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Abstract
In the literature, many desirable properties for allocations of indivisible goods 
have been proposed, including envy-freeness, Pareto optimality, and maximization 
of either the total welfare of all agents, the welfare of the worst-off agent, or the 
Nash product of agents’ welfares. In the two-person context, we study relationships 
among these properties using both analytical models and simulation in a setting 
where individual preferences are given by additive cardinal utilities. We provide sev-
eral new theorems linking these criteria and use simulation to study how their values 
are related to problem characteristics, assuming that utilities are assigned randomly. 
We draw some conclusions concerning the relation of problem characteristics to the 
availabilty of allocations with particular properties.

Keywords  Fair division · Envy-freeness · Cardinal utilities

1  Introduction

How multiple independent participants can share a resource fairly is an important 
and easily understood social choice problem. Its importance is is illustrated by plat-
forms such as Spliddit (Goldman and Procaccia 2015), which help users split an 
asset fairly. Is it possible to give each participant a satisfactory allocation, or is it 
impossible to reconcile their conflicting interests? (Thomson 2016) Many criteria 
for a good allocation have been proposed, including utilitarianism (Bentham 1789) 
and maximinality (Rawls 1971). Another criterion is based on envy; an agent envies 
another agent if the first prefers the second’s share to its own. An allocation is envy-
free if no agent envies any other (Gamow and Stern 1958; Kilgour and Vetschera 
2018; Klamler 2021; Brams et al. 2023).
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A resource that is continuously divisible can always be allocated in an envy-free 
way, although such an allocation may fail other desirable properties, such as con-
tiguity (Procaccia 2016). But if the resource to be allocated consists of indivisible 
items, envy-freeness may simply be unachievable.

In this paper, we focus on the relationships between desirable properties of allo-
cations such as, among others, envy-freeness and Pareto optimality. We perform 
this analysis in a specific setting: allocation of a finite set of indivisible, unsharable 
objects to two players whose preferences are known, measured on a cardinal scale 
and additive. This is clearly a very specific and restrictive model of preferences; 
it differs from the considerable part of the literature on fair division of indivisible 
items that assumes only that each player can rank the items. By studying what can 
be considered the extreme opposite setting, we attempt to delineate the possible rela-
tionships between allocation properties as far as possible. Relationships that cannot 
be established under these restrictive assumptions about preferences most likely will 
also not hold when considering more general models.

We study these relationships using a combined approach of formal proofs and 
large scale simulation. Results of this simulation not only confirm our analysis but 
also lead us to several conjectures which we leave for others to prove or disprove. 
They also provide insights into the likelihood that allocations exist with certain 
combinations of desirable properties. In other words, how often do various proper-
ties exist together? Furthermore, we are able to connect properties of allocations to 
properties of the problem such as the correlation between the players’ utilities, offer-
ing additional insights into the mechanisms that make desirable properties feasible.

The remainder of the paper is structured as follows. Section 2 puts our work in 
the context of the related literature. In Sect. 3, we give an overview of our model of 
fair allocation of indivisible objects. Section 4 introduces the properties of alloca-
tions that we study, and Sect. 5 gives some analytical results on the relationships of 
these properties. An overview of the simulation model and its use is given in Sect. 6, 
and quantitative results deriving from the simulations are presented in Sect.  7. In 
Sect.  8, we summarize our results, discuss their limitations, and raise some open 
questions.

2 � Related Literature

Whether an allocation of indivisible, unsharable items among several individuals is 
fair depends fundamentally on their preferences for subsets of items, or bundles. As 
already mentioned, the literature on fair division problems initially considered very 
general ordinal preference models in which players’ rankings of individual items 
were expanded to rankings of bundles only via a cancellation condition—if the same 
(disjoint) bundle is added to each of two bundles, the ranking of the two bundles 
does not change. Consequently the rankings of bundles may be incomplete (e.g. 
Kilgour and Vetschera 2018; Bouveret et al. 2016; Brams et al. 2015, 2017). None-
theless, Brams et al. (2003) used only these preference models in defining concepts 
such as envy-freeness and Pareto optimality, and obtained some results about their 
relationships.
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More general preference models (including additive utilities, referred to as “one 
of the most classical settings in fair division of indivisible goods”, p. 287) are com-
prehensively surveyed by Bouveret et  al. (2016). However, the first reference to a 
model with additive utilities (Lipton et al. 2004) was dated 1 year after the survey of 
Brams et al. (2003). A similar survey that emphasizes connections to economics is 
Moulin (2019). Recent developments, with a focus on relaxations of fairness criteria 
and related algorithms, are covered in Amanatidis et al. (2023). The present paper 
follows the approach of Brams et al. (2023) but focuses on preferences that can be 
represented using additive utility functions.

The most often studied relationships in fair division problems are the trade-
offs among various criteria of fairness and efficiency. As in many other branches 
of the study of collective decision making, this topic is a recurring theme. Caragi-
annis et  al. (2012) formalized this trade-off using the price of fairness, a concept 
that appears frequently in the literature (e.g., Bouveret et al. 2016; Amanatidis et al. 
2023). But attempts to use this concept to analyze the trade-off between envy-free-
ness and Pareto optimality run into a problem: Even in the case of only two players, 
it is possible that this trade-off cannot be calculated as no envy-free allocation exists 
(Bouveret et al. 2016).

The simplest instance is a “diamond and pebbles” allocation problem (Brams 
et al. 2023), where the set of objects to be distributed consists of one diamond and 
many pebbles, and for each player the utility of the diamond exceeds the total utility 
of all of the pebbles. Then no envy-free allocation is possible, as the diamond can be 
assigned to only one player. In fact, no envy-free allocation exists in any diamond-
pebbles problem with an odd number of (approximately equally-valued) diamonds. 
As a consequence, the literature has considered relaxations of strict fairness crite-
ria such as EF1, envy-freeness after removal of one item. The concept of price of 
fairness was also applied to such relaxations (Barman et al. 2020; Bei et al. 2021). 
Additional fairness criteria such as the Gini index and a gradual measure of envy 
have also been studied, e.g. by Aleksandrov et al. (2019).

In the present paper, we study the relationship between fairness and efficiency, 
using several concepts of efficiency including Pareto-optimality or (in the utilitarian 
sense) maximum utility sum. We also study the relationships among various fairness 
criteria in the two-player context, for example how often envy-free allocations also 
satisfy the Rawlsian criterion of maximizing the utility of the worse-off player.

Some solution concepts, such as the Nash bargaining solution (Nash 1950), aim 
to achieve both fairness and efficiency. Properties of the Nash bargaining solution 
are also widely studied in the fair division literature (Caragiannis et al. 2019). For 
additive utilities, Amanatidis et al. (2021) and Halpern et al. (2020) showed that the 
Nash solution is always EFX (envy-free after removal of any item) if valuations are 
binary (i.e., players evaluate items only as “good”or “bad”). This result was general-
ized to any additive preferences and EF1 by Suksompong (2023), who also showed 
that the Nash solution is the only additive solution with this property. Furthermore, 
the Nash solution approximates the Rawlsian Max–Min solution quite well (Caragi-
annis et al. 2019).

Our study uses simulation to analyze relationships among the properties of alloca-
tions. Although most works cited so far provide analytical results, there are also some 
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simulation studies. Freeman et al. (2019) used synthetic data as well as actual prefer-
ences retrieved from the Spliddit platform to study the relationship between (approx-
imations of) equality (each player receiving the same utility) and properties such as 
Pareto optimality. Dickerson et al. (2014) used a computational study to determine the 
threshold on the number of items at which EF allocations become likely to exist.

Our analysis extends the work of Brams et al. (2023) in several directions. We draw 
some general conclusions and then complement our analysis with a comprehensive 
simulation study. Our approach is to assume that both players’ (additive) utilities are 
drawn at random, independently, from a distribution defined by Lebesgue measure.

3 � The Model

We consider how a set of n indivisible items, I = {1,… , n} , can be shared by two play-
ers, A and B. An allocation S = (SA, SB) is a partition of I into two subsets SA and SB , so 
that SA ∪ SB = I and SA ∩ SB = � . In the allocation S = (SA, SB) , SA is A’s assignment 
or bundle, and SB is B’s. It is often convenient to describe an allocation by A’s bundle, 
SA ; of course, SB = I ⧵ SA , the complement of SA.

We define S(I) , or simply S , to be the set of all possible allocations of the item set, I. 
By counting the possible assignments to A, it is clear that |S| = 2n.

We assume that player X = A or B has utility uX(i) ≥ 0 for item i ∈ I , and that util-
ities are additive, so that player X’s utility for the subset (or bundle) S ⊆ I is

The utility of allocation S = (SA, SB) to player X is uX(S) = uX(SX) . We assume with-
out loss of generality that utilities are scaled so that uA(I) = uB(I) = 1.

The utility of player X can be written as an n-vector

a pair of utility vectors (uA, uB) defines an allocation problem of size n. We assume 
that each of uA and uB is the realization of a uniform random process that produces 
non-negative numbers summing to 1, following a Lebesgue distribution. Moreover, 
we assume that uA and uB are independent. (Below we will describe how we gener-
ated such allocation problems in our simulation.)

The set of possible utility vectors for player X is

an n − 1-dimensional set. A consequence of our assumptions is that any subset of 
utility vectors uX with dimension strictly less than n − 1 has probability (meas-
ure) zero; we ignore such subsets. For example, we assume that, if 1 ≤ i < j ≤ n , 
then 0 < uX(i) < 1 and uX(i) ≠ uX(j) for X = A or B . (Equalities like uX(i) = 0 
and uX(i) = uX(j) can occur, but according to our probability model they can be 

(1)uX(S) =
∑

i∈S

uX(i)

uX = (uX(1), uX(2),… , uX(n));

{
(u1, u2,… , un) ∶ ui ≥ 0 ∀ i,

n∑

i=1

ui = 1

}
,
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neglected.) For the same reason, the probability is zero that a set S ⊆ I exists such 
that uX(S) = uX(I ⧵ S) . Similarly, if S ≠ ∅ , then uX(S) > 0 and uX(I⧵S) < 1 . The inde-
pendence of uA and uB implies that, if S and T are both proper non-empty subsets of 
I, then uA(S) ≠ uB(T).

Given any allocation S = (SA, SB) , we take advantage of our principle that 
uA(SA) ≠ uB(SB) to call the player whose utility is less the weaker player, W, and 
write its utility as uW(S) . Similarly, we call the player who receives more utility in 
allocation S the stronger player, G; its utility is uG(S).

Note that, for any allocation S, W = W(S) and G = G(S) ; in other words, the iden-
tity of the weaker and stronger player depends on the allocation. A consequence 
is that a statement like uW(S) < uW (T) may compare the utilities of different play-
ers. For example, if u(S) = (uA(S), uB(S)) = (0.2, 0.4) and u(T) = (0.5, 0.3) , then 
uW(S) = uA(S) but uW(T) = uB(T).

An allocation is envy-free (EF) for a player if its utility for the player’s own bundle 
is at least as great as its utility for the opponent’s bundle. An allocation is EF if it is 
EF for both players. Thus, an EF allocation S = (SA, SB) satisfies uA(SA) ≥ uA(SB) and 
uB(SB) ≥ uB(SA) . Using our assumptions that uX(SA) + uX(SB) = 1 for X = A or B 
and that uX(S) ≠ uX(I ⧵ S) , a further simplification is possible: S = (SA, SB) is EF iff 
uA(SA) > 1∕2 and uB(SB) > 1∕2.

These observations suggest a simple geometric view of allocations. Divide the 
unit square in (uA, uB)-space into four quadrants with lines at uA = 1∕2 and uB = 1∕2 , 
and name the quadrants as follows: 

	 I.	 uA > 1∕2, uB > 1∕2

	 II.	 uA > 1∕2, uB < 1∕2

	 III.	 uA < 1∕2, uB < 1∕2

	 IV.	 uA < 1∕2, uB > 1∕2

An allocation S = (SA, SB) corresponds to the point (uA(S), uB(S)) , which must lie 
within one of these quadrants. Allocation S is EF if and only if it corresponds to a 
point in Quadrant I.

Example 1  I contains n = 4 items and

The 16 possible allocations provide the players utilities given in Table 1. Figure 1 
shows the available utilities for players A and B. Note that, as in any problem, the 
utility pairs (1, 0) and (0, 1) can be achieved by assigning all items to A or to B.

Observe that the 24 = 16 allocations in Example 1 come in symmetric pairs. 
The allocation (SA, SB) corresponds to the point (uA(SA), uB(SB)) , and the reverse 
allocation, (SB, SA) corresponds to (uA(SB), uB(SA)) = (1 − uA(SA), 1 − uB(SB)) . In 
the Quadrant Diagram, these two points are symmetrically located with respect to 
(0.5, 0.5). (The line between them passes through (0.5, 0.5), and they are equally 

uA = (0.31, 0.22, 0.36, 0.11); uB = (0.23, 0.07, 0.38, 0.32)
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Table 1   Utilities of all possible 
allocations in Example 1

(S
A
, S

B
) u

A
(S

A
) u

B
(S

B
)

({1,2,3,4}, ∅) 1 0
({1,2,3},{4}) 0.89 0.32
({1,2,4},{3}) 0.64 0.38
({1,3,4},{2}) 0.78 0.07
({1,2},{3,4}) 0.53 0.70
({1,3},{2,4}) 0.67 0.39
({1,4},{2,3}) 0.42 0.45
({1},{2,3,4}) 0.31 0.77
({2,3,4},{1}) 0.69 0.23
({2,3},{1,4}) 0.58 0.55
({2,4},{1,3}) 0.33 0.61
({2},{1,3,4}) 0.22 0.93
({3,4},{1,2}) 0.47 0.30
({3},{1,2,4}) 0.36 0.62
({4},{1,2,3}) 0.11 0.68
(∅,{1,2,3,4}) 0 1
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Fig. 1   Quadrant diagram of all possible allocations in Example 1
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distant from this central point.) As a consequence, each allocation in Quadrant I is 
paired with an allocation in Quadrant III, and vice versa. Therefore, Quadrants I and 
III contain the same number of allocations. The relation of Quadrants II and IV is 
similar.

As already noted, any allocation in Quadrant I is EF, so Example 1 has two 
EF allocations, which are given by (SA, SB) = ({1, 2}, {3, 4}) = (12, 34) and 
(SA, SB) = (23, 14) . (When no confusion is possible, we simplify the notation for 
subsets in this way.) The reverse allocations, which lie in Quadrant III, are (34, 12) 
and (14, 23). Quadrants II and IV always contain some allocations—namely (I, �) 
and (�, I)—and often contain most of them. For allocations in Quadrants II and IV, 
there is one-sided envy, which persists if the assignments are reversed—the only 
change is the identity of the envious player. For example, in a diamond and pebbles 
problem, all allocations lie near (1, 0), if A receives the diamond, or near (0, 1), if 
the diamond goes to B.

4 � Properties of Allocations

4.1 � Pareto and Lexicographic Optimality

It is a general principle of rationality that actors will never accept an outcome if 
another outcome that both prefer is available. Almost as compelling, at least to a 
social planner, is the principle that one outcome is better than another if both the 
weaker and stronger players do better—even if the identity of these two players is 
not the same.

Allocation S is Pareto-Superior (PS) to allocation T iff each player (weakly) pre-
fers its assignment in S to its assignment in T, and at least one player strictly prefers 
its assignment in S. Because we ignore events that occur on sets of measure zero, for 
us allocation S is PS to allocation T iff each player strictly prefers its assignment in S 
to its assignment in T. In the Quadrant Diagram, S must lie northeast of T.

An allocation T is Pareto-Optimal (PO) iff there exists no allocation S such that S 
is PS to T. In the Quadrant Diagram, T is PO iff there is no allocation northeast of T. 
For Example 1, Fig. 1 shows that there are 8 PO allocations, only two of which are 
EF. Although it is not the case in Example 1, it is clearly possible for an EF alloca-
tion (in Quadrant I) not to be PO.

Any allocation S has an ascending utility vector, (uW (S), uG(S)) , of which the 
entries are the players’utilities for their own assignments, written in ascending order. 
Allocation S is Lexicographically-Superior (LS) to allocation T iff each element of 
the ascending utility vector of S is at least equal to the corresponding element of the 
ascending utility vector for T, and in at least one case is strictly greater. Because we 
ignore the possibility of equality, for us S is LS to T if and only if uW(T) < uW (S) 
and uG(T) < uG(S) . Allocation T is Lexicographically-Optimal (LO) if there exists 
no allocation S such that S is LS to T.

For Example 1, (13,  24) is PO (as Fig.  1 shows: UA(13) = 0.67 and 
UB(24) = 0.39 ). But is (13,  24) LO? The ascending utility vector of (13,  24) is 
(0.39, 0.67). But uA(12) = 0.53 and uB(34) = 0.70 , so the ascending utility vector of 
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(12, 34) is (0.53, 0.70). Consequently, (12, 34) is LS to (13, 24), so (13, 24) is not 
LO.

For Example 1, we noted that (13, 24) is PO but not LO. As well (see Fig. 1), 
(1,  234) is PO but not LO—its utilities are (0.31,  0.77); its image, with utilities 
(0.77,  0.31) is Pareto-dominated by (123,  4) with utilities (0.89,  0.32). Note that 
each player’s utility at the hypothetical allocation, S′ , is equal to the opponent’s util-
ity at S, so the probability associated with S′ is zero—but, nonetheless, it links PO 
and LO.

4.2 � Maximization

It stands to reason that the best allocation should maximize something (Klamler 
2021; Brams et  al. 2023). But what should it maximize? There have been several 
suggestions—the allocation should be Maximin (Rawls 1971), or maximize Total 
Welfare (Bentham 1789), or maximize Nash Welfare (Caragiannis et al. 2019; Nash 
1950). Writing (uA(SA), uB(SB)) = (x, y) , we implement these ideas by searching for 
the allocation (SA, SB) that maximizes an appropriate function, f(x, y).

An allocation is Maximin (MM) if there is no other allocation at which the mini-
mum of the players’utilities is greater. Thus, a Maximin allocation selects (SA, SB) to 
maximize fMM(x, y) = min{x, y} = min{uA(SA), uB(SB)} . We take the Maximin allo-
cation to be unique, since two such allocations could occur only when two distinct 
subsets have equal utility sums. Thus the Maximin allocation is determined by

and SMM
B

= I ⧵ SMM
A

 . The maximin utility is

In Example 1, SMM = (23, 14) achieves the Maximin utility, 0.55.
An allocation is Maximum Nash welfare (MNW) if there is no other allocation 

for which the product of the players’utilities is greater. Thus, a Maximum Nash wel-
fare allocation is an allocation that maximizes the Nash Product fMNW (x, y) = x ⋅ y . 
Again, we take the MNW allocation to be unique, as another allocation with the 
same utility product could exist only on a set of measure zero. Thus the Maximum 
Nash welfare allocation is determined by

and SMNW
B

= I⧵SMNW
A

 . In Example 1, SMNW = (12, 34) , for which the Nash product 
equals 0.371.

An allocation is Maximum Total welfare (MTW) if there is no other allocation 
for which the sum of the players’utilities is greater. Thus, a Maximum Total 
welfare allocation maximizes fMTW(x, y) = x + y . It is easy to calculate this 
allocation—just assign each item to the player who values it more. Again, we can 

SMM
A

= argmax
SA⊆I

[
min{uA(SA), uB(I ⧵ SA)}

]

fMM

(
uA
(
SMM
A

)
, uB

(
SMM
B

))
= min

{
uA
(
SMM
A

)
, uB

(
SMM
B

)}
.

SMNW
A

= argmax
SA⊆I

[
uA(SA) ⋅ uB(I ⧵ SA)

]
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take the MTW allocation to be unique, as another allocation with the same utility 
sum could exist only on a set of measure zero. Thus the Maximum Total welfare 
allocation is

and SMNW
B

= I⧵SMNW
A

 . In Example 1, SMTW = (12, 34) , which has utility sum 1.23.
The level curves of the three functions f

MM
, f

MNW
, and f

MTW
 are compared 

in Fig. 2, where all curves pass through (0.6, 0.6). If this allocation is available, 
then each of these procedures would select it—providing there are no allocations 
above and to the right of the graph of the corresponding function. As the geom-
etry makes clear, if SMTW = (0.6, 0.6) , then SMNW = SMM = (0.6, 0.6) also.

Example 1 illustrates that SMM ≠ SMNW = SMTW can occur. As we will see 
below, all three allocations could be identical, or could differ from each other. 
The only restriction on the three values is given by Proposition 2 (see Sect. 5): 
if SMM and SMTW are equal, then they must both equal SMNW . There is a sense in 
which SMM and SMTW are extremes; SMNW is always “between” them.

Another point of comparison of SMM , SMNW , and SMTW is their associated utility 
gaps. For any allocation S, the utility gap is g(S) = uG(SG) − uW (SW ) , that is, the 
difference between the utilities (for their own assignments) of the stronger and the 
weaker player. (Recall that the player whose utility is greater is G, the stronger 
player; the player whose utility is less is W, the weaker player.) As we show in 
Proposition 3 (see Sect. 5), the utility gaps reflect the ordering of the three maxi-
mization outcomes.

SMTW
A

= argmax
SA⊆I

[
uA(SA) + uB(I ⧵ SA)

]

Fig. 2   Three functions to be maximized
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4.3 � Envy‑freeness

As defined in Sect.  3, an allocation is envy-free for a player if and only if that 
player’s utility for its own bundle is at least as great as its utility for the oppo-
nent’s bundle. Moreover, an allocation is envy-free (EF) if and only if it is envy-
free for both players. We noted that an allocation S = (SA, SB) is EF if and only if 
uA(SA) > 1∕2 and uB(SB) > 1∕2.

This picture, that an EF allocation exists if and only if there is a maximin 
allocation SMM satisfying min

{
SMM
A

, SMM
B

}
> 1∕2 is the content of a Theorem of 

Brams et al. (2023), who showed that an EF allocation exists if and only if some 
maximin allocation is EF. In view of our assumptions, we conclude that an EF 
allocation exists if and only if min

{
uA
(
SMM

)
, uB

(
SMM

)}
> 1∕2 , which is to say 

that SMM is EF, and thus lies in Quadrant I. Therefore, if SMM is not EF, then there 
are no EF allocations, Quadrant I is empty (and so therefore is Quadrant III); 
every allocations fall into Quadrant II or Quadrant IV, where there is one-sided 
envy.

A weakening of envy-freeness is also of interest. If an allocation is not EF 
because, say, A envies B, then it is envy-free after the removal of any item (EFX) if 
A would not envy B were any single item removed from B’s assignment. (Of course, 
the roles of A and B may be interchanged.) Note that the condition requires that A 
not envy B if any item assigned to B is removed from B’a bundle. Also, the item 
removed simply disappears from the calculation—it is not reassigned to A.

Brams et al. (2023) prove that if SMM is not EF, then it is EFX. Below—Propo-
sition 4 in Sect. 5—we present a geometric proof of this result. Observe that if 
there are no EF allocations SMM must lie in Quadrant II or IV.

We have already noted that, if an EF allocation exists, then SMM must be EF. 
In particular, if SMNW or SMTW is EF, then SMM must be EF. Corollary 3 in Sect. 5 
establishes the related fact that, if SMTW is EF, then SMNW is also.

5 � Propositions

The two properties of Pareto Optimality and Lexicographic Optimality are closely 
related. LO is a stronger condition than PO—in a sense, it is twice as strong—as 
Proposition 1 makes clear. The relationship between PO and LO is illustrated in 
Fig. 3. In utility space, any allocation that is PS to S must lie in the shaded region 
above and to the right of S, so S is PO exactly when there are no allocations in this 
region. Allocations that are LS to S are located either in the PS region or the lightly 
shaded region that is the PS region for S′ , the point in utility space that is the reflec-
tion of S in the 45-degree line. Allocation S is LO if and only if no allocation is PS 
to S or to S′ . Note that the two PO regions overlap in the upper right corner.

Proposition 1  An allocation T = (TA, TB) is LO if and only if T is PO and the alloca-
tion T ′ , with utilities 

(
uA
(
T �
A

)
, uB

(
T �
B

))
=
(
uB(TB), uA(TA)

)
 , is also PO.
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Proof  It is clear that, if T is LO, then T is PO, and so is T ′ . To show the converse, 
suppose that T is not LO, so that there exists an allocation S = (SA, SB) that is LS to 
T. We show that either T is not PO or T ′ is not PO.

If the ascending utility vector of T is (x1, x2) and the ascending utility 
vector of S is (y1, y2) , then x1 < y1 and x2 < y2 . Suppose without loss of 
generality that uA(TA) < uB(TB) , so that the ascending utility vector of T is 
(x1, x2) =

(
uA(TA), uB(TB)

)
 . If uA(SA) < uB(SB) , then the ascending utility vector of S 

is (y1, y2) =
(
uA(SA), uB(SB)

)
 , so uA(TA) < uA(SA) and uB(TB) < uB(SB) , proving that 

S is PS to T, and therefore that T is not PO.
Alternatively, it must be the case that uB(SB) < uA(SA) , so that the ascending 

utility vector of S is (y1, y2) = (uB(SB), uA(SA)) . Consider an allocation T ′ with 
utilities as specified. Because uB(T �

B
) = uA(TA) < uB(TB) = uA(T

�
A
) , the ascending 

utility vector of T ′ is 
(
x�
1
, x�

2

)
=
(
uB(T

�
B
), uA(T

�
A
)
)
 . Now the fact that S is LS to T 

implies that uB(T �
B
) < uB(SB) and uA(T �

A
) < uA(SA) . Therefore, S is PS to T ′ , and T ′ is 

not PO, as required. 	�  ◻

We consider the allocation T ′ to be hypothetical—by assumption, it exists with 
probability zero because A’s utility for T ′

A
 equals B’s utility for TB.

As the next corollary shows, LO is a common property of the three 
maximization outcomes.

Corollary 1  SMM , SMNW , and SMTW are all LO.

Fig. 3   Illustration of the relationship between LO and PO
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Proof  As Fig.  4 shows, if SMM is not LO, then there is an allocation in the 
shaded region, by Proposition 1. But this allocation, (SA, SB) , must satisfy 
min

{
uA(SA), uB(SB)

}
> min

{
uA
(
SMM
A

)
, uB

(
SMM
B

)}
 , which is impossible by the defi-

nition of SMM . Therefore there is no allocation in the shaded region, and SMM is LO. 
The same argument shows that SMNW and SMTW are LO. 	�  ◻

We now consider whether the three maximization outocmes can be identical or 
different. Our first observation is the next Proposition.

Proposition 2  If SMM = SMTW , then SMM = SMNW = SMTW.

Proof  Let 
(
S0
A
, S0

B

)
 be the allocation SMM , and let x0 = uA

(
S0
A

)
 and y0 = uB

(
S0
B

)
 . 

Assume without loss of generality that x0 < y0 . Suppose that there exists 
S1
A
⊆ I such that, if x1 = uA

(
S1
A

)
 and y1 = uB

(
I⧵S1

A

)
 , then x1y1 > x0y0 but 

min{x1, y1} < min{x0, y0} . Thus SMNW ≠ SMM . We show that it cannot be the case 
that SMTW = SMM.

Assume that x1 < x0 . Then, because x1y1 > x0y0 , y1 > y0 . For y ∈ [y0, 1] , define 
h(y) =

x0y0

y
 and k(y) = x0 + y0 − y . Then h(y0) − k(y0) = 0 and, by calculus, 

h(y) − k(y) is increasing in y, so h(y1) > k(y1) . Now x1y1 > x0y0 implies that 
x1 > h(y1) , so it follows that x1 > k(y1) , and therefore that x1 + y1 > x0 + y0 . In 

Fig. 4   Proof of Corollary 1
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particular, (x0, y0) does not maximize fMTW , so that SMTW ≠ SMM . The proof is simi-
lar if x0 < x1 . 	�  ◻

Figure 5 illustrates Proposition 2. The hypothesis that SMM = SMTW implies that 
there are no allocations in the shaded region. It follows that there are no allocations 
on any level curve of fMNW (x, y) that lies above and to the right of SMM = SMTW , so 
SMNW = SMM = SMTW . In consequence, if SMM , SMNW , and SMTW are not identical, 
then SMM and SMTW must be different.

Recall that the utility gap of an allocation S = (SA, SB) is 
g(S) = |uA(SA) − uB(SB)| = uG(SG) − uW (SW ) . The utility gaps reinforce the sugges-
tion of Proposition 2 concerning the ordering of maximization points.

Proposition 3  The utility gaps of SMM , SMNW , and SMTW satisfy

Moreover, equality holds only if the corresponding allocations are identical.

Proof  Clearly, the utility gaps of identical allocations are equal, so we need 
only show that the inequalities are strict when the corresponding allocations 
are different. Suppose that SMM ≠ SMNW . Let 

(
uW

(
SMM

)
, uG

(
SMM

))
= (x0, y0) , (

uW
(
SMNW

)
, uG

(
SMNW

))
= (x1, y1) , and (x0, y0) ≠ (x1, y1) . Then, assuming without 

g
(
SMM

)
≤ g

(
SMNW

)
≤ g

(
SMTW

)
.

Fig. 5   Proof of Proposition 2
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loss of generality that x0 < y0 and x1 < y1 , it follows that x1y1 > x0y0 and x1 < x0 . 
Therefore

Now assume that SMNW ≠ SMTW , and let 
(
uW

(
SMTW

)
, uG

(
SMTW

))
= (x2, y2) . Again 

using 
(
uW

(
SMNW

)
, uG

(
SMNW

))
= (x1, y1) , define dx = x1 − x2 and dy = y1 − y2 . As 

usual, we can assume without loss of generality that x2 < y2 . By the definition of 
SMTW , dx + dy = (x1 + y1) − (x2 + y2) < 0 , so at least one of dx and dy is negative.

From the definition of SMNW , it follows that

Condition (2) must fail if both dx and dy are negative, so we conclude that exactly 
one of dx and dy is negative.

To complete the proof, we show that dx > 0 and dy < 0 . Assume, to obtain a con-
tradiction, that dy > 0 . From (2), it follows that

But the assumption that dy > 0 implies that 
x2dy + y2dx < y2dy + y2dx = y2(dx + dy) < 0 . Because dx + dy < 0 , this conclusion 
contradicts (3), so we conclude that dy < 0 must hold. We conclude that

since g
(
SMTW

)
= y2 − x2 . 	�  ◻

A graphical proof of the first part of Proposition 3 is shown in Fig. 6. If there is 
a point on a level curve of fMNW that lies above and to the right of the level curve of 
fMNW that contains (x0, y0) , and that is not MM (i.e., has a lower uW than SMM ), this 
point must lie in one of the two shaded regions. In both shaded regions, the utility 
gap is greater than y0 − x0.

Figure  7 gives a graphical proof for the second part of Proposition 3: 
if SMNW ≠ SMTW , then g

(
SMNW

)
< g

(
SMTW

)
 . Any point (x2, y2) for which 

x2 ⋅ y2 < x1 ⋅ y1 and x2 + y2 > x1 + x1 must lie in one of the shaded regions, where 
g(x2, y2) > g(x1, y1).

From the proof of Proposition 3, we immediately obtain

Corollary 2  uW
(
SMM

)
≥ uW

(
SMNW

)
≥ uW

(
SMTW

)
 . Moreover, equality holds only if 

the corresponding allocations are identical.

An allocation S = (SA, SB) is EF if and only if uW(SW ) > 1∕2 , which implies the 
next result.

g(SMNW) = y1 − x1 >
x0y0

x1
− x1 >

x0y0

x1
− x0 > y0 − x0 = g(SMM)

(2)(x2 + dx)(y2 + dy) > x2y2

(3)x2dy + y2dx + dxdy > 0

(4)g
(
SMNW

)
= y1 − x1 = y2 + dy − (x2 + dx) = y2 − x2 + (dy − dx) ≤ g

(
SMTW

)
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Corollary 3  If SMNW is EF, then SMM is EF. If SMTW is EF, then both SMNW and SMM 
are EF.

We are able to give a new proof to the Theorem of Brams et al. that applies when 
there is no EF allocation.

Proposition 4  (Brams et al. 2023): If SMM is not EF, then it is EFX.

Proof  First observe that if there is no EF allocation, then every allocation must 
lie in Quadrant II or Quadrant IV. If SMM is not EF and if x = uA

(
SMM
A

)
 , then we 

can assume without loss of generality that x < uA
(
SMM
B

)
= 1 − x and therefore that 

x < 1∕2 < 1 − x.
Now define s = mint∈SMM

B
{uA(t)} . We will show that

which implies that A does not envy B after s is removed, and therefore that SMM is 
EFX.

We will prove (5) by contradiction. If it fails, we must have 
x + uA(s) < 1 − x . Define the allocation S′ by S�

A
= SMM

A
∪ {s} and 

(5)x > 1 − x − uA(s),

Fig. 6   Proof of Proposition 3a
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S�
B
= SMM

B
⧵{s} . Suppose first that uB

(
S�
B

)
= uB

(
SMM

)
− uB(s) >

1

2
 . Then 

uA
(
SMM
A

)
< x + uA(s) = uA

(
S�
A

)
<

1

2
< uB

(
S�
B

)
 , contradicting the fact 

that SMM is a maximin allocation. Therefore, if (5) fails, we must have 
uB
(
S�
B

)
= uB

(
SMM

)
− uB(s) <

1

2
 . But this shows that allocation S′ lies in Quadrant 

III, which is impossible, as already noted. We conclude that (5) is true, which 
implies that SMM is EFX. 	�  ◻

To summarize, the three maximization outcomes, SMM , SMNW , and SMTW , which 
can be taken to be unique, are always LO. If they are not all the same, then SMM and 
SMTW must be different, in which case SMNW may equal SMM , or may equal SMTW , or 
may be different from both of them. If SMM is not EF, then neither are the other two. 
If SMNW is EF, then so is SMM . If SMTW is EF, then so are the other two. We now use 
simulation to study how often these events occur.

Fig. 7   Proof of Proposition 3b
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6 � Simulation Model

To study the relationships and frequencies of the properties of allocations introduced in 
Sect. 4, we conducted a comprehensive set of computer simulations of two-person allo-
cation problems of various sizes. Each problem instance was defined by two randomly 
generated utility vectors, one for each party. We used the method of Butler et al. (1997) 
to generate vectors according to a uniform distribution over the unit simplex of dimen-
sion n − 1 . For each instance, we generated all possible allocations of items and then 
determined their properties. Due to the limited precision of digital computers, items or 
bundles occasionally had equal utilities within numerical tolerance. We discarded all 
problems in which the MM, MNW or MTW allocations were not unique, which hap-
pened in less than 0.00001% of all problems generated.

The simulation program was written in Pascal using the open source Free Pascal 
compiler version 3.2.2 and the Lazarus development environment (available from 
https://​www.​lazar​us-​ide.​org/). The program code is available upon request from the 
authors.

We performed simulations for problems with n = 4, 5,… , and 12 items, carrying 
out two sets of experiments. 

(1)	 We generated 50,000,000 problems of each size, considered all possible alloca-
tions, and recorded summary data on the numbers exhibiting each of the proper-
ties EF, EFX, MM, MNW, MTW, PO, and LO, as well as combinations of these 
properties. In particular, we counted the numbers of EF and EFX allocations, 
and also recorded whether a problem allowed for any such allocation. Formally, 
four combinations are possible but, as Proposition 4 (Brams et al. 2023) shows, 
a problem with no EF allocation must have an EFX allocation, so only three 
combinations can actually occur. We also classified problems according to the 
MM, MNW and MTW allocations. (As already indicated, we discarded prob-
lems in which these allocations were not unique.) Our classification was based on 
whether these three outcomes were the same or different. Because of Proposition 
2, a problem must fall into exactly one of the four classes shown below:

M1N1T1 One allocation has all three properties: SMM = SMNW = SMTW.
M1N1T2 One allocation is MM and MNW, but the MTW allocation is different: 
SMM = SMNW ≠ SMTW.
M1N2T2 One allocation is MM, and a different allocation is both MNW and 
MTW: SMM ≠ SMNW = SMTW.
M1N2T3 All three allocations are different: SMM ≠ SMNW ≠ SMTW and 
SMM ≠ SMTW.

	    To understand our notation, note that the three properties correspond to the 
letters M, N and T. The number following each letter indicates whether the 
property occurs at the same allocation as the previous property, or a different 
allocation.

(2)	 We generated 1,000,000 problems of each size, recording the utility vectors, the 
SMM , SMNW , and SMTW allocations, as well as other properties. Thus, we could 

https://www.lazarus-ide.org/%20
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study the impact of problem characteristics, such as the correlation of utilities, 
on properties of allocations. Data storage requirements implied a smaller sam-
ple size, but one that is large enough that statistical conclusions could be fairly 
precise.

7 � Quantitative Results

7.1 � Efficiency and Fairness Properties

We first consider the fraction of allocations exhibiting individual properties. Since 
the SMM , SMNW and SMTW outcomes are unique, we focus on the properties PO, LO, 
EF, and EFX.

Figure  8 shows two views of the fraction of PO and LO allocations as a function 
of number of items. The decrease in these fractions is greater than exponential, as 
evidenced by the logarithmic scale of the right-hand graph.

The left-hand graph of Fig. 9 shows the fraction of all allocations that are EF or 
EFX. The right-hand graph of Fig.  9 shows the fraction of problems with no EF 
allocation. This share drops exponentially; more than 99% of problems with 6 items 
have at least one EF allocation. Below we conclude that, in practice, lack of EF allo-
cations is a concern only for small problems.

Perhaps the most interesting observation in Fig. 9 is the disappearance of EFX 
allocations as the number of items increases. Two factors must come together in 
order for an allocation that is not EF to be EFX: The utility difference between the 
two players’ bundles must be small enough that removing just one item from the 

Fig. 8   Fractions of allocations that are PO and LO

Fig. 9   Fractions of allocations that are EF and EFX, and problems without EF allocations
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envied player reverses the envious player’s utilities, and the utility of the envied 
player’s least preferred (to the envious player) item must be large enough to cover 
this gap. In expectation, the utility of a least preferred item decreases in the number 
of items, and the expected difference in utilities also decreases. Our simulation indi-
cates that the former effect is stronger, so that EFX allocations become less common 
as the number of items increases.

In contrast, the fraction of EF allocations increases in the number of items, but 
this increase does not compensate for the decrease in EFX allocations, so the total 
fraction of allocations that are either EF or EFX decreases. We have no theoreti-
cal explanation for the observed tendency of the total number of EF allocations to 
approach a limit as the number of items increases, so we formulate it as a conjecture.

Conjecture 1  The fraction of all allocations that are EF converges to about 1/6 as n 
increases.

Next, we consider the interaction between properties PO and EF. Neither of these 
proprieties implies the other, so it is possible that allocations exists which exhibit 
none, only one, or both properties. Figure  10 shows how the share of allocations 
among these four groups develops as the number of items increases.

The fraction of allocations that are neither PO nor EF first increases sharply, and 
then levels off at around 5/6 of all allocations. Only a relatively small fraction of 
allocations (about 0.5% in problems with 12 items) are both PO and EF, illustrat-
ing the difficulty of identifying allocations with desirable properties. For smaller 
problems, the number of allocations that are PO but not EF exceeds the number 
of allocations that are EF but not PO; this relation is reversed for larger problems. 
Essentially the same observations apply to the study of LO versus EF, so they are 
not reported here.

Fig. 10   Fraction of allocations that are EF and/or PO
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7.2 � Maximization properties

Because it had unique MM, MNW,and MTW allocations, each problem fell into one 
of the four classes defined above. Figure 11 shows the frequency of these classes 
as a function of problem size. Perhaps it is not surprising that, as the number of 
items increases, problems in which a single allocation has all three properties (class 
M1N1T1) become less frequent and problems in which all three outcomes are dif-
ferent (class M1N2T3) become more frequent. The other two classes develop differ-
ently. Class M1N2T2, in which MNW and MTW occur at the same allocation while 
the MM allocation is different, becomes the largest class as the problem size passes 
five items. Meanwhile, M1N1T2, the class in which MM and MNW are the same 
but MTW is different, becomes the smallest class at about the same point. We con-
nect this observation to the view of Rachmilevitch (2015) that the Nash bargaining 
solution tends to emphasize efficiency over fairness, so it is more commonly close to 
MTW than to MM.

Next, we analyze how frequently the three allocations SMM , SMNW , and SMTW are 
envy-free, performing this analysis separately for each problem class. As Fig.  12 
makes clear, the fraction of problems in which all maximizing allocations are EF 
increases with problem size, a statement that is true of every problem class. In class 
M1N1T1, where one allocation has all three properties, this allocation must be EFX 
if it is not EF, according to Proposition 4. In the other three problem classes, allo-
cations that are different from SMM might be EF or EFX or neither of the two. (For 
clarity, EFX is shown only for class M1N1T1; for the other classes, we only distin-
guish between EF and non-EF allocations.)

In fact, in the two classes in which SMNW = SMTW , this allocation is almost always 
EF. As well, when the size is larger, problems that lack an EF allocation become 
rare: our simulation data found none of them of size at least 11 items (although we 
believe that such problems exist). But when SMNW ≠ SMTW , it was fairly common 
that neither of these allocations is EF, particularly for larger problem sizes. In sum-
mary, the probability that allocations focusing on efficiency are not EF increases as 
the number of items increases.

Fig. 11   Frequency of problem classes for different problem sizes
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7.3 � Problem characteristics

Finally, we analyze the relationship between problem characteristics and the prop-
erties of allocations. We focus on the correlation of the parties’ utilities, which is 
a natural measure of the level of conflict: In the limit, when the correlation of the 
players’ utilities is −1 , an allocation that assigns every item to the player who pre-
fers it is MM, MNW and MTW. If utilities are positively correlated, both players 
have high values for the same items, so the allocation problem is more difficult. We 
performed similar analyses using other measures such as the minimum utility of any 
item, or the maximum absolute difference in utilities over all items, or the number of 
items preferred by each player. These measures led to qualitatively similar results, so 
for brevity we present only the results for correlation.

Figure 13 shows the relationship between the number of EF allocations in a prob-
lem and the utility correlation. In this and the following figures, we present only the 
results for our smallest ( n = 4 ) and largest ( n = 12 ) problems. (Results for all other 
problem sizes are available upon request. In general, they follow the trend between 
these two extreme points.)

It is clear that there is a negative relation between utility correlation and the num-
ber of EF allocations, at least up to a certain point. All 4-item problems with no 
EF allocation are positively correlated. Similarly, 12-item problems with fewer than 
100 EF allocations (the minimum in the sample was 2) occur only when the utility 
correlation exceeds about 0.7. However, this relationship is not deterministic. For 
example, we found problems with 4 items and correlation exceeding 0.9 that none-
theless exhibited 4 EF allocations, and 12-item problems with correlation exceeding 

Fig. 12   Fractions of cases in which Maximization outcomes are EF
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0.7 that had more than 800. At about 3/4 of the maximum number of EF allocations, 
this relationship flattens: the dispersion of correlation coefficients decreases, but the 
average and median values remain almost the same.

For every value of n, we observed a maximum of 2n−2 EF allocations. There is no 
doubt that a problem can have 2n−2 EF allocations. For example, suppose that each 
player has an item with utility more than 1/2, and that these two items are different. 
Then an allocation is EF if and only if it assigns to each player its most valued item. 
There are 2n−2 such allocations. However, our simulation data contained problems 
with exactly 2n−2 EF allocations that did not contain two such high-valued items, so 
we consider that we lack a full understanding of this apparent upper limit. We for-
mulate another conjecture:

Conjecture 2  The maximum number of envy-free allocations in a problem with n 
items is 2n−2.

Note that this conjecture depends on our assumptions of additive cardinal 
preferences and unique utility values for all items and bundles. Without these 
assumptions the conjecture can fail. For example, consider a 4-item problem in 
which both players are indifferent among all items (i.e., both players have utility 1/4 
for each item). Clearly, every allocation that assigns two items to each player is EF; 
there are 

(
4

2

)
= 6 > 4 such allocations.

Next we consider the relationship between the problem classes and utility cor-
relation. As Fig. 14 shows, when utility correlation is negative, most problems with 
four items and many with 12 fall into class M1N1T1 (all three maximization princi-
ples yield the same outcome). These are the same problems that tend to have a large 
number of EF allocations. In these cases, the unique maximization outcome is not 
necessarily EF, though it must be PO (in fact, LO), and the number of PO (and LO) 
allocations increases with the correlation. At the other extreme, when the players’ 
evaluations are identical, class M1N2T3 is most likely; moreover, all allocations are 

Fig. 13   Distribution of utility correlations in problems with different numbers of EF allocations
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PO. Thus in problems with a positive utility correlation, especially if it is high, the 
three maximization outcomes occur at different allocations. Again, we note that the 
relationship is not deterministic; in all problem classes, there are instances of utility 
correlation close to +1 and instances where it is close to −1.

Finally, Figs.  15 ( n = 4 ) and 16 ( n = 12 ) show the impact of correlation on 
whether the allocations SMM , SMNW , and SMTW are EF. Again, the relationship is 
clear. If n = 4 , all problems in which no maximization allocation is EF exhibit a 
positive utility correlation. If n = 12 , this observation also holds for problems in 
which only SMM is EF. (Our sample contained no problems of that size without EF 
allocations.) Problems in which the other allocations are also EF on average have a 
lower correlation of utilities, although this phenomenon occurs in occasional prob-
lems with correlation close to 1.

To further study the relationship between utility correlation and the envy-free-
ness of maximizing allocations, we calculated the minimum correlation coeffi-
cients of problems in which the three maximizing allocations are EF or not. The 
results of this analysis are presented in Table 2. The most striking result in this 
table is that except for the case of five items, there are no problems with neg-
atively correlated utilities in which SMM is not envy-free. But we know that if 
any allocation is EF, then SMM must be EF, so this observation implies that if the 
number is items is different from five, then no EF allocation exists only when 
utilities are positively correlated.

To confirm this observation, we performed a simulation with three items and 
found several instances in which a problem with negative utility correlation had 
no EF allocation. We then performed additional simulations for 4-item and 7-item 
problems, 15 million problems each. In all of these simulations, an EF allocation 
was found whenever utility correlations were negative. The smallest correlation 
coefficients in problems without EF allocations were 0.320 for problems with seven 
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Fig. 14   Distribution of problem classes for different levels of utility correlation
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items (in a problem where all three maximum allocations were different) and 0.007 
for four items (in a problem where one allocation had all three properties).

Clearly, in a problem with two items, a negative correlation of utilities is a neces-
sary and sufficient condition for an EF allocation to exist: If both players assign a 
higher utility to the same item, then no EF allocation can exist, and if their prefer-
ences differ, giving each its preferred item results in an EF allocation. Based on our 
simulation results, we therefore formulate the following

Conjecture 3  For problems with an even number of items, or an odd number of 
items n ≥ 7 , a negative utility correlation is sufficient to guarantee that an EF allo-
cation exists. For n = 2 , this condition is also necessary.
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Fig. 15   Fractions of cases in which maximizing allocations are EF for different problem classes and lev-
els of utility correlation: 4 items
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Table  2 also shows that the threshold of correlations for SMM not to be EF 
increases with problem size. Furthermore, in problems in class M1N1T1, where 
one allocation exhibits all three maximizing properties, only if utility correlation 
is very high is there no EF allocation. For larger problems, all problems in class 
M1N1T1 appear to have at least one EF allocation.
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Fig. 16   Fractions of cases in which maximizing allocations are EF for different problem classes and lev-
els of utility correlation: 12 items
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Table 2   Minimum correlations of utilities in problems where SMM , SMNW , and SMTW allocations are or are 
not envy free

– no such allocations were found in the sample

Items Class S
MM

S
MNW

S
MTW

Not EF EF Not EF EF Not EF EF

4 M1N1T1 0.012 −1.000 0.012 −1.000 0.012 −1.000
M1N1T2 0.026 −1.000 0.026 −1.000 −1.000 −1.000
M1N2T2 0.012 −1.000 −1.000 −1.000 −1.000 −1.000
M1N2T3 0.019 −1.000 −0.603 −1.000 −1.000 −0.998

5 M1N1T1 −0.935 −0.999 −0.935 −0.999 −0.935 −0.999
M1N1T2 −0.937 −1.000 −0.937 −1.000 −0.995 −1.000
M1N2T2 −0.890 −0.999 −0.989 −0.999 −0.989 −0.999
M1N2T3 −0.844 −0.998 −0.980 −0.998 −0.998 −0.995

6 M1N1T1 0.516 −0.998 0.516 −0.998 0.516 −0.998
M1N1T2 0.469 −0.994 0.469 −0.994 −0.978 −0.994
M1N2T2 0.501 −0.997 −0.924 −0.997 −0.924 −0.997
M1N2T3 0.533 −0.991 −0.904 −0.991 −0.991 −0.985

7 M1N1T1 0.951 −0.988 0.951 −0.988 0.951 −0.988
M1N1T2 0.819 −0.994 0.819 −0.994 −0.945 −0.994
M1N2T2 0.620 −0.988 −0.645 −0.988 −0.645 −0.988
M1N2T3 0.591 −0.969 −0.688 −0.969 −0.934 −0.969

8 M1N1T1 0.982 −0.980 0.982 −0.980 0.982 −0.980
M1N1T2 0.953 −0.984 0.953 −0.984 −0.942 −0.984
M1N2T2 0.703 −0.992 −0.455 −0.992 −0.455 −0.992
M1N2T3 0.728 −0.985 −0.202 −0.985 −0.917 −0.985

9 M1N1T1 – −0.969 – −0.969 – −0.969
M1N1T2 0.962 −0.961 0.962 −0.961 −0.804 −0.961
M1N2T2 0.736 −0.949 −0.375 −0.949 −0.375 −0.949
M1N2T3 0.787 −0.949 −0.156 −0.949 −0.851 −0.949

10 M1N1T1 – −0.949 – −0.949 – −0.949
M1N1T2 – −0.970 – −0.970 −0.640 −0.970
M1N2T2 0.895 −0.921 −0.006 −0.921 −0.006 −0.921
M1N2T3 0.817 −0.901 −0.004 −0.901 −0.887 −0.901

11 M1N1T1 – −0.928 – −0.928 – −0.928
M1N1T2 – −0.893 – −0.893 −0.660 −0.893
M1N2T2 0.884 −0.938 0.030 −0.938 0.030 −0.938
M1N2T3 0.863 −0.891 0.226 −0.891 −0.704 −0.891

12 M1N1T1 – −0.910 – −0.910 – −0.910
M1N1T2 – −0.868 – −0.868 −0.543 −0.868
M1N2T2 – −0.919 0.241 −0.919 0.241 −0.919
M1N2T3 – −0.874 0.256 −0.874 −0.580 −0.874
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8 � Conclusions

The literature has identified a multitude of desirable properties that allocations of 
indivisible items should fulfil, properties that are not always compatible. We have 
studied these properties and their relationships in the specific setting of preferences 
that can be represented as additive cardinal utilities.

Like most collective decision problems, the fair division problems we have stud-
ied are characterized by a trade-off between fairness and efficiency (Alkan et  al. 
1991; Zukerman et al. 2008). In our setting, this trade-off is represented by the SMM , 
SMNW , and SMTW allocations, for which we have identified a clear ordering. Allo-
cation SMM emphasizes equity, SMTW emphasizes efficiency, while SMNW balances 
these two properties. Propositions 2 (that SMNW cannot be a different allocation if 
SMM = SMTW ) and Proposition 3, about the ranking of utility differences, clearly 
reflect this ranking. This middle position of the Nash bargaining solution on the 
spectrum between equity and efficiency reflects the conclusions of Rachmilevitch 
(2015) in a somewhat different context.

Envy-freeness (EF) is an important property of allocations that reflects a concern 
for equity and fairness. Therefore, it is not surprising that among the three proper-
ties, MM exhibits the closest connection to EF. For instance, Brams et  al. (2023) 
showed that if an EF allocation exists at all, then SMM must be EF. Additional evi-
dence for the ranking is our Corollary 3 that, if SMNW is EF, then so is SMM , and if 
SMTW is EF, then SMM and SMNW must be too.

Our simulation analysis provides some quantitative insights into fairness and efficiency 
of allocations. It seems clear that, in practice, envy-freeness is an issue only if the number 
of objects to be allocated is small. For instance, we found that envy-free allocations exist 
in more than 99.9% of all problems with n = 8 items. Our millions of examples of prob-
lems with at least 11 items found at least one EF allocation in every one.

But while lack of equity (envy-free allocations) becomes a negligible problem 
when the number of items increases, the trade-off between equity and efficiency 
becomes more difficult. One reason is that the fraction of problems in which one 
allocation fulfils all desirable properties decreases rapidly. Most often, the maximin 
allocation differs from the other maximizing allocation(s). In contrast, the combined 
frequency of classes M1N1T1 and M1N2T2 (allocations with SMNW = SMTW , shown 
in figure 11) is surprisingly steady—it decreases from about 80 to almost 70% as the 
number of items increases 4–12.

Our simulation results also show that, besides the number of items, the level of 
conflict as measured by the correlation of the players’ utilities has a strong influence 
on the properties of good allocations. The higher the correlation, the fewer the EF 
allocations, and the less likely that any one allocation can satisfy both equity and 
efficiency criteria.

In addition to our simulation results, we have offered three conjectures about the 
numbers of EF allocations and their relation to correlation. They offer new chal-
lenges to future research on fair division.

The first conjecture refers to the fraction of EF allocations in a problem. Figure 9 
shows that the average fraction of allocations that are EF approaches 1/6 as problem 
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size increases. That average is already close (around 15%) for the smallest problem 
size we tested (4 items). It should be noted that our conjecture concerns averages 
over all possible utility vectors—individual problems do have more or fewer EF 
allocations. A deeper analysis of this conjecture might ask how the expected fraction 
of EF allocations is related to the underlying probabilistic model of utilities, which 
might differ from our uniform distribution.

The second conjecture is that the maximum fraction of allocations that are EF is 
1/4. As we already mentioned, it is easy to show that problems with this number of 
EF allocations exist, and that this conjecture fails if players value all items equally. 
Thus it seems that this upper bound depends on equal utilities being rare, so that 
there are items with utility exceeding 1/n. Further analysis of cases in which this 
bound is reached is necessary to develop an understanding of when and how large 
numbers of EF allocations can arise.

Our last conjecture connected the existence of EF allocations to the correlation 
of utility values. Again, our observation may well depend on the uniform distribu-
tion that is the basis of our simulations. An attempt on an analytical proof of this 
conjecture will thus probably require assumptions about the joint distribution of two 
players’ utilities.

Our observations have important consequences for the design of algorithms for 
fair division. For most problems, the search for an allocation that fulfils all desir-
able properties will fail. Any algorithm for fair division problems, at least one that 
applies when items are indivisible, must trade off between equity and efficiency. Our 
simulation results show that, as problem size increases, maximization allocations 
are more likely to be envy-free. If envy-freeness is sufficient for equity, then perhaps 
an allocation maximizing total value (MTW) is a good choice. Our results also show 
that this solution has a good chance of also being MNW, but it will frequently be 
different from the MM allocation.

Although our research has identified several relationships among properties of 
allocations in fair division problems, it is not without limitations. Our analytical 
results are based on additive cardinal evaluations, a specific model of preferences. 
In this setting, properties such as MM require that utilities be measured on the same 
scale, since otherwise the players’ utilities would not be comparable. Additivity of 
utility functions also imposes restrictions on the generalizability of our results, rul-
ing out the possibility of positive or negative synergies as well as saturation effects, 
which could play an important role in real-life fair division.

In addition to these general limitations, our simulation results exhibit the same 
limitations of generalizability as all computational studies. We performed a large 
number of simulations and took care to ensure that simulated preference values 
are uniformly distributed (in our case, over the n-dimensional unit simplex), but of 
course our results are limited to the cases that we analyzed. Cases not contained in 
our data might exist—unless they are ruled out by analytical results. For example, 
one million randomly generated problems with n = 11 and 12 did not uncover any 
examples with no EF allocation, but it is known that such examples exist when play-
ers’ utilities are almost identical.
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