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Abstract Scheduling appointments in a multi-disciplinary
clinic is complex, since coordination between disciplines is
required. The design of a blueprint schedule for a multi-
disciplinary clinic with open access requirements requires
an integrated optimization approach, in which all appoint-
ment schedules are jointly optimized. As this currently is an
open question in the literature, our research is the first to
address this problem. This research is motivated by a Dutch
hospital, which uses a multi-disciplinary cancer clinic to
communicate the diagnosis and to explain the treatment plan
to their patients. Furthermore, also regular patients are seen
by the clinicians. All involved clinicians therefore require a
blueprint schedule, in which multiple patient types can be
scheduled. We design these blueprint schedules by optimiz-
ing the patient waiting time, clinician idle time, and clinician
overtime. As scheduling decisions at multiple time intervals
are involved, and patient routing is stochastic, we model
this system as a stochastic integer program. The stochas-
tic integer program is adapted for and solved with a sample
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average approximation approach. Numerical experiments
evaluate the performance of the sample average approxima-
tion approach. We test the suitability of the approach for
the hospital’s problem at hand, compare our results with the
current hospital schedules, and present the associated sav-
ings. Using this approach, robust blueprint schedules can be
found for a multi-disciplinary clinic of the Dutch hospital.

Keywords Multi-disciplinary planning · Stochastic
processes · Sample average approximation · Appointment
scheduling

1 Introduction

Multi-disciplinary teams are increasingly being introduced
in various medical contexts, such as in outpatient clinics
and operating rooms [24, 29], and in various medical dis-
ciplines, such as cancer care, rehabilitation, and neurology
[15, 40, 47, 48]. However, the coordination and control of
these teams is complex, as multiple clinicians from multiple
departments are involved.

This research is motivated by University Medical Center
Utrecht (UMCU), a large hospital in the Netherlands. Dur-
ing the redesign of one of their cancer outpatient clinics,
a decision on the blueprint of the agendas of the involved
nurse practitioners and clinicians has to be made. This is
a complex decision, as multiple patient types are involved,
and the overall performance of the cancer clinic depends on
the interplay between all agendas. Therefore, the optimiza-
tion of the blueprint schedules of this multi-disciplinary
clinic requires an integrated optimization approach, in
which all appointment schedules are jointly optimized.

The contribution of this paper is that we design optimized
blueprint schedules for multi-disciplinary appointment
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planning at a tactical level of control, which incorporates
uncertainties in patient routing. As this currently is an open
question in the literature, our research is the first to address
this problem. Also, we test the suitability of the approach for
the hospital’s problem at hand, we compare our results with
the current hospital schedules, and present the associated
savings. Furthermore, although initiated from a cancer clinic
application, many other multi-disciplinary applications can
benefit from a solid approach towards multi-disciplinary
clinic blueprint planning.

This paper is organized as follows: First, we introduce
the problem in Section 2. Then, the relevant literature on
open access multi-appointment planning is described in
Section 3. Section 4 presents the mathematical problem
description and solution method. Section 5 presents the
proposed solution methodology, followed by the numerical
experiments and a case study in Sections 6 and 7, respec-
tively. Finally, Section 8 gives the conclusions, discussion
and opportunities for further research.

2 Problem description

Figure 1 shows the pathway of a cancer patient follow-
ing the diagnostic trajectory in the hospital at hand at an
arbitrary day in which a multi-disciplinary team meeting
(MTM) takes place. In our collaborating hospital this is
every Tuesday. These patients, with (a high probability of
having) cancer, are often referred from other hospitals, and
require multiple disciplines to be involved in their treat-
ment. Therefore, this pathway starts with an intake, and if
required some additional diagnostic tests, followed by an
MTM. After the MTM, on that same day, the patient gets
two consultations in the multi-disciplinary clinic. The first
consultation is with a nurse practitioner (NP) (or another
clinician, depending on the preference of the care system),
where the patient receives the cancer diagnosis. Thereafter,
the patient has a second consultation with a clinician who
explains more about the proposed treatment. Each possible
treatment is executed by a discipline, with corresponding clin-
icians who provide the treatment consultation. The treatment,

and thus the type of clinician needed, is only known during
the MTM. Therefore, there is uncertainty about the number
of patients that require a consultation for each clinician type.
In this paper we focus on these two consultations, which we
will refer to as the ‘multi-disciplinary clinic’. The hospital
aims to minimize waiting time between these two consulta-
tions, as patients receive a high-impact message from their
care providers. Furthermore, the hospital wants their clini-
cians to be fully utilized. Therefore, the clinicians’ overtime
and idle time need to be minimized as well.

The patients that follow this care pathway are referred
to as ‘multi-disciplinary patients’. Thus, multi-disciplinary
patients are patients that require an appointment with a
NP, followed by a walk-in appointment with a clinician
on a First Come First Serve (FCFS) basis. These multi-
disciplinary patients are diagnosed for a specific tumor type.
Similarly to practice, the schedule for the NPs is made
directly following the MTM, thus the number of multi-
disciplinary patients and the treatment modality for every
patient is known at the time of scheduling their appoint-
ments with the NP. Therefore, the referral probabilities for a
multi-disciplinary patient from the NP to the different clini-
cian types are known. Furthermore, since multi-disciplinary
patients are already in the hospital, the no-show rate of
multi-disciplinary patients is close to 0%. Therefore, we
assume all multi-disciplinary patients will show up for their
appointment with the NP.

Next to the multi-disciplinary patients, another patient
type is admitted in the multi-disciplinary clinic, which we
refer to as ‘regular patients’. Regular patients only require
a pre-booked appointment with a specific clinician type,
for example for a check-up appointment. These appoint-
ments are booked several weeks to months in advance. The
regular patient demand is assumed to be sufficient to fill
the maximum capacity of the clinic. We assume all reg-
ular patients to show up and to arrive on time for their
appointment. Furthermore, they will be served on the time
of their appointment, even if a multidisciplinary patient
is waiting longer, as pre-booked appointments are prior-
itized. Since regular patients book their appointment in
advance, the regular patient demand is known well before

Fig. 1 Diagnostic pathway of a
cancer patient
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the multi-disciplinary patient demand. Therefore, schedulers
need to know to which appointment slots in the clinicians’
agendas they can schedule regular patients, as selecting the
wrong slots might lead to unnecessary idle, waiting, and
overtime.

We aim to derive a planning method for scheduling
multi-disciplinary patients in the agenda of the NPs, and
a blueprint schedule for each of the clinicians which dif-
ferentiates between slots for multi-disciplinary patients and
regular patients. The NP schedules result in walk-in rates
to the various clinician types. As various combinations of
patients might result in various NP schedules, the clinicians’
blueprint schedules should be optimized together with all
possible NP schedules.

For the agenda of the NPs we assume that the number
of NPs, and thus the number of available appointment slots
per time slot is known, that overbooking is not allowed, and
that all slots are booked during every planning period. For
the agenda of the clinicians, we assume that the number of
clinicians per type are known, and that multi-disciplinary
patients that walk-in into the waiting room of a clinician
type, wait until the first available empty slot with any of the
clinicians of that specific type. Regular patients are always
served at the time of their appointment, and double-booked
appointment slots are not allowed. We assume all patients
are served, if needed in overtime, as one clinician per
clinician type can work in overtime. Furthermore, as all clin-
icians agreed on the same service duration for all patients,
no differentiation between service times of clinician types
is required. The blueprint appointment schedule is designed
as the number of appointments in the agenda of a clinician
that can be booked for a regular patient for each time slot.

To evaluate the performance of the blueprint schedules,
multiple objectives should be considered [26]. We consider
the optimal schedule to be a schedule that minimizes a
cost function, considering the expected multi-disciplinary
patient waiting time between the two appointments, the clin-
ician overtime, and the clinician idle time, similar to the
cost function considered in [32]. The cost function is influ-
enced by the number of regular patients to be scheduled in
the clinicians’ schedules and their timing, as well as by the
sequence in which multi-disciplinary patients are seen by
the NPs.

As an example, consider a very small multi-disciplinary
clinic. Here, one NP has 4 time slots, and two clinicians
of two clinician types (a surgeon and a medical oncologist)
both have 5 time slots, as shown in Fig. 2. In this clinic, there
are multi-disciplinary patients consulted with two tumor
types. Multi-disciplinary patients with tumor A account for
1/4th of all multi-disciplinary patients seen, and have a
probability of getting surgery of 20%, and a probability of
getting chemotherapy of 80%. Multi-disciplinary patients
with tumor B account for 3/4th of the multi-disciplinary

Fig. 2 Example of a NP schedule and clinicians’ blueprint schedules
of a small multi-disciplinary clinic with two clinicians. We con-
sider consultations for multi-disciplinary patients with tumor type A
(A), consultations for multi-disciplinary patients with tumor type B
(B), and regular consultations (C). The empty slots in the clinicians’
schedules are available for multi-disciplinary patients on a FCFS basis

patient population, and have a probability of getting surgery
of 60%, and a probability of getting chemotherapy of 40%.
The question is how many and in which time slots the clin-
icians can see regular patients, in order to minimize the
expected waiting for multi-disciplinary patients, and to min-
imize the idle and overtime. Since regular patients want to
get their appointment dates multiple weeks in advance, this
schedule should be designed before the treatment modalities
of the multi-disciplinary patients are known, as their treat-
ment is decided during the MTM. However, at this point
we do not know the number of arrivals of the two multi-
disciplinary patient types. Therefore, all possible optimal
schedules of the NP should be taken into account as well,
since these schedules determine the arrival rate to the clin-
icians. Following the MTM, after the treatment modalities
of the multi-disciplinary patients are known, the optimal
schedule for the NP can be determined and immediately
executed, whereas the schedule for the clinicians is already
fixed at that moment. An example of a possible schedule for
the NP, and a possible blueprint schedule for the clinicians
is shown in Fig. 2.

3 Literature

Appointment scheduling has been well studied for many
service industries, including health care [34]. Within the
broad range of health care appointment scheduling litera-
ture, we focus on two particular areas. Section 3.1 focuses
on multi-disciplinary scheduling, and Section 3.2 focuses
on open access scheduling. In Section 3.3, we conclude
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by assessing the possibilities to combine multi-disciplinary
and open access scheduling. For extensive overviews of
appointment scheduling in health care, refer to [7, 16, 17].

3.1 Multi-disciplinary scheduling

We define multi-disciplinary scheduling as the planning of
multiple appointments per patient over multiple resource
types. Although the implementation of multi-disciplinary
systems has frequently been reported in the literature (e.g.
[2, 13–15, 47]), the organization of these multi-disciplinary
systems has been underrepresented in the literature [26].

This research focuses on tactical level appointment
schedules for multi-disciplinary systems. The order of activ-
ities within these systems is fixed. Therefore, within the
field of multi-disciplinary scheduling, we are interested in
studies that include precedence relations, where jobs need
to be scheduled in a predefined order on multiple resources.
The system under review can be represented as a flow shop,
which is known to be NP-hard for most configurations [12].
Multi-disciplinary open or mixed shop systems, such as
[37], are out of scope.

Multiple authors consider the planning of flow-shop type
multi-disciplinary systems, for example in oncology [23,
40] and primary care practices [30]. Liang et al. [23] ana-
lyze the impact of scheduling methods on the oncology
clinic performance, where patients visit an oncologist and a
nurse for chemotherapy treatment. Although various patient
routings are considered, they consider this as given in
their model. Saremi et al. [44] address the appointment
scheduling of patients with various service sequences as
well. They determine the appointment time of each patient
in order to optimize a combination of waiting time and
completion time. However, the number of patients per
patient type, and thus the patient routing, are known in
advance. Oh et al. [30] sequence patient appointments using
a stochastic integer programming model with the sample
average approximation method. They included the effects
of uncertainty in service time, but fixed the patient rout-
ing requirements. Romero et al. [40] use simulation to
evaluate different appointment scenarios in which appoint-
ment blocks are reserved for multi-disciplinary patients.
This way, they prove the feasibility of a one-stop-shop for
basal cell carcinoma. However, they do not optimize the
amount of capacity that needs to be reserved for serving the
multi-disciplinary patients.

Simulation is the most widely applied technique in the
literature studying the organization of multi-disciplinary
scheduling. Simulation is used to analyze the performance
of multiple clinics under a variety of scenarios, including various
appointment rules and appointment schedules [9, 18, 23, 25,
31, 40, 43, 44], which show significant improvements compared
to the current practice in partnering health care centers.

Besides simulation, heuristics are applied. Both local
search methods [42, 44] and other meta-heuristics [33] are
applied to develop patient schedules, as well as approxi-
mate stochastic approaches [30] and simple planning rules
[22, 41].

Since multi-disciplinary appointment scheduling
involves multiple facilities that share patients, multiple
performance indicators should be evaluated both for each
facility at a local level as well as for the full system at a
global level [26]. Not only the performance of the system,
but also patient performance and clinician performance is
taken into account in the literature.

Concluding, multi-disciplinary systems with precedence
constraints are complex systems. Therefore, researchers
focus on approximate solutions, such as simulation and
heuristics, in order to optimize or evaluate the performance
of these systems. To the authors’ knowledge, approaches
to optimize or evaluate multi-disciplinary systems with
stochastic patient routing are not available in the literature.

3.2 Open access scheduling

Open access scheduling is also known as same day schedul-
ing, advanced access scheduling, short-notice scheduling,
and walk-in scheduling [17, 36]. It entails the planning of
multiple patient classes with different planning horizons.
Open access approaches are introduced by [28], and were
quickly adopted to reduce the effect of no-shows and cancel-
lations [38, 39], as an alternative to overbooking strategies
[e.g. 11, 46]. Since this introduction, multiple researchers
have researched the organization of open access appoint-
ment scheduling, both with a multi-day focus as well as an
intra-day focus.

The multi-day focus concerns the percentage of appoint-
ment slots to reserve for open access patients [10, 35, 36,
45, 49], since this percentage influences amongst others the
queue length and overtime [10]. Contrary to most available
literature, Wiesche et al. [49] consider flexible capacity, to
cope with varying patient arrival rates during the week in
a primary care clinic. They use an integer programming
approach to determine the optimal capacity, taking open
access and regular patients into account, and evaluate the
system performance by a stochastic simulation.

The intra-day focus concerns the sequence of fixed
and open access appointments slots during the day [49],
and the allocation of open access patients to appointment
slots [4]. Since most authors evaluate multiple appointment
sequences by a simulation study [e.g. 19, 49], only little
work is performed on the optimization of these blueprint
schedules. Peng et al. [32] Optimize the number and posi-
tion of open access and regular appointments by developing
a blueprint schedule that minimizes the patient waiting time
and clinician idle and overtime. Due to the high problem
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complexity of real life cases, their Genetic Algorithm (GA)
approach in combination with simulation requires high
computational effort.

Few studies focus on the combination of multi-day and intra-
day decisions. Kortbeek et al. [21] Optimize the blueprint
schedule considering both walk-in and scheduled patients,
while allowing walk-in patients to be deferred. They
develop two queuing models and propose a heuristic approach
to generate appointment schedules based on these models.

Most open access literature consider a single-provider
service system [39] with fixed deterministic appointment
intervals, where the capacity for each day is fixed and
known [36], and where the demand and arrival rates are
given [21, 35, 38]. The schedules of all providers involved
are often assumed to be independent, both for providers of
the same patient population, as well as for up- and down-
stream appointments [35, 36, 38]. Furthermore, a wide range
of (combinations of) performance indicators is considered.

Concluding, open access scheduling focuses on deter-
mining the number of appointment slots and the sequencing
of open access and fixed appointment slots. Where most
literature assumes independent schedules, in our experi-
ence, schedules of clinicians influence each other, as the
arrival rate at a walk-in clinic is determined by appointment
schedules or service rates of upstream clinics. Open access
scheduling with dependent schedules is an open challenge
[36].

3.3 Contribution

Despite the long tradition of appointment planning in the
literature, there has not been any attention for develop-
ing blueprint scheduling for multi-disciplinary appoint-
ment planning with open access requirements, as multi-
disciplinary clinics are an emerging area in health care.

The blueprint schedule design of a multi-disciplinary
clinic with open access requirements requires an integrated
optimization approach, in which all appointment schedules
are jointly optimized. To the authors’ knowledge, the opti-
mization of multiple clinics with open access requirements
has not been considered before [as also argued by 6]. In
addition, in all relevant literature, schedules of clinicians
are assumed to be independent [see also 35, 36, 38], while
in our experience with multiple hospitals, they depend on
each other. Therefore, we analyze a multi-disciplinary clinic
with open access requirements and dependencies between
various clinicians tackling both open challenges.

Furthermore, we consider both multi-day and intra-
day planning decisions. Since the sequencing of multi-
disciplinary patients with the NPs influences the arrival rates
at the clinician types, decisions on the available capacity
for regular patients and on the slot sequencing of multi-
disciplinary patients should preferably be made together.

Concluding, our contribution is threefold. First, we
develop a model that includes dependent patient demand
in open access models, an open challenge according to
[36]. Second, multi-appointment planning in an open access
context is considered in this model, an open challenge
according to [6]. Third, practical applications are presented
in a case study of a real life health care setting.

4 Formal problem description and solution
approach

To address the uncertainty in multi-disciplinary patient rout-
ing in the multi-disciplinary clinic, we adopt a stochastic
programming approach. Stochastic programming has been
applied in various health care settings. [27] developed a
stochastic program to include uncertainty in surgery dura-
tions and length of stay for operating room scheduling, [3]
used a stochastic programming approach for nurse schedul-
ing, and [37] applied stochastic programming to appoint-
ment scheduling. To the best of our knowledge, stochastic
programming has not been applied to multi-appointment
planning with uncertain patient routing before. Section 4.1
formulates the problem as a Stochastic Integer Program. In
Section 4.2 the recourse model is presented.

4.1 Problem formulation

Before we define the problem, we first introduce some nota-
tion, as summarized in Table 1. We use a set notation,
where T are the time slots, and S the clinician types. The
first clinician type (s = 1) corresponds with the NPs, who
have a schedule in which appointments can be scheduled
in time slots 1 to |T | − 1. The remaining clinician types
s (s ∈ S∗) are the ones who have schedules in which slots
can be pre-booked for regular patients, or are left empty for
walk-ins from multi-disciplinary patients in time slots 2 to
|T |. A clinician type has a capacity cs , which means cs clin-
icians of that type are available to see a patient per time
slot.

By the law of large numbers, the number of arrivals that
will be referred to clinician type s follows a multinomial
distribution. Since there is a finite number of possible arrival
patterns, we can evaluate the performance of all possible
scenarios, relative to their probability masses. For each of
these arrival scenarios ξ , the probability of occurrence can
therefore be calculated using the probability mass function
of the multinomial distribution:

φξ = P
(
X

ξ
2 = x

ξ
2 , and ..., and X

ξ
S = x

ξ
S

)

= (T c1)!∏
s∈S∗ x

ξ
s !

∏
s∈S∗

P x
ξ
s

s , (1)
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Table 1 Notation

Index and set Definition

t ∈ T , t ∈ T̃ time slots that are in regular and overtime respectively, with T̃ = {|T | + 1, |T | + 2, . . .}, and T ∗ = T ∪ T̃ \ {1}
s ∈ S clinician types, with S∗ = S \ {1}
ξ ∈ � scenarios

Parameter Definition

x
ξ
s number of multi-disciplinary patients that arrive in scenario ξ and are referred to clinician type s

Ps proportion of multi-disciplinary patients that will be referred to clinician type s for which
∑

s∈S∗ Ps = 1 holds

cs capacity of clinician type s

φξ probability of scenario ξ , as derived from Eq. 1

ε1, ε2, ε3 objective function weights

Variable Definition

X
ξ
s,t number of appointment slots reserved for multi-disciplinary patients in scenario ξ that will be referred to clinician type s

in time slot t

Ys,t number of pre-booked appointment slots scheduled for clinician type s in time slot t

O
ξ
s expected overtime in scenario ξ for clinician type s

W
ξ
s total expected waiting time in scenario ξ for multi-disciplinary patients referred to clinician type s

L
ξ
s,t queue length in scenario ξ at time t for clinician type s

I
ξ
s idle time in scenario ξ for clinician type s

whereby the sum of all xi should be equal to the total
amount of appointment slots c1|T | of the NP. Note that for
|S| = 3 this corresponds to the binomial distribution:

φξ = P
(
X

ξ
2 = x

ξ
2 and X

ξ
3 = x

ξ
3

)
=

(
T c

ξ
1

)
!

x
ξ
2 !xξ

3 ! P
x

ξ
2

2 P
x

ξ
3

3

=
(

T c1

x
ξ
2

)
P

x
ξ
2

2 (1 − P2)
T c1−x

ξ
2 . (2)

To optimize the blueprint schedule for all scenarios, we
minimize for all clinicians s ∈ S∗ the expected overtime
O

ξ
s , multi-disciplinary patient waiting time W

ξ
s , and the idle

time I
ξ
s . To determine the waiting time, we also introduce

the queue length L
ξ
s,t for clinician type s in time slot t . Note

that the queue length in overtime is determined as well,
denoted by L

ξ

s,t̃
. The weights for the overtime, waiting time,

and idle time objectives are ε1, ε2, and ε3 respectively.
In the stochastic program, all possible referral scenarios

are to be evaluated. Therefore, we need two additional deci-
sion variables. X

ξ
s,t is the number of appointments in the

agenda of clinician type s = 1, that will be referred to clin-
ician type s (s ∈ S∗), scheduled in time slot t in scenario
ξ . Ys,t is the number of pre-booked appointments for regu-
lar patients for clinician type s (s ∈ S∗) in time slot t . This
variable is independent of the scenarios, since it reflects the
tactical level blueprint schedule, which has to be set before
the realization of the patient arrivals.

The formal problem definition is as follows:

min
∑
ξ∈�

φξ

(
ε1

∑
s∈S∗

Oξ
s + ε2

∑
s∈S∗

Wξ
s + ε3

∑
s∈S∗

I ξ
s

)
(3)

s.t.
∑
t∈T

X
ξ
s,t = xξ

s ∀s ∈ S∗, ξ ∈ �, (4)

X
ξ
1,t = 0 ∀t ≥ |T |, (5)

∑
s∈S∗

X
ξ
s,t = c1 ∀t ∈ T , ξ ∈ �, (6)

Ys,t ≤ cs ∀t ∈ T \ {1}, s ∈ S∗, (7)
Ys,1 = cs ∀s ∈ S∗, (8)

L
ξ
s,t ≥ X

ξ
s,t + Ys,t − cs ∀s ∈ S∗, ξ ∈ �, t = 1, (9)

L
ξ
s,t ≥ L

ξ
s,t−1 + X

ξ
s,t + Ys,t − cs ∀t ∈ T ∗, s ∈ S∗, ξ ∈ �, (10)

Oξ
s ≥ L

ξ
s,|T | ∀s ∈ S∗, ξ ∈ �, (11)

Wξ
s ≥

∑

t∈T ∪T̃

L
ξ
s,t ∀s ∈ S∗, ξ ∈ �, (12)

I ξ
s ≥ cs |T | + Oξ

s −
∑
t∈T

(
Ys,t + X

ξ
s,t

)
∀s ∈ S∗, ξ ∈ �, (13)

all variables ∈ Z
+. (14)

The objective is to minimize the weighted overtime, wait-
ing time, and idle time, relative to the probability of each
possible scenario of multi-disciplinary patient arrivals (3).
For every scenario, the number of appointments to be sched-
uled for clinician type 1 (e.g. the NP) is given by the
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population distribution, and thus evaluated for every sce-
nario (4). Note that the final slot of the booking horizon
cannot be used by the NP (5). The number of these appoint-
ments should be equal to the capacity of this clinician type
(6). Also, for the remaining clinician types, the number of
pre-booked appointments cannot exceed the capacity (7).
Note that the first time slot of the booking horizon, no multi-
disciplinary patients can be seen, thus all appointment slots
can be filled with pre-booked appointments (8). The queue
length equals the queue length of the previous period plus
the new arrivals (both walk-in and scheduled) minus the
capacity of the clinician type (9)–(10). We assume only one
clinician per clinician type to work in overtime, if neces-
sary. Therefore, the number of overtime patients equals the
number of overtime slots, which is equal to the queue length
of the last time slot for each clinician type (11). Note that
this equation can be replaced with (15) to include multiple
clinicians serving overtime patients:

Oξ
s ≥

∑
t ∈ T̃ L

ξ
s,t−1 ∀s ∈ S∗, ξ ∈ �. (15)

The waiting time for each clinician type is the sum of all
queues during the planning horizon, together with the wait-
ing that occurs in overtime (12). Finally, the idle time equals
the total time in which the clinicians of a clinician type are
unoccupied during the planning horizon (13). Due to the
structure of the model, all variables should be nonnegative
integers (14).

The number of scenarios |�|, grows with the number of
appointment slots c|T | and the number of clinician types
|S|, following the multinomial distribution:

|�| =
(

c|T | + (|S| − 1) − 1

(|S| − 1) − 1

)
. (16)

For a small clinic instance, with 6 time slots with capacity
3, and 5 clinician types, 1,330 scenarios should be evalu-
ated. For instances of clinics with 10 time slots with capacity
4, and 6 clinician types, 123,410 scenarios need to be eval-
uated. This shows that the problem becomes intractable for
large instance sizes, through the high number of scenar-
ios. Therefore, the Sample Average Approximation (SAA)
algorithm will be applied, which approximates the objective
function by considering a random selection of all possible
scenarios [1, 20]. To apply the SAA, we reformulate the
stochastic program as a recourse model in Section 4.2.

4.2 Recourse model

In the two-stage stochastic program with recourse, the first
stage decides upon the optimal blueprint schedules for the
clinician types. This decision is made at the tactical level,
and is fixed for every possible scenario. In the second stage,
the optimal scheduling strategy for the multi-disciplinary
patients at the NP is determined by minimizing the recourse

function, given the realization of multi-disciplinary patient
arrivals.

Through the recourse formulation, as presented in the
Appendix, it is seen that the recourse model is hard to solve,
as it requires a high number of integer recourse functions
to be solved. However, the constraint matrix that defines
the feasible region of X

ξ
s,t of the integer recourse function

is totally unimodular, as all determinants of the constraint
matrix are 0, +1, or -1, and each column has two non-zero
entries, which sum up to 0. Therefore, we can use the LP-
relaxation to solve our integer program if the right-hand
side is integer. Since all parameters and variables are inte-
ger, as cs , |T |, and Ys,t are integers, this allows us to use a
relaxation of X

ξ
s,t as a continuous variable between 0 and 1.

5 Approximation algorithms

To find a solution to the problem, we first propose to solve
the deterministic equivalent of our problem in Section 5.1,
by using expected values for all stochastic variables. This is
the current practice in our partnering hospital and the liter-
ature. However, the stochastic nature of multi-disciplinary
patient arrivals is not taken into account in this approach,
which leads to solutions that are not robust in practice.
Therefore, we apply the Sample Average Approximation
(SAA) method in Section 5.2.

5.1 Average scenario

To be able to solve large instances of the stochastic pro-
gram (3)–(14) from Section 4.1, we evaluate a deterministic
version of the model, in which we assume the multi-
disciplinary patient arrival rate to follow the (rounded)
average scenario. This approach reflects the current hospi-
tal practice, where they design the blueprint schedules based
on the expected patient flow, rounded to the nearest inte-
ger. Furthermore, we think this approach also reflects the
approach taken in the literature, where the patient case mix
is assumed to be fixed and known.

The objective function of the original problem (3) is
replaced by an easier evaluation (17), only considering one
single scenario:

min ε1

∑
s∈S∗

Os + ε2

∑
s∈S∗

Ws + ε3

∑
s∈S∗

Is (17)

This new model will provide a feasible solution to the
original problem. Through the elimination of scenario eval-
uation, the complexity of the model is decreased, and there-
fore, the model can be evaluated within reasonable time. We
assess the expected quality of the solution in reality, by sim-
ulating 1,000 realizations of the system, and evaluating the
performance of these realizations.
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5.2 Sample average approximation algorithm

The SAA algorithm approximates the objective value by
evaluating a sample of |N | scenarios. The scenarios in the
sample are randomly drawn from the scenario population.
SAA does not only provide a solution, it also assesses the
solution quality. Both lower and upper bounds to the objec-
tive of the stochastic program with corresponding optimality
gap and confidence intervals are provided [5]. We follow
the SAA method as proposed in [1, 5, 20], and refer to them
for an in-depth description of this algorithm. The objec-
tive value as defined in Eq. 3, can be approximated by the
average costs of all selected scenarios (18). This gives the
following objective for a given solution x̂:

min
1

|N |
∑
n∈N

(
ε1

∑
s∈S∗

On
s + ε2

∑
s∈S∗

Wn
s + ε3

∑
s∈S∗

In
s

)
(18)

The constraints corresponding to the mathematical model
of the SAA, are equal to constraints (31)–(39), where the
full scenario set � (ξ ∈ �) is replaced by a sample set of
scenarios N (n ∈ N).

This algorithm generates |M| replications of |N | samples
for which the SAA model is solved. For each replication m,
we generate a random sample of size |N |, and let v̂m|N | be
the optimal objective value, and x̂m|N | be the corresponding
optimal solution for replication m. When these values are
computed for all replications, we evaluate statistical bounds
over the total number of replications |M|. We have:

v̄
|M|
|N | = 1

|M|
∑
m∈M

v̂m|N |, (19)

which is an estimator of the objective function E[v̂|N |], and
thus a lower bound to the optimal solution [20]. Further-
more, we have:

V ar
v̄

|M|
|N |

= 1

|M|(|M| − 1)

∑
m∈M

(
v̂m|N | − v̄

|M|
|N |

)2
, (20)

which is an estimator of the variance of E[v̂|N |].
Through the Central Limit Theorem, we can determine

the 95% confidence interval (α = 0.05) of the lower bound
by:

[
v̄

|M|
|N | −

za/2 ∗ σ
v̄

|M|
|N |√|N | , v̄

|M|
|N | +

za/2 ∗ σ
v̄

|M|
|N |√|N |

]
. (21)

Furthermore, an independent random sample of size
|N ′| is generated. To compute the upper bound, the inde-
pendent sample of size |N ′| is used to estimate the true

objective value ĝ|N ′|
(
x̂m|N |

)
, using (22), and the solution

variance V ar
ĝ|N ′|

(
x̂m|N |

), using (23).

ĝ|N ′|(x̄)

= 1

|N ′|
∑
n∈N ′

(
ε1

∑
s∈S∗

On
s + ε2

∑
s∈S∗

Wn
s + ε3

∑
s∈S∗

In
s

)
(22)

V arĝ|N ′ |(x̄) = 1

|N ′|(|N ′| − 1)

∑
n∈N ′

[(
ε1

∑
s∈S∗

On
s + ε2

∑
s∈S∗

Wn
s + ε3

∑
s∈S∗

In
s

)
− ĝ|N ′|(x̄)

]2

(23)

We can determine the 95% confidence interval (α =
0.05) of the upper bound by:
[
ĝ|N ′|(x̄) −

zα/2 ∗ σĝ|N ′|(x̄)√|N ′| , ĝ|N ′|(x̄) +
zα/2 ∗ σĝ|N ′|(x̄)√|N ′|

]
.

(24)

The optimality gap of each feasible solution x̂m|N | can now
be estimated by subtracting the lower bound from the upper

bound, ĝ|N ′|
(
x̂m|N |

)
− v̄

|M|
|N | , with corresponding estimated

variance V ar
v̄

|M|
|N |

+V ar
ĝ|N ′|

(
x̂m|N |

). Furthermore, a final solu-

tion to the problem can be chosen from the replication

sample, for example with the best value for ĝ|N ′|
(
x̂m|N |

)
.

6 Numerical experiments

Thissection describes the numerical experiments. Section 6.1
describes the test instances and input parameters, and
Section 6.2 presents the experiment results.

6.1 Input parameters

This section describes the input parameters and test instances,
as summarized in Table 2.

Input parameters We solve the SAA model for sample
size |N | = 25, number of replications |M| = 20, and sam-
ple size to estimate the objective value |N ′| = 1, 000. The
SAA algorithm is implemented in AIMMS 4 with CPLEX
12.6.

Test instances We consider an outpatient clinic with |S| =
5 clinician types. Since a clinic operates during the after-
noon, in which typically a planning horizon between 8 and
10 time slots of 30 minutes is considered, we use a plan-
ning horizon of |T | = 10. Hereby we consider a capacity of
c = {1, 2, 4}. This way, we vary over c|T | = 10, 20, or 40
appointment slots per outpatient clinic. 4 treatment special-
ists are considered, for which we vary over three scenario
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Table 2 Experiment settings

Parameter Settings

|N | 25

|M| 20

|N ′| 1,000

|S| 5

|T | 10

c 1,2,4

(P2, . . . , P5) (0.25, 0.25, 0.25, 0.25),

(0.1, 0.2, 0.3, 0.4), (0.4, 0.1, 0.1, 0.4)

ε1, ε2, ε3
1
3

distributions. These distributions are given by (P2, . . . , P5)

= (0.25, 0.25, 0.25, 0.25) for pattern 1, (0.1, 0.2, 0.3, 0.4) for
pattern 2, and (0.4, 0.1, 0.1, 0.4) for pattern 3. Recall that
multi-disciplinary patients cannot be referred to clinicians
of type 1, since these clinicians diagnose the patient. Equal
weights are assigned to ε1, ε2, and ε3.

6.2 Experiment results

This section first describes the outcomes of the experiments
to set the input parameters. Thereafter, the results of the
different test instances are discussed.

Input parameter setting experiments The total number
of possible scenarios follows from the number of clinician
types and the number of appointment slots, as determined
with Eq. 16. Unfortunately, the stochastic program becomes
intractable if all possible scenarios are evaluated. Therefore,
we determine a reasonable sample size in terms of solution
quality and computation time.

To evaluate the amount of samples and replications, we
analyze the scenario with Pattern 1 in more detail. Figure 3
shows the objective value behavior with different values for
|N |. The objective value converges, and it can be seen that
|N | = 25 samples will provide a reasonable optimality gap.

The solution quality increases with an increased number
of samples and increased number of replications, against
a price of computation time. For our problem instances, a
sample size of |N | = 25 and replication number of |M| =
20 showed to give good solutions. In the remainder of this
research, all experiments are performed with |N | = 25 and
|M| = 20, unless stated otherwise.

Experiment results of test instances Table 3 shows the
results of the experiments. We analyzed the difference
between the stochastic and deterministic approach, the
effect of the clinic size, and the impact of different popula-
tion distributions.

Fig. 3 Objective value behavior with increasing number of scenarios |N |

As Table 3 shows, the deterministic equivalent problem
always derived an objective value of 0. Since only one sce-
nario is evaluated, the schedules of the clinician types can be
exactly adapted to the NPs’ schedule. Thus, no waiting time,
idle time, and overtime are incurred. However, as we can
see in the evaluation of the deterministic equivalent solu-
tions with 1,000 realizations, there will be an equal amount
of overtime and idle time, as well as a large amount of wait-
ing time in practice, which adds up to two to three times
the performance of the more robust solution of the SAA
approach (see Fig. 4). Note that the idle time and overtime
are equal, as the deterministic equivalent solution fills all
appointment slots. For each incurred idle appointment slot,
a patient needs to be seen in overtime. Thus we can con-
clude that the SAA solution is more robust in practice, as it
encounters for uncertainties in arrivals.

When the clinic size increases, the planning performance
of the clinic slightly reduces, as can be seen from Table 3.
Furthermore, the scenario distribution has impact on the
schedule performance. Pattern 1 showed to have worse per-
formance than patterns 2 and 3, which can be explained by
the fact that every clinician’s schedule has the same degree
of uncertainty. In the other patterns, some clinician types
get less referred multi-disciplinary patients, which means
less disturbance by multi-disciplinary patients. On the
other hand, some clinician types get more referred multi-
disciplinary patients, which gives them economies of scale.

7 Case study

This section presents a case study of the hepato-pancreato-
biliary (HPB) clinic of UMCU. In Section 7.1, UMCU’s
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Table 3 Results of numerical experiments

Exp. Settings SAA Det. approach

no. c |T | |cT | p Obj. Obj. True obj.

1 1 10 10 1 2.200 0 4.616

2 1 10 10 2 1.893 0 5.150

3 1 10 10 3 1.867 0 4.224

4 2 10 20 1 2.613 0 5.651

5 2 10 20 2 2.267 0 6.725

6 2 10 20 3 2.307 0 5.838

7 4 10 40 1 3.293 0 7.217

8 4 10 40 2 3.120 0 9.697

9 4 10 40 3 2.787 0 8.217

HPB clinic is described to give some context. Section 7.2
gives the input parameters and describes the case study
instance. Finally, Section 7.3 presents the case study results
using the SAA algorithm.

7.1 HPB department

UMCU’s HPB cancer clinic provides care to patients with
a (possible) tumor in their liver, pancreas, gallbladder, or
biliary. In 2015, 318 new multi-disciplinary patients were
seen in this clinic, which faces a growing patient demand.
Every Tuesday, an MTM is conducted to assess all multi-
disciplinary patients who were referred to UMCU, as well
as the patients who need a second-opinion or patients who
experienced recurring physical discomfort. Each patient
has an intake (and possible additional diagnostic tests)
in the morning of the same day. Four different medical

Fig. 4 True objective value behavior of the deterministic equivalent
problem

specialties are present in the MTM meeting, in line with
the possible treatment options: an oncological surgeon, a
gastroenterologist, a radiotherapist, and a medical oncolo-
gist. Furthermore, the NP, pathologist, radiologist, genetic
counselor, and some paramedical staff join the MTM.

During the afternoon, the multi-disciplinary clinic takes
place, with consultation possibilities for all four specialties.
Since surgery and chemotherapy are the most frequently
recommended treatment modes, these specialties are present
with multiple staff members. Furthermore, regular patients
are seen by the four specialties for follow-up consultations,
to ensure a high clinician occupation rate. These patients are pre-
scheduled depending on the patient and clinician’s preferences.

UMCU has provided real life data to evaluate the
blueprint schedule design for the HPB clinic. The data spans
the period of January 2015 to June 2016. Furthermore, the
HPB oncology department of UMCU is exploring a growth
scenario, in which is collaborated with multiple neighboring
hospitals. Therefore, we evaluate this growth scenario as well.

7.2 HPB instances and input parameters

Current situation We consider a small outpatient clinic
with |S| = 5 clinician types, with a planning horizon of
|T | = 8, each consisting of 2 time slots of 30 minutes. Thus,
the available capacity equals c = 2, which gives |cT | = 16
appointment slots.

Table 4 Referral probabilities from clinician type 1 to other clinician
types per appointment type for the HPB case study

Appt. type Surg. Onc. RT GE

1 0.46 0.10 0.14 0.30

2 0.38 0.28 0.34 0.00

3 0.38 0.27 0.35 0.00

4 0.19 0.46 0.05 0.30
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Table 5 Weight settings, including overtime (ε1), waiting time (ε2),
and idle time (ε3)

Weight scenario no. ε1 ε2 ε3

1 1
3

1
3

1
3

2 1
5

3
5

1
5

3 2
5

1
5

2
5

4 1
8

2
8

5
8

The proportion of a population that requires a specific
treatment modality, typically depends on the tumor types
and the treatment possibilities per tumor type. Let |A| be the
number of tumor types, and let the ka be the proportion of
the population with this specific tumor type. The probability
that a multi-disciplinary patient with tumor a gets treatment
s is denoted with pa,s (

∑
s∈S∗ pa,s = 1 ∀a ∈ A). There-

fore, through probability mapping, the proportion Ps of all
appointments that will be referred to clinician type s can be
determined by:

Ps =
∑
a∈A

kapa,s ∀s ∈ S∗. (25)

We derived the population distribution and referral prob-
abilities from the hospital data. The population distribution
is given by (k1, . . . , k4) = (0.21, 0.10, 0.29, 0.40), and
Table 4 gives the referral probabilities to the surgeon (surg.),
oncologist (onc.), radiotherapist (RT), and gastroenterolo-
gist (GE). This gives a scenario distribution of (P2, . . . , P5)

= (0.3208, 0.3113, 0.1849, 0.1830).
Since hospital staff was divided on the weights of the

three performance measures, we evaluate various weight
scenarios, as shown in Table 5.

To compare the potential savings for UMCU using the
results of the model, we also analyze the current way of
working, which can be approximated by the deterministic
equivalent of the stochastic problem.

Growth scenario As the current outpatient clinic size is
rather small, the HPB departments of UMCU and its neigh-
boring hospitals will merge into one multi-disciplinary HPB
cancer clinic. In this new clinic, the same number of clin-
ician types and appointment slots are considered (|S| = 5
and |T | = 8), but each clinician type has capacity c = 4.
Furthermore, the population will slightly change, to (k1,

. . . , k4) = (0.25, 0.11, 0.25, 0.39). We assume the referral
probabilities remain the same as in the current situation, which
gives (P2, . . . , P5) = (0.3259, 0.3027, 0.1794, 0.1920).

Concluding, nine case study experiments are executed, as
shown in Table 6.

7.3 Case study results

The results of the case study experiments are shown in
Fig. 5. Note that for the deterministic equivalent experi-
ments, the true objective value is shown.

In both the current situation and the growth scenario, the
SAA approach found good quality solutions for the differ-
ent weight patterns, as the gap between the upper bound
and lower bound is reasonably small. Better performance for
specific performance indicators can be derived, depending
on the weight settings. However, a higher weight on spe-
cific indicators comes at a cost of reduced performance on
the other indicators. More specifically, a trade-off has to be
made between waiting and overtime, and the idle time, as
solutions with better waiting and overtime often face worse
idle time performance.

In the growth scenario more multi-disciplinary patients
are seen by the clinicians, which reduces the uncertainty in
their schedules. This is reflected in the lower SAA objec-
tive values for the growth scenario compared to the current
situation relative to the size of the clinic (a difference of
factor 1.48). However, through the higher amount of staff
and patients, higher absolute total overtime, idle time, and
waiting time are incurred.

Table 6 Case study
experiment design Exp.no. |S| |T | c Population distribution Weight scenario no.

CS1 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 1

CS2 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 2

CS3 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 3

CS4 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 4

DE5 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 1

DE6 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 2

DE7 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 3

DE8 5 8 2 (0.3208, 0.3113, 0.1849, 0.1830) 4

CS9 5 8 4 (0.3259, 0.3027, 0.1794, 0.1920) 1

CS10 5 8 4 (0.3259, 0.3027, 0.1794, 0.1920) 2

CS11 5 8 4 (0.3259, 0.3027, 0.1794, 0.1920) 3

CS12 5 8 4 (0.3259, 0.3027, 0.1794, 0.1920) 4
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Fig. 5 Results of case study experiments

Compared with the current way of working, all pro-
posed SAA solutions show better overall performance, of 50
minutes on average, which correspond with associated sav-
ings of 21% of the total clinic time. The performance on
overtime and waiting time is improved for all weight set-
tings, with up to 260 minutes less waiting time in total.
However, in terms of idle time, the current situation might
outperform the proposed SAA solutions. This is caused by
the different amount of regular patients that are pre-booked
in the the multi-disciplinary clinic. As can be seen from the
figure, more patients are served in the current situation, as
the overtime minus the idle time is greater than the over-
time minus the idle time in the SAA solutions. However, the
UMCU decision makers do not aim to serve as many regu-
lar patients as possible, but to serve all of their patients with
as few waiting time and overtime as possible, given a rea-
sonable idle time performance. The idle time performance
is influenced by the amount of regular patients scheduled,
the more regular patients, the less idle time. If idle time is
not important at all, no regular patients will be scheduled, as
this way the waiting and overtime are minimized. Therefore,
the weight given to the idle time, includes the weight given
for serving a high amount of patients. Note that the SAA
solution for experiment 4 shows improved performance on
all performance indicators, including the idle time, through
the high weight on idle time. This shows that the SAA
approach is capable of finding better overall schedules than
the current way of working.

Concluding, we were able to find good schedules for the
HPB clinic practice, based on various weight settings. The
clinic has to decide which weight setting is important to them,
as the overtime, idle time and waiting time measures vary
according to specific settings. Furthermore, they have to make
a final decision on which blueprint schedule to implement.

8 Conclusion and discussion

This paper considers a two-stage stochastic program with
integer recourse for the scheduling of multi-disciplinary
cancer clinics. To solve this scheduling problem, an SAA
approach is adopted. Numerical experiments show and that
the amount of uncertainty in patient arrivals influences the
possible performance of a clinic, and that both for the-
ory and practice good schedules can be obtained using this
approach, which improves the current situation with 21% on
average.

Health care practitioners should carefully discuss how
to set the weights for waiting, idle and overtime, as these
affect the resulting schedules. In situations where clinics
do not incorporate uncertainty in patient routing, and deter-
mine their schedule on the average patient mix, such as
in UMCU’s current situation, high weight is (unintention-
ally) put on idle time, as a high utilization is striven for.
However, this might not reflect a clinic’s intentions, which
shows a thorough analysis of the current clinic’s schedules
is required.

Since all multi-disciplinary patients are discussed at the
MTM, this research considers offline planning. In UMCU,
the required treatment for all multi-disciplinary patients is
known before the scheduling of multi-disciplinary patients
in the NPs’ agendas takes place, as this scheduling step is
done during the briefing preceding the clinic. In UMCU’s
practice, this situation therefore reflects reality. However,
in a more general situation, one might want to schedule
each multi-disciplinary patient at the time of their appoint-
ment request. This requires online planning, for which the
stochastic model still can be used. The totally unimodular
property needs to be dropped in this case, as the required
treatment is not known at the time of the appointment
request. Further research should be executed to develop
a multiple-stage stochastic program in which this new
stochastic variable is taken into account as well.

This research was based on a few assumptions. First, we
assumed a fixed slot structure for the blueprint of all clini-
cians. However, it is known that blueprint schedules without
predefined slot structures might result in better performance
[8]. Further research should show which slot structure is
preferred for multi-disciplinary clinics.

Second, we considered a fixed clinic capacity, an unlim-
ited demand of regular patients, and a fixed amount of
multi-disciplinary patients. In practice, demand for multi-
disciplinary care varies over the weeks. Hospitals tend to
handle this varying demand in several ways. We chose to
fix the capacity, and postpone multi-disciplinary patients
that arrive after all slots are filled to next week’s clinic.
Another way is to always accept multi-disciplinary patients
that arrive, and serve them in overtime. In this case, one
could adapt the number of appointment slots at the NP in
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such a way, that it covers the maximum demand in for
example 95% of the cases, and add an extra constraint to
minimize the number of overbooked NP slots if possible.

Third, we assumed a fixed service duration for all
patients. Although service duration variability has an impact
on the performance of health care clinics [see e.g. 30], in our
case study data on the amount of service duration variability
was not known. Furthermore, as our model would explode
when adding all sources of variability, we chose to incorpo-
rate uncertainty in patient routing over uncertainty in service
duration, as the impact of a patient not visiting a provider
is higher than the impact of a patient having a shorter visit
with a provider. Further research is required to incorporate
more sources of variability into one model, such as variabil-
ity in patient arrivals, service durations, patient routing, and
capacity availability.

Fourth, the objective function of our model includes
multi-disciplinary patient waiting time, and clinician idle
time and overtime. We chose to not take patient access
time into account, for multi-disciplinary as well as regular
patients. Since all multi-disciplinary patients are assumed
to already be present in the hospital, all multi-disciplinary
patients have equal arrival times. Including the access time
for multi-disciplinary patients would therefore not influence
the optimal solution. Furthermore, the access time of regu-
lar patients is influenced by factors outside the system under
review, as regular patients are also served in other clinics.
Therefore, the access time for regular patients cannot be
accurately determined.

Fifth, the model assumes that referrals can only be done
to clinicians of other types. In health care settings, it might
be the case that the clinician who gives the diagnosis, is also
one of the treating clinicians. For example the surgeon or the
gastroenterologist can have this double function in both the
diagnostic as well as the treatment phase. Further research
should be done to analyze the effect of recurrent referrals.

Sixth, we assumed patients are served on a FCFS basis.
However, in a clinic environment it is debatable whether
FCFS is the most equitable priority rule for patients, as
patients have diverse priorities, due dates, and appointment
series. Furthermore, it is questionable whether it is neces-
sary to use FCFS, as long as patients are served within a
reasonable time. As we analyzed a multi-disciplinary clinic
with patients with two sequential appointments, the FCFS
priority rule is feasible. In a multi-disciplinary clinic with
varying numbers of appointments (e.g. patients that can
have 2, 3 or 4 appointments in a row), other priority rules,
for example based on the expected remaining throughput
time, might be more suitable.

Seventh, we analyzed the multi-disciplinary clinic inde-
pendent from the morning processes. Incorporating the effect
of appointments in the morning into the afternoon schedule,
or jointly optimizing the morning and afternoon clinics might

give improved results which necessitates multi-appointment
scheduling solutions with three or more appointments.

Based on our research, several directions for implemen-
tation in practice are present. First, the blueprint schedule
solution can be implemented, which shows schedulers in
which appointment slots a regular patient can be sched-
uled, and which appointment slots should be left empty, to
encounter for multi-disciplinary patients. Second, the sec-
ond stage model can be used to plan the multi-disciplinary
patients in the agenda of the NPs, after the MTM. Cur-
rently, UMCU implemented a new blueprint schedule and
use simple planning rules for real-time scheduling based on
the results of this research.

Since the patient population of a hospital changes over
time, and since new treatment modalities can be introduced,
the model should be used by hospitals in a dynamic way.
We advise hospital managers to redesign their blueprint
schedules at least once a year. Our integrated optimization
approach, in which all appointment schedules are jointly
optimized, can help hospital managers to efficiently orga-
nize their multi-disciplinary care systems.
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Appendix: Recourse model

The stochastic problem of Eqs. 3–14 can be formulated as
the following recourse model:

min E[Q(x, ξ)], (26)

s.t.

Ys,t ≤ cs ∀t ∈ T \ {1}, s ∈ S∗, (27)

Ys,1 = cs ∀s ∈ S∗, (28)

Ys,t ∈ Z
+ ∀t ∈ T , s ∈ S∗, (29)

where E[Q(x, ξ)] is the corresponding recourse function,
with:

Q(x, ξ) = min ε1

∑
s∈S∗

Oξ
s + ε2

∑
s∈S∗

Wξ
s + ε3

∑
s∈S∗

I ξ
s , (30)

s.t.
∑
t∈T

X
ξ
s,t = xξ

s ∀s ∈ S∗, (31)

X
ξ
1,t = 0 ∀t ≥ |T |, (32)
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∑
s∈S∗

X
ξ
s,t = c1 ∀t ∈ T , (33)

L
ξ
s,t ≥ X

ξ
s,t + Ys,t − cs ∀s ∈ S∗, t = 1, (34)

L
ξ
s,t ≥ L

ξ
s,t−1 + X

ξ
s,t + Ys,t − cs ∀t ∈ T ∗, s ∈ S∗, (35)

Oξ
s ≥ L

ξ
s,|T | ∀s ∈ S∗, (36)

Wξ
s ≥

∑
t∈T

L
ξ
s,t +

∑

t̃∈T̃

L
ξ

s,t̃
∀s ∈ S∗, (37)

I ξ
s ≥ cs |T | + Oξ

s −
∑
t∈T

(
Ys,t + X

ξ
s,t

)
∀s ∈ S∗, (38)

all variables ∈ Z
+. (39)
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