mL) 3.3% 25.8% 10.3 (9.9–10.7)
PT/INR/PTT (sec) 10.0% 43.4% 6.9 (6.7–7.1)
Lactate whole blood (mmol/L) 4.9% 30.2% 8.4 (8.1–8.7)
CBC with differential (K/uL) 32.4% 74.2% 6.0 (5.8–6.1)

Imaging test order made after first encounter with doctor (5 example imaging tests)
Chest x-ray 3.5% 26.4% 9.9 (9.5–10.3)
CT head scan without contrast 3.3% 11.1% 3.7 (3.5–3.9)
CT abdomen and pelvis scan with contrast 0.86% 2.0% 2.3 (2.1–2.5)
Acute abdominal series 1.8% 3.2% 1.8 (1.7–1.9)
CT pulmonary embolism scan 0.17% 0.79% 4.8 (4.1–5.7)

Other clinical interventions after first encounter with doctor (5 example items)
Insert saline lock 2.9% 5.7% 2.0 (1.9–2.1)
Orthostatic vital signs 2.3% 3.7% 1.6 (1.5–1.7)
Cardiac monitoring 0.9% 4.9% 5.7 (5.3–6.1)
Consult to neurology 0.4% 2.2% 5.7 (5.1–6.3)
Consult to acute care surgery 0.4% 2.0% 4.6 (4.2–5.1)

BNP, brain natriuretic peptide; bpm, breaths per minute; CBC, complete blood count; CI, confidence interval; CT, computed tomography; PT/INR/PTT,
prothrombin time/international normalized ratio/partial thromboplastin time; rpm, rate per minute
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are additional information gains with the first set of laboratory/
imaging test orders and other clinical intervention items (T3-
Initial Assessment) and laboratory test results (T4-Initial Lab
Results) that lead to further improvements in prediction quality.
Unlike the admission prediction study conducted at the ED in an
Israeli hospital [26], the results of laboratory tests (at T4-Initial
Lab Results) seem more informative than the decisions to order
specific tests and provide other clinical interventions (at T3-
Initial Assessment) to enhance the predictions in our study. For
reference, we also compare our prediction performance for the
binary classification at triage (C1 at T2-Triage) with other ad-
mission prediction models made around triage as well as triage
nurse predictions (Table 14) [31, 37, 50, 51].

4.3 C2 classification scheme

Similar to the C1 classification scheme, the C2 class scheme
gains the steepest increase in prediction ability at triage
(Table 9). It is noticeable that the OU class, being an interme-
diate class between the IU class and the discharge class, does
not seem to have clear clinical distinction compared to the other
classes. The laboratory test result items (T4-Initial Lab Results)

prove their predictive power at the C2 level. In particular, the
precision of classification for the OU class exceeds 50% utiliz-
ing laboratory test results, doubling the sensitivity at T2-Triage.

4.4 C3 classification scheme

Predictions on the C3 classification scheme provide the most
actionable information among the three classification schemes
for the proactive coordination of admission processes. We
present prediction and analysis results for the C3 classification
scheme from multiple angles to open a rich discussion.

4.4.1 Prediction quality evolvement trajectories

The C3 class classification scheme would provide the most
informative results for proactive resource coordination. We
choose to report prediction results graphically to clearly depict
prediction quality progression for each class (Fig. 4) as well as
with a table that reports numerical values of classification sen-
sitivity and precision levels at C3 (Table 15 in the Appendix).
Figure 4 reports the sensitivity (Fig. 4a) and precision (Fig. 4b)
results for each class. The C3 classification scheme is an

Table 7 Bivariate analysis for continuous variables gathered since triage (six and five representative items for triage vital signs and laboratory test
results, respectively)

Variable Discharge Admission

Mean (median) (Q1, Q3) Mean (median) (Q1, Q3) Hedge’s g statistic
(absolute value)

Triage vital sign
Temperature (°C) 98.3 (98.2) (97.9, 98.6) 98.4 (98.2) (97.9, 98.6) < 0.01
Pulse (rpm) 86.4 (85) (74, 96) 89.5 (88) (75, 103) 0.16
Systolic blood pressure (mmHg) 133.4 (132) (119, 147) 137.1 (136) (119, 154) 0.16
Diastolic blood pressure (mmHg) 78.5 (78) (69, 87) 79.1 (78) (67, 88) 0.05
Respirations (bpm) 18.6 (18) (16, 20) 19.7 (18) (18, 20) 0.22
Pulse oximetry (%) 98.2 (99) (97, 100) 97.2 (98) (96, 99) 0.30
Results from laboratory tests ordered at first encounter with doctor (5 example laboratory tests)
Troponin I (ng/mL) 0.04 (0.04) (0.04, 0.04) 0.19 (0.04) (0.04, 0.05) 0.09
BNP (pg/mL) 185.3 (35) (12.0, 110.0) 568.9 (128) (33.0, 587.0) 0.41
PT/INR/PTT (sec) 15.2 (13.8) (13.2, 14.6) 16.8 (14.4) (13.5, 16.1) 0.20
Lactate blood (mmol/L) 1.8 (1.4) (1.1, 2.1) 2.3 (1.7) (1.2, 2.5) 0.28
CBC with differential (K/uL) 8.0 (7.5) (5.8, 9.6) 9.5 (8.3) (6.2, 11.3) 0.28

Table 8 Comparing prediction model performance at different caregiving stages for C1 classification scheme

C1 class T1-Arrival T2-Triage T3-Initial Assessment T4-Initial Lab Results
Accuracy (95% CI) 77.9% (77.7–78.2) 84.6% (84.4–84.8) 85.5% (85.2–85.7) 87.1% (86.8–87.4)

Admission (24.3%) Sensitivity 30.2% 56.3% 58.7% 63.9%

PPV 60.0% 74.8% 76.6% 79.2%

Discharge (75.7%) Specificity 93.4% 93.8% 94.2% 94.6%

NPV 80.4% 86.8% 87.5% 89.1%

PPV, positive predictive value; NPV, negative predictive value. The percentage value beside each class name reports the true prevalence of the class
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imbalanced multiclass classification problem with a small frac-
tion of the patients belonging to minor classes (especially TU
and ICU with ~2% and ~4% in the testing sample, respective-
ly), compared to themajor class (i.e., dischargewith 75.7%). At
T1-Arrival, the prediction model fails to detect the minor clas-
ses, suggesting that there is insufficient information to identify
patients belonging to the minor classes. At T2-Triage, predic-
tion quality varies depending on the class. The highest levels of
sensitivity and prediction are obtained for the ICU class. It
indicates that ICU patients possess the most distinct features
at the triage stage, and even though the number of ICU patients
is small (only 3.8%), around 40% of ICU patients can be de-
tected with about 50% precision. Triage information also
carries considerable importance for GPU class prediction.

We also observe that predictions of the TU and OU classes
are markedly less accurate compared to the ICU and GPU
classes at T2-Triage, implying that unlike ICU and GPU pa-
tients, TU and OU patients do not have clear clinical trajectory
at triage and remain as in-between states, i.e., the TU between
the ICU and GPU, and the OU between the GPU and dis-
charge. However, we can recognize that the physicians’ deci-
sions to order certain laboratory/imaging tests and provide
other necessary clinical interventions prove useful for
predicting the TU class (T3-Initial Assessment). While

clinical care intensity and needs of TU patients are difficult
to estimate at triage, physicians would start to assess the clin-
ical severity and require care services (especially constant car-
diac monitoring) for patients based on triage information and
try to differentiate TU patients by ordering laboratory/imaging
tests and providing other clinical interventions.

The results in Fig. 4 show that information gained from lab-
oratory test results is generally larger than that from laboratory
test order items. The precision levels of prediction are greater
than 45.0% in all 5 classes at T4-Initial Lab Results, while sen-
sitivity levels vary. The ICU and GPU classes mark the highest
sensitivity levels with more than 42.0% (apart from discharged
patients with 96.4%), while 36.4% of TU classes are detected.
With the comparatively high-performance levels for the ICU
class at T2-Triage, the additional gains of prediction ability for
the ICU class at T3-Initial Assessment and T4-Initial LabResults
are not drastic compared to other minor units. The distinct pro-
gression behaviours of different classes at C3 clearly indicate that
any proactive coordination strategy that utilizes ED disposition
decision prediction should consider the different levels of predic-
tion quality obtained at different care epochs for each IU.

Setting each of the four admission classes as a positive
class at the C3 classification scheme, the false positive rates
at T4-Initial Lab Results are only 1.4%, 1.0%, 4.3%, and 1.4%
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Fig. 4 Characterization of
progressive nature of disposition
decision predictions. Note: Each
line represents each class in the
C3 classification scheme except
the discharge class. The two
figures compare prediction model
performances (sensitivity and
precision, respectively) at the
different caregiving epochs

Table 9 Comparing prediction model performance at different caregiving stages for C2 classification scheme

C2 class T1-Arrival T2-Triage T3-Initial Assessment T4-Initial Lab Results
Accuracy (95% CI) 76.6% (76.3–76.8) 82.3% (82.1–82.6) 83.2% (82.9–83.4) 84.9% (84.6–85.2)

IU (17.7%) Sensitivity 23.5% 56.4% 58.5% 64.6%

Precision 49.1% 66.8% 69.9% 73.1%

OU (6.6%) Sensitivity 0% 6.6% 9.4% 15.3%

Precision (no prediction) 44.3% 44.6% 55.3%

Discharge (75.7%) Sensitivity 96.0% 95.3% 95.7% 95.8%

Precision 79.1% 85.6% 86.2% 87.8%

Note: The term ‘precision’ is used for C2 and C3 schemes rather than ‘PPV’ of C1 binary classification since these schemes do not entail binary
classification
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for the ICU, TU, GPU, and OU classes, respectively. Also, the
area under curve (AUC) values are 0.97, 0.95, 0.89, and 0.84
for the four classes, respectively. The AUC value for the dis-
charge class is 0.92. We provide the receiver operating char-
acteristic curves for the five classes at the C3 classification
scheme at T4-Initial Lab Results (Fig. 5).

Paired t-tests were run for the five paired observations (five
AUC values for the five classes) through the four caregiving
epochs to report formal statistical test results for incremental
improvement in disposition decision prediction. Fig. 6 provides
the forest plots reporting the weights (i.e., the size of the black
squares calculated as the inverse of the standard error values)
and 95% CI of the mean difference between paired observa-
tions (the AUC values for the five classes). The p-values for
T1-Arrival to T2-Triage, T2-Triage to T3-Initial Assessment,
and T3-Initial Assessment to T4-Initial Lab Results are 0.002,
0.02, and 0.007, respectively. The set of test results conforms to
our observations from Fig. 4 and Table 15.

4.4.2 Prediction threshold analysis at C3

It is important to explore how the prediction results can be
further exploited to enable the effective operationalization of
prediction information. Especially, being a probabilistic classifi-
er, multinomial logistic regression outputs an estimated proba-
bility value for each of the classes for a patient as well as a
predicted class. The estimated probability values are metrics to
measure the level of confidence of membership at each disposi-
tion class. By imposing a probability confidence threshold in
making a prediction, the model does not make any prediction
unless one of the classes has a higher probability value than the
threshold. Therefore, as we set higher and higher thresholds,

predictions would become more and more reliable with increas-
ing precision levels. Figure 7a, b show behaviours of the sensi-
tivity and precision of prediction respectively for each class
among the patients who have higher probability values than
the different threshold levels. Figure 7c displays the fraction of
patients remaining in the analysis with the different threshold
values. For instance, if we impose 60% threshold to the ICU
class, the sensitivity of ICU class prediction among the fraction
of the patients increases from 45.8% to 62.1%, and the precision
would increase from 55.4% to 68.8% while 82.6% of the pa-
tients remain (are included) in the analysis. It is noticeable that
although the higher threshold values tend to bring higher sensi-
tivity values for the ICU and TU class patients, it does not affect
the GPU and OU class patients in the same way. This implies
that the predictions of the ICU and TU classes have higher
confidence (with higher probability values) than those of the
GPU and OU classes because of their clinical distinctiveness.

4.4.3 Feature analysis for C3 classification scheme at T4-Initial
Lab Results

We report the most statistically significant features (top 30 var-
iables) at T4-Initial Lab Results for the C3 scheme, based on
the chi-square test (Table 10). The study hospital ED has four
compartmental care areas. Triage nurses determine the most
appropriate care area (e.g., the main ED and fast track) for an
ED patient based on the triage information of the patient. This
feature presents high importance for disposition decision pre-
diction at C3. It is also notable that 14 laboratory test result
features are included in the top 30 list at T4-Initial Lab Results
(the “LAB” items in Table 10). The laboratory test results pro-
vide detailed information on patients’ conditions that can help
predictions at the most granular level (C3). In Table 16, we
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compare the distributions of informative feature values across
the five classes in the C3 classification scheme. The laboratory
test result items as well as the primary care area and emergency
severity score variables are selected to be presented in the table.

A probability value is highlighted in bold when the probability
at a minor class exceeds 30%, or the probability of the dis-
charge class surpasses 95%. For instance, it is noticeable that
patients with “high panic” results in the troponin I test are likely
to be admitted to the TU with 51% probability.

5 Discussion

We attempted to frame ED disposition prediction as an analytics
problem, seeking proactive resource allocation and task initiation
for potential ED admissions to reduce patient boarding. To the
best of our knowledge, this work is the first attempt to define the
ED disposition decision prediction as a hierarchical multiclass
classification problem, categorizing the admission patients into
more detailed classes so that the outcomes of the prediction can
become useful for unit-specific proactive coordination across the
ED-to-IU workflow. This study shows that in the study hospital,
as patient information is accumulated throughout the ED care-
giving process, the prediction power gradually increases with
unique patterns depending on the target class. It implies that a
proper proactive resource allocation and task initiation strategy
should vary across the different classes (i.e., destination units)
depending on their own uncertainty reduction behaviors.

To discuss the use of prediction information in more detail,
we refer back to Table 1, where the general application ideas are
introduced along with promising use cases. In our case study
hospital, it is encouraging to see that reasonable predictive capa-
bility for the four admission classes is obtained with enough lead
time for proactive coordination (i.e., around two and a half hours
prior to the actual disposition decisions for the admitted patients).
This finding shows that there is good potential for realizing the
proactive coordination across the ED-to-IU workflow as well as
the improved care delivery for patients within an ED, which are
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Table 10 Statistically important features for C3 classification scheme
prediction at T4-Initial Lab Result

Order of importance C3 classification scheme predictor

1 Primary care area
2 LAB: troponin I
3 Emergency severity score
4 LAB: PT/INR/PTT
5 LAB: BNP
6 LAB: Lactate whole blood
7 LAB: CBC with differential
8 IMG: Chest x-ray
9 LAB: Basic metabolic profile
10 Age
11 INT: ECG 12-lead
12 Insurance plan
13 LAB: Magnesium
14 LAB: Blood gas venous
15 LAB: Blood culture
16 VT: Temperature
17 LAB: Blood gas arterial
18 Arrival method
19 LAB: Liver profile
20 VT: Pulse oximetry
21 LAB: Phosphorus
22 IMG: CT head without contrast
23 CC: Chest pain
24 INT: Cardiac monitoring
25 LAB: POC glucose
26 CC: Stroke rule out
27 CC: Altered mental status
28 IMG: CT angiography head neck with contrast
29 LAB: Lipase
30 VT: Pulse

CC, chief complaint; IMG, radiology (imaging) test; INT, other interven-
tion; LAB, laboratory test; POC: point-of-care; VT, vital sign
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briefly listed in Table 1. One application that operationalizes the
prediction information is to send an advance bed request signal
for a patient to the predicted destination unit when a prediction
probability value exceeds a pre-set threshold probability. In this
way, a proper inpatient bed can be identified and prepared in
advance while the patient is still going through his/her remaining
ED caregiving processes. This approach can significantly reduce
delay in bed allocation for an admitted patient. In addition, con-
sidering the distinct trajectories of prediction capability for pa-
tients destined to different IUs, advance bed request signals
would be sent to, for example, ICU more often than to TU at
triage. A bed manager would wait until more information is
revealed and collected (beyond triage) for patients that are likely
to be admitted to TU to avoid prediction errors. A data
processing/analytics platform is currently under development to
be implemented at the study hospital for early inpatient bed
preparation and allocation. A similar approach can be applied
for providing a better coordinated transport service to admitted
patients. In large hospitals, inefficient dispatch of transporters
could incur serious delays, and the routing of transporters can
be very complex. Therefore, it is important to assign transporters,
considering currently waiting admitted patients as well as pa-
tients to be admitted soon. By acquiring advance inpatient bed
request signals, a transporter dispatcher can have a better sense
for performing planned transporter dispatches to enhance opera-
tional efficiency. Lastly, the acquisition of advance information
on disposition decisions can improve resource allocation in other
indirect ways. For instance, hospitals can better balance work-
load over multiple IUs by proactively mobilizing care providers,
responding to projected demand. The advance information can
also allow time to prepare spaces in areas that are easily
congested in hospitals (such as discharge holding areas).

This study also provides insights into the relationship be-
tween physicians’ disposition decisions and clinical laborato-
ry test result values through large scale data analysis.

6 Limitations

One of the limitations of this work is that we cannot guarantee
whether the models have exploited the collected information to
the greatest extent. For instance, while we categorized the nu-
merical variables such as vital signs and laboratory test results
into finite levels, more advanced data driven methodologies,
such as deep learning approaches, would be able to better extract
features by thoroughly exploiting interrelationships between the
numerical variables. These approaches might compromise the
repeatability and consistency of prediction, but the methods are
rapidly becoming mature with technical advances. Another lim-
itation of our work is that there is other information in the pa-
tient’s electronic health record that could be included in the
models to further improve the predictive power of the models.
In particular, physician “notes” record clinically significant

information in various formats including text. Since the notes
contain refined information that comes from the interpretation of
the clinical examination of patients, the inclusion of features
derived from physician notes can probably improve the predic-
tion quality for disposition decisions. In addition, considering
that radiology and other imaging tests are one of the most heavi-
ly utilized diagnostic items in the ED, future works should in-
corporate imaging data and/or results summaries from clini-
cians, when available in a timely fashion, into disposition pre-
diction models to improve accuracy. Besides the clinical infor-
mation, socio-demographic information (such as place of resi-
dence and income) can also contribute to improving disposition
decision prediction quality. While this work has primarily fo-
cused on exploiting clinical information readily available in
most EHR systems for building prediction models, the impact
of the inclusion of socio-demographic information is worth in-
vestigating in future works. Finally, even though the study is
conducted at a large level-1 trauma center using a relatively large
dataset from a two-year period, it would be important to replicate
the study at other hospitals. For example, while we could thor-
oughly incorporate all the data items into the models due to the
well-developed information system adopted by the study hospi-
tal, this may not be feasible in other hospitals. However, the
accrual of clinical information to power the proposed patient
disposition prediction models would be comparable across most
EDs. We captured the general caregiving steps in the ED for
analytical discussion on the predictive capability of ED patient
information in predicting disposition decisions.

7 Conclusion

This work builds on a growing body of academic and industrial
literature on the usefulness and feasibility of proactive coordi-
nation in healthcare that can be empowered by predictive ana-
lytics. A proper multiclass prediction framework that considers
the actual patient flow, resource requirements, and resource
management practices around the ED-to-IU workflow can help
with proactive early task initiation and resource allocation for
admitted ED patients to reduce patient boarding. Since reactive
processes are prevalent in current ED-to-IU workflow opera-
tions across most hospitals (including hospital admission ap-
proval, administrative procedures, bedmanagement, transporter
assignment and so on) the prediction results could contribute in
different forms and ways depending on the specific ED-to-IU
operations and practices at different hospitals.
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Table 11 Model hyperparameters selected and used in classification models

Prediction model Hyperparameters

Multinomial logistic regression - No hyperparameters needed to set.

Neural network - Hidden layer structure: a single-hidden-layer neural network.

- Number of nodes in the hidden layer: tested 10, 20, 50, and 100 for each training.

- Fitting method: least-squares.

- Weight decay (the regularization parameter): tested 0.001, 0.01, 0.1, 0, and 1 for each training.

Support vector machine - Kernel type: radial basis function.

- Cost of constraint violation (the constant of the regularization term in the support vector Lagrange formulation):
tested 0.01, 0.1, 1, 10, and 100 for each training.

- Tolerance of termination criterion: 0.001

- Epsilon value in the insensitive loss function of support vectors: 0.1

Appendix

Table 12 Comparison of prediction results gained by different classification techniques at C3 classification scheme

C3 class at T4 Multinomial logistic regression Support vector machine Multilayer perceptron neural network
Accuracy (95% CI) 81.6% (81.2–82.0) 81.4% (80.9–81.8) 81.2% (80.9–81.4)

ICU (3.6%) Sensitivity 45.8% 48.7% 45.4%

Precision 55.4% 52.5% 56.2%

TU (2.2%) Sensitivity 37.0% 36.5% 38.0%

Precision 45.1% 42.1% 42.5%

GPU (11.9%) Sensitivity 42.8% 40.3% 41.9%

Precision 56.9% 57.9% 56.2%

OU
(6.6%)

Sensitivity 17.7% 15.5% 16.0%

Precision 47.5% 46.2% 46.0%

Discharge
(75.7%)

Sensitivity 96.2% 96.4% 96.2%

Precision 86.9% 86.6% 86.8%
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Table 13 List of laboratory test, imaging test, and other clinical
intervention predictors used to build prediction model at T3-Initial
Assessment (including only items) and T4-Initial Lab Results (including
available result information of laboratory tests). Note: For the laboratory
test results (at T4-Initial Lab Results) that have categories pre-set by the

health information technology system in the study hospital, the pre-set
categories were entered into the prediction model. While the table lists all
the test items included in the prediction modeling, some test items that
have almost identical test names were merged as a single item

Laboratory test items (with or without results) Imaging test items (without results) Other clinical interventions (without results)

Only test item: Blood culture, urinalysis, fluid
culture non-CSF (anaerobic/aerobic) with
gram stain, cell count and differential fluid,
albumin fluid, glucose fluid, lactate dehydro-
genase fluid, protein fluid, urine culture, strep
A screen rapid, strep A culture throat, miscel-
laneous test A, stool culture, sodium urine,
creatinine urine, hepatitis B surface antigen,
respiratory culture, hemoglobin total, wound/-
abscess/ drainage culture (aerobic), fungal
culture blood, potassium urine, chloride urine,
urea nitrogen urine, antinuclear antibodies
screen and titer, cell count and differential
CSF, CSF culture, Rhogam evaluation, anaer-
obic culture, Clostridium difficile polymerase
chain reaction, emergency group O red blood
cells, streptococcus culture, vaginal wet
mount, herpes simplex virus culture, crystals
fluid, gonorrhoeae culture, respiratory syncy-
tial virus antigen, carcinoembryonic antigen
peritoneal fluid, vital culture, rapid plasma and
reagin quantitative.

Binary results (such as positive/ negative or
normal/abnormal): Liver profile, salicylate
level, beta-hydroxybutyrate, osmolality urine,
B-type natriuretic peptide, urinalysis
microscopic, pregnancy urine meter, HIV an-
tibody 1 and 2 rapid, Neisseria gonorrhoeae
rRNA, chlamydia trachomatis rRNA,
C-reactive protein, hemoglobin A1c, blood
alcohol (serum ethanol) quantitative, D-dimer,
bilirubin direct, AST/SGOT, ALT/SGPT, uric
acid, infectious mononucleosis antibody
screen, influenza A and B antigens, amylase,
hepatitis screen acute, D-dimer quantitative,
leudocytes stool, Clostridium difficile toxin,
exposure panel HIV 1 and 2, legionella
antigen, HIV-1 and HIV-2 antibodies, trepo-
nemal antibody TPPA, exposure panel hepati-
tis B surface antigen, exposure panel hepatitis
C antibody, T lymphocyte helper/suppressor,
CKMB, prealbumin, carboxyhemoglobin,
hepatitis screen, rubella antibody IgG, sickle
cell test, and HIVantigen/antibody.

Three result categories (categorized according
to numerical levels or discrete outcomes):
Troponin I, prothrombin time/INR, PTT,
calcium ionized, acetaminophen level, lactate
whole blood, blood gas venous, BHCG serum,
PT/INR/PTT, TSH, LDH total, ferritin,
albumin, microscopic ova and parasites,
erythrocyte sedimentation rate, rapid plasma
reagin, CPK total, lactic acid plasma, lipid
profile, ammonia, T4 free, coagulation screen,
FK506 level, thyroid screen, bilirubin total,
haptoglobin, reticulocyte, pregnancy urine
qualitative, confirm ABO/RH type, phenytoin
level free, hemoglobin and hematocrit,

Only test item: CT head without contrast, CT
head orbit without contrast, CT head cervical
spine without contrast, CT head brain without
contrast CT maxillofacial without contrast, CT
head sinuses without contrast, knee left 2
views, knee left 3 views, knee left 4 or more
views, knee right 2 views, knee right 3 views,
knee right 4 or more views, chest 1 view, chest
2 views, lower extremity venous imaging,
abdomen 2 views, US OB< 14 weeks
abdomen single fetus, US OB< 14 weeks
abdomen and transvaginal single fetus, US OB
limited, US OB transvaginal, US
OB> 14 weeks abdomen single fetus, US OB
follow-up single fetus, CT 3D reconstruction
of body, forearm right 2 views, forearm left 2
views, US pelvis non-OB and US transvaginal
non-OB Doppler, US pelvis complete non-OB
andUS transvaginal non-OB, CT lumbar spine
without contrast, abdomen 1 view, VP shunt
chest 2 views abdomen, CT pulmonary
embolism, echocardiogram, CT abdomen pel-
vis without contrast, foot left 2 views, foot left
3 views, foot right 2 views, foot right 3 views,
lumbar sacral spine 2 or 3 views, femur right 2
views, CT cervical spine without contrast, US
abdomen complete, MRI brain with and with-
out contrast, hip left 2 views lateral and
anteroposterior pelvis, CT angiography abdo-
men pelvis with contrast, CT angiography ab-
domen pelvis with runoff, CT renal stone, CT
chest without contrast, CT chest abdomen
pelvis with contrast with or without 2D
construction, CT chest with and without ab-
domen pelvis with contrast, CTchest abdomen
pelvis with contrast with or without 2D
construction, CTchest abdomen pelvis without
contrast with or without 2D construction, hand
right 3 views, hand left 3 views, CT thoracic
spine without contrast, CT thoracic lumbar
spine reformat with contrast, CT thoracic
lumbar spine without contrast, CT thoracic
aortic dissection with and without contrast,
acute abdominal series, cervical spine 2–3
views, CT face with contrast, CT face without
contrast, shoulder left 2 views, shoulder left 3
views, shoulder right 2 views, shoulder right 3
views, hip left 1 view, hip left 1 view with
pelvis, hip right 1 view, hip right 2 views lat-
eral and anteroposterior pelvis, femur left 2
views, elbow left 3 views, CT angiography
head with contrast, CT angiography neck with
contrast, CT angiography head neck with
contrast, wrist left 3 views, wrist right 3 views,
wrist right scaphoid 1 view, humerus right 2
views, soft tissue neck, nuclear medicine
ventilation-perfusion lung scan with chest
x-ray if needed, elbow right 2 views, CT

Only intervention item: Nursing
communication, ECG 12-lead, check
temperature, pelvic exam chaperone,
anticoagulation, pulse oximetry, apply heat to
affected area, consultations, initiate low
intensity heparin protocol, incision and
drainage, insert saline lock, laceration repair,
central line, transfuse red blood cell, low
extremity arterial testing, ventilator,
pharmacologic venous thromboembolism
prophylaxis, applying sling, straight catheter
for urine collection, vital signs, insert arterial
line, insert Foley catheter, visual acuity
screening, bladder scan, blood transfusion
reactions, orthostatic vital signs, check pulse
oximetry while ambulating, pelvic
examination setup, open reduction and internal
fixation of proximal humerus, orthopedic
injury treatment, cardiac monitoring, check
blood glucose, check blood pressure, check
respiratory rate, adult non-invasive ventilation,
oxygen device 2 l per minute (nasal cannula),
peak flow measurement pre/post, strep A
screen, elevate extremity, apply ace wrap, ice
pack, pre-procedural sedation, post-void re-
sidual urine test, intubation, nasogastric tube
insertion/maintenance, blood pressure check
on specific side/area, soap suds enema, oral
hydration, cervical collar hard adjustable, in-
centive spirometry nursing, feed patient,
crutches, undress patient, ice to affected area,
focused assessment with sonography in
trauma, bed rest, nursing dysphagia screen,
emergency department nasal cannula oxygen,
pharmacy to dose vancomycin, measuring
fluid intake and output, wound care, initiate
high intensity heparin protocol, nerve block,
straight catheter, apply soft cervical collar,
urinary catheter, foreign body removal, ab-
dominal binder, apply warming blanket, initi-
ate stroke protocol, hot pack or cold pack,
weigh patient, peak expiratory flow rate, initi-
ate sepsis protocol, eye irrigation, Glasgow
coma scale, and monitor end tidal CO2.
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Table 13 (continued)

Laboratory test items (with or without results) Imaging test items (without results) Other clinical interventions (without results)

cortisol, iron and TIBC, triglyceride,
osmolality, B12 and folate serum, vitamin
B-12, glucose CSF, protein CSF, levetiracetam
level, HIV-1 RNA quantitative, reflexed test
order: FT4, carbamazepine level, and hemo-
globin evaluation.

Four result categories (categorized according
to numerical levels or discrete outcomes):
Lipase, CBC, emergency toxicology screen,
blood gas arterial, drug screen urine, phenytoin
level total, fibrinogen, digoxin level, lithium
level, valproic acid level, and phenobarbital
level.

Five result categories (categorized according
to numerical levels or discrete outcomes):
Basic metabolic profile, magnesium,
phosphorus, CBC and differential, potassium,
comprehensive metabolic profile, and
electrolytes whole blood.

Six result categories and more (categorized
according to numerical levels or discrete
outcomes): ABO group and RH type,
antibody screen, glucose, and vaginosis
screen.

cervical spine without contrast, MRI lumbar
spine with and without contrast, ankle left 3
views, angle right 2 views, ankle right 3 views,
ankle right gravity stress 1 view, CT 3D re-
construction neuro on independent
workstation, elbow left 2 views, MRI cervical
spine with and without contrast, MRI cervical
spine without contrast, CT pulmonary embo-
lism dissection chest with contrast, CT soft
tissue neck with contrast, tibia and fibula right
2 views, humerus left 2 views, sacrum and
coccyx 2 views, feeding tube check, tibia and
fibula left 2 views, MRA head without
contrast, US abdomen limited, US kidneys
complete, ribs left unilateral 2 views, ribs right
unilateral 2 views, US soft tissue groin, elbow
right 3 views, CT soft tissue neck without
contrast, MRI lumbar spine without contrast,
US scrotum Doppler with color and
single-photon emission computed tomography
analysis, fingers left 2 views, finger right 2
views, MRA neck without contrast, US kid-
neys transplant (includes Doppler), US pelvis
complete, pelvis 1 or 2 views, CT pelvis with
contrast, CT pelvis without contrast, CT lum-
bar spine without contrast, thoracic spine 3
views, CT pulmonary abdomen pelvis with
contrast, US breasts performed in emergency
department, CT lumbar spine reformat with
contrast, CT lumbar spine reformat without
contrast, toes left 2 views, toes right 2 views,
US appendix, US abdomen kidney complete,
thoracic spine 2 views, pelvis 3 views or more,
clavicle left, clavicle right, gastrostomy tube
change with fluoroscopy including contrast
injection, US soft tissue abdominal wall, CT
orbit with contrast, CT orbit without contrast,
hip right 1 view with pelvis, orghopantogram
(panorex jaw), mandible 4 views, ribs left
unilateral 2 views with posteroanterior chest,
US aorta, US scrotum with or without color
flow, nasal bones 3 views, calcaneus left 2
views, and calcaneus right 2 views.

2D, 2-dimensional; 3D, 3-dimensional; ALT/SGPT, alanine aminotransferase/serum glutamic pyruvic transaminase; AST/SGOT, aspartate
aminotransferase/serum glutamic-oxaloacetic transaminase; CKMB, creatine kinase-muscle/brain; CO2, carbon dioxide; CPK, creatine phosphokinase;
CSF, cerebrospinal fluid; CT, computerized tomography; ECG, Electrocardiogram; FK506, tacrolimus; FT4, free thyroxine; HIV, human immunode-
ficiency virus; LDH, lactate dehydrogenase; MRA, magnetic resonance angiography; MRI, magnetic resonance imaging; OB, obstetric; PTT, partial
thromboplastin time; (r)RNA, (ribosomal) ribonucleic acid; T4, thyroxine; TIBC, total iron binding capacity; TPPA, Treponema pallidum particle
agglutination; TSH, thyroid stimulating hormone; US, ultrasound
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Table 14 Comparison of prediction performances from selected admission prediction works done around triage, which is the most commonly selected
caregiving epoch in EDs for admission prediction

Study Method Sensitivity Specificity PPV NPV

Present study Logistic regression 56.3% 93.8% 74.8% 86.8%

Sun et al. [31] Logistic regression 33.4% 96.8% 81.6% 71.8%

Walsh et al. [37] Artificial neural network 78.0% 82.0% 68.0% 89.0%

Stover-Baker et al. [50] Expert (triage nurse) 75.6% 84.5% 62.2% 91.1%

Arslanian-Engoren [51] Expert (triage nurse) 57.0% 59.0% 68.0% 56.0%

We select studies that have reported all the four performance measures for comparison. While it is difficult to directly compare different studies due to
various factors (e.g., the proportion of admitted patients and studied patient groups) affecting the performance levels, high PPV and NPV values are
essential for the reliable prediction of admissions and discharges

Table 15 Disposition decision prediction results comparing prediction model performance at different caregiving epochs for C3 classification scheme

C3 class T1-Arrival T2-Triage T3-Initial Assessment T4-Initial Lab Results

Accuracy (95% CI) 75.5% (75.2–75.8) 78.8% (78.5–79.1) 79.6% (79.3–79.9) 81.6% (81.2–82.0)

ICU (3.6%) Sensitivity < 1.0% 39.6% 41.8% 45.8%

Precision 33.3% 48.5% 53.4% 55.4%

TU (2.2%) Sensitivity 0% 13.4% 24.4% 37.0%

Precision (no prediction) 25.7% 31.1% 45.1%

GPU (11.9%) Sensitivity 7.5% 28.6% 33.5% 42.8%

Precision 34.2% 47.1% 51.9% 56.9%

OU (6.6%) Sensitivity 0% 9.8% 12.4% 17.7%

Precision (no prediction) 43.1% 43.0% 47.5%

Discharge (75.7%) Sensitivity 98.9% 96.7% 96.3% 96.2%

Precision 76.6% 83.9% 84.9% 86.9%

Table 16 Distribution of important feature values over the C3 classification scheme classes

Feature values Number of cases
(172,809 in total)

ICU (0.04) TU (0.03) GPU (0.12) OU (0.06) Discharge (0.75)

(a) Primary care area
Area 1 28,898 0.21 0.15 0.21 0.14 0.29
Area 2 47,008 < 0.01 0.01 0.14 0.07 0.77
Area 3 42,453 < 0.01 0.01 0.13 0.06 0.79
Area 4 53,086 < 0.01 < 0.01 0.01 0.01 0.98

(b) LAB: Troponin I
High panic 1545 0.33 0.51 0.13 0.01 0.03
High 4610 0.20 0.25 0.30 0.11 0.14
Normal 24,037 0.09 0.08 0.21 0.18 0.44

(c) Emergency severity score
Severity score 1 3118 0.43 0.07 0.17 0.06 0.28
Severity score 2 60,373 0.07 0.07 0.20 0.11 0.55
Severity score 3 95,455 0.01 0.01 0.07 0.04 0.88
Severity score 4 11,995 < 0.01 < 0.01 < 0.01 < 0.01 0.99
Severity score 5 880 0 < 0.01 <0.01 0 0.99

(d) LAB: PT/INR/PTT
High 11,984 0.17 0.14 0.31 0.09 0.29
Normal 19,293 0.10 0.07 0.20 0.14 0.49
Low 221 0.15 0.07 0.22 0.12 0.44

(e) LAB: Lactate whole blood
High 7458 0.26 0.09 0.31 0.08 0.26
Normal 11,817 0.11 0.08 0.33 0.10 0.38
Low 7 0.57 0.14 0.29 0 0

(f) LAB: CBC with differential
High panic 123 0.40 0.05 0.43 0.03 0.09
High 16,052 0.13 0.06 0.29 0.08 0.44

356 Lee S.-Y. et al.



Table 16 (continued)

Feature values Number of cases
(172,809 in total)

ICU (0.04) TU (0.03) GPU (0.12) OU (0.06) Discharge (0.75)

Normal 54,955 0.05 0.06 0.17 0.10 0.61
Low 2751 0.06 0.06 0.25 0.09 0.54

(g) Basic metabolic profile
High panic 100 0.58 0.08 0.31 0.01 0.02
High 862 0.19 0.08 0.28 0.06 0.39
Normal 63,736 0.06 0.06 0.17 0.10 0.60
Low 9224 0.11 0.07 0.31 0.08 0.42
Low panic 274 0.40 0.10 0.42 0.03 0.04

(h) LAB: Magnesium
High panic 15 0.79 0 0.21 0 0
High 417 0.23 0.10 0.35 0.07 0.24
Normal 1572 0.08 0.09 0.22 0.12 0.49
Low 641 0.10 0.09 0.27 0.11 0.43
Low panic 12 0.18 0.18 0.35 0.15 0.14

(i) LAB: Blood gas venous
High 3958 0.14 0.08 0.32 0.10 0.36
Normal 3001 0.13 0.09 0.35 0.10 0.34
Low 8807 0.12 0.10 0.36 0.10 0.32

(j) LAB: Blood culture
Measured 5705 0.21 0.08 0.47 0.06 0.18

(k) Blood gas arterial
High 1993 0.39 0.05 0.22 0.05 0.28
Normal 867 0.25 0.06 0.22 0.05 0.42
Low 649 0.32 0.09 0.27 0.06 0.27
Low panic 504 0.40 0.09 0.32 0.04 0.16

(l) LAB: Liver profile
High 6469 0.15 0.07 0.30 0.08 0.40
Normal 12,634 0.07 0.05 0.22 0.09 0.58

(m) LAB: Phosphorus
High 1562 0.25 0.08 0.37 0.05 0.25
Normal 6801 0.10 0.09 0.26 0.11 0.44
Low 814 0.11 0.08 0.34 0.09 0.37
Low panic 46 0.20 0.09 0.41 0.09 0.22

(n) LAB: POC Glucose
Abnormal 290 0.43 0.13 0.19 0.05 0.20
High panic 1005 0.15 0.07 0.25 0.07 0.46
High 228 0.09 0.05 0.16 0.07 0.62
Normal 12,679 0.08 0.06 0.19 0.10 0.56
Low 14 0.07 0 0.29 0.07 0.57
Low panic 46 0.28 0.09 0.20 0.11 0.33

(o) LAB: Lipase
High panic 530 0.12 0.06 0.54 0.06 0.22
High 750 0.11 0.05 0.31 0.09 0.43
Normal 14,058 0.07 0.05 0.20 0.09 0.60
Low 1 0 1.00 0 0 0
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