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Abstract
Priorities in multi-criteria decision-making (MCDM) convey the relevance prefer-
ence of one criterion over another, which is usually reflected by imposing the non-
negativity and unit-sum constraints. The processing of such priorities is different 
than other unconstrained data, but this point is often neglected by researchers, which 
results in fallacious statistical analysis. This article studies three prevalent fallacies 
in group MCDM along with solutions based on compositional data analysis to avoid 
misusing statistical operations. First, we use a compositional approach to aggregate 
the priorities of a group of DMs and show that the outcome of the compositional 
analysis is identical to the normalized geometric mean, meaning that the arithme-
tic mean should be avoided. Furthermore, a new aggregation method is developed, 
which is a robust surrogate for the geometric mean. We also discuss the errors in 
computing measures of dispersion, including standard deviation and distance func-
tions. Discussing the fallacies in computing the standard deviation, we provide a 
probabilistic criteria ranking by developing proper Bayesian tests, where we cal-
culate the extent to which a criterion is more important than another. Finally, we 
explain the errors in computing the distance between priorities, and a clustering 
algorithm is specially tailored based on proper distance metrics.
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1 Introduction

Multi-criteria decision-making (MCDM) problems typically involve evaluating a 
set of alternatives with respect to a handful of criteria based on the preferences 
of one or a group of decision-makers (DMs), with the ultimate goal of selecting, 
sorting, or ranking available alternatives. For such evaluation, the performance 
of alternatives for each criterion is acquired by employing a crucial data collec-
tion approach, whose results are stored in a so-called performance matrix. There 
are several methods to elicit the preferences of DMs, including but not limited to 
Tradeoff (Keeney et al. 1976), SMART (simple multi-attribute rating technique) 
(Edwards 1977), Swing (Mustajoki et al. 2005), AHP (analytic hierarchy process) 
(Saaty 1977), ANP (analytic network process) (Saaty 1990), and BWM (best-
worst method) (Rezaei 2015). For more information about popular MCDM meth-
ods, see (Triantaphyllou 2000).

Conventional MCDM methods typically analyze a decision-making problem 
that entails one DM only. Members usually have distinct preferences when there 
is a group of DMs for decision-making. Three approaches exist to deal with the 
differences in preferences: sharing, comparing, and aggregating (Belton and Pic-
tet 1997). In sharing, the whole group will arrive at a unified preference structure 
so that the group is treated as a single DM problem. For instance, if one wants to 
find the weights of a set of criteria in sharing, they will end up with a single set 
of weights through negotiation among members and by using a weighting method 
(e.g., AHP). In contrast, individual preferences are considered in comparing and 
aggregating, where we have different sets of weights from individual members. 
In aggregating, for instance, we try to aggregate the weights from all members to 
come up with a single set of weights (Amenta et al. 2020).

Aggregating is usually performed in two different ways. First, the methods for 
one DM are extended to encompass multiple DMs’ preferences. The most popu-
lar technique known so far is arguably the geometric mean method (Ramanathan 
and Ganesh 1994; Forman and Peniwati 1998) that is applied, for instance, to the 
pairwise comparison matrices (PCMs) computed within the AHP, the result of 
which is an aggregated PCM representing the preferences of the whole group. 
Other methods use more complicated techniques, such as evolutionary algo-
rithms (Blagojevic et  al. 2016; Abel et  al. 2015) and Bayesian statistics (Altu-
zarra et  al. 2007; Mohammadi and Rezaei 2020), to aggregate the preferences 
of multiple DMs. This is also called input-based aggregation (Dias and Clımaco 
2005). The second approach for aggregation is to compute all DMs’ priorities 
individually and then conduct the consequent processes based on such priorities, 
such as aggregation and clustering of DMs. This approach is called output-based 
aggregation (Dias and Clımaco 2005). The arithmetic mean is typically used for 
output-based aggregation and is seemingly appropriate since it satisfies the non-
negativity and constant-sum (e.g., unit-sum) constraints required in most MCDM 
methods. Other processes, such as computing the standard deviation of priorities 
of the group (Tomashevskii and Tomashevskii 2019; Tomashevskii 2015), clus-
tering of DMs (Abel et al. 2014; Meixner et al. 2016), and statistical significance 
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tests (Chiclana et al. 2013; Blagojevic et al. 2016), are directly applied to the pri-
orities computed based on the preferences of DMs.

While the methods for aggregating multiple DMs’ preferences are often statis-
tically sound, applying the same statistical operations to the priorities is incorrect 
because the priorities are ratios lying on a simplex and not on the real space. Like 
the priorities of a DM, a vector that satisfies the non-negativity and constant-sum 
constraints is called a composition1 (Aitchison 1982). From a statistical point of 
view, the statistical operations should be adjusted to apply to such compositions; 
otherwise, the follow-up methods or outcomes are unreliable and statistically incor-
rect. While there is a tremendous effort, such as several books (Aitchison 1982; 
Pawlowsky-Glahn and Buccianti 2011; Buccianti et al. 2006), in providing proper 
statistical tools and methods for analyzing compositional data, MCDM researchers 
often neglect them, resulting in improper statistical analysis with disastrous conse-
quences. This article aims to study three of such essential and prevalent fallacies in 
analyzing the priorities of a group of DMs.

First, we analyze the aggregation of different DMs’ priorities using the notions of 
compositional data since computing the arithmetic or geometric mean directly from 
the priorities is not in line with their compositional nature. We show that the aggre-
gated priorities based on our analysis are equivalent to the normalized geometric 
mean of the priorities, called the geometric mean method (GMM), in the MCDM 
literature (Forman and Peniwati 1998; Ramanathan and Ganesh 1994). The byprod-
uct of such an analysis is that using the arithmetic mean for aggregating the priori-
ties should be avoided. This analysis ends a lengthy discussion in MCDM regard-
ing using the arithmetic or geometric mean for aggregating priorities. In addition, 
the adaptive weighted geometric mean method (AWGMM) is developed, which 
is a more robust surrogate to the GMM. The robustness of the method is against 
DMs whose preferences significantly deviate from the majority of other DMs. The 
AWGMM uses the robust Welsch estimator developed in robust statistics (Huber 
2004), which adaptively assigns a weight for each DM based on their priorities. A 
DM with a small weight is deemed deviant and thus contributes less to the final 
aggregated priorities computed in the AWGMM. Aside from the aggregation, the 
identification of DMs with deviating preferences could also be used in the negotia-
tion process to converge the preferences of the whole group.

Second, the errors in estimating priorities’ standard deviation (as a meas-
ure of dispersion) are explained. Since statistical tests are typically based on 
the standard deviation of samples, the flaw in computing the standard deviation 
directly impacts the tests. Thus, the change in calculating the standard devia-
tion for priorities (as compositional data) means that statistical tests cannot be 
directly applied to priorities to verify the difference between the weights of the 
two criteria. For example, statistical tests, such as paired t-test and Wilcoxon 
Signed-rank test, are used to check the importance difference of criteria based 

1 Even if they do not lie on a standard simplex, the priorities in MCDM convey the relative importance 
of one criterion over another, meaning that they are still compositional and statistical methodologies for 
processing them should be different than other standard multivariate data.
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on the priorities of a group by subtracting their weights (Chiclana et al. 2013), 
which is in not statistically correct given the compositional nature of the priori-
ties. Instead, we develop a Bayesian Wilcoxon-type test to verify if the differ-
ence between the weights of two criteria is significant based on a group of DMs’ 
priorities. The Bayesian tests do not suffer from the pitfalls of the frequentist 
tests and enable us to compute the extent to which one criterion is preferred over 
another based on the priorities of a group of DMs. This approach provides us 
with a probabilistic ranking of criteria. Aside from the Wilcoxon-type test, the 
ways to use the Bayesian t-test and Bayesian Sign test (i.e., beta-binomial conju-
gate) are also explained.

Third, we put forward the proper ways to measure the distance (as another 
measure of dispersion) between two priorities. One of the most popular distance 
functions is the Euclidean distance which is directly applied to the weights in the 
priorities (Abel et al. 2014). The distance functions are used for different aims, 
but one of the essential uses of a distance function is clustering the DMs based 
on their priorities. Typically, the Euclidean distance and mean absolute devia-
tion (MAD) are used for clustering the DMs using clustering algorithms such as 
K-means and fuzzy C-means. Instead, we introduce the compositional extension 
of the distance metrics, according to which we extend the K-means algorithm 
that is statistically appropriate and correct for grouping the DMs based on their 
priorities.

In summary, the contributions of this article are as follows:

• We show that the proper way to aggregate the priorities is to use the geomet-
ric mean method (GMM) and that the arithmetic mean should be avoided. 
Further, the adaptive weighted geometric mean method (AWGMM) is also 
developed by using the robust Welsch estimator.

• The errors of computing the standard deviation of priorities are discussed, 
and proper Bayesian statistical tests for verifying the difference between the 
weights of two criteria are developed, the result of which is a probabilistic 
ranking of criteria.

• A proper distance function between two priorities is reviewed, according 
to which a new clustering method is developed for grouping multiple DMs 
based on their priorities.

The paper is structured as follows. Section 2 presents the preliminary concepts 
of MCDM and compositional data, which will be extensively used in the subse-
quent sections. Section 3 is dedicated to the aggregation and the fallacies therein 
and then puts forward a new robust aggregation method. In Sect. 4, we discuss 
the shortcoming in computing standard deviation and statistical tests in MCDM 
and develop mathematically sound tests that can be used in such situations. Sec-
tion  5 is devoted to the applications of distance-related measures in MCDM, 
where we also develop some new correct ways which can be used in the context 
of MCDM. Section 6 studies a real-world MCDM example, where we show the 
use of the proposed methods. Finally, the paper is concluded in Sect. 7.
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2  Preliminary

This section presents the preliminary concepts from MCDM and compositional 
data, which will be used in the following sections. We first review some rudimen-
tary concepts from pairwise comparison matrices (PCMs) and discuss the con-
sistency of such an MCDM problem. We then look into the compositional data 
and provide necessary introductory notions.

2.1  Pairwise Comparison Matrix

Pairwise comparison matrices (PCMs) were first introduced and used in AHP 
(analytic hierarchy process) (Saaty 1977; Ishizaka and Labib 2011), where they 
were used to identify the importance of a set of criteria. For a set of criteria 
C = {c1, c2,… , cn} , the following definition provides the notion of PCMs.

Definition 2.1 For a set of n criteria, a PCM M = {mij}
n
i,j=1

 is a square matrix of 
order n, whose element mij expresses the relative importance of criterion ci over cj.

A particular example of a PCM is shown in Table 1. The preferences of criteria 
over each other are shown on a scale of 1–9. A number like 8 in this table indi-
cates that c1 in eight times more important than c3.

In MCDM, the importance of a set of criteria like C is denoted by a priority 
vector w ∈ R

n , where each wj is non-negative for all j = 1,… , n , and the sum of 
all weights come to one. Therefore, each element of a PCM should satisfy the fol-
lowing property:

There does not need to exist a unique vector w such that Eq. (1) satisfies all the ele-
ments in a PCM. But if such a unique vector exists, the PCM is said to be fully con-
sistent. The following two definitions provide the notion of consistency for a PCM 
differently.

Definition 2.2 (Saaty 1977) A PCM is said to be fully consistent if and only if it sat-
isfies the multiplicative-transitivity property, defined as:

(1)mij =
wi

wj

, ∀i, j = 1,… , n.

Table 1  An example of 
pairwise comparison matrix 
(PCM) for three criteria, i.e., 
C = {c1, c2, c3}

c1 c2 c3

c1 1 2 8
c2 1/2 1 4
c3 1/8 1/4 1
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Definition 2.3 (Saaty 2000) A PCM is said to be fully-consistent if and only if there 
exists a unique w ∈ R

n , for which Eq. (1) holds true.

When a PCM is not fully consistent, there are different ways to compute the pri-
orities w. The popular methods are the maximal eigenvector method (EVM) and 
the geometric mean method. The EVM is based on the eigenvalue decomposition, 
where the criteria priorities are set to be the maximal eigenvector. On the other 
hand, according to the geometric mean method for PCM, the optimal priorities of 
criteria are computed by taking geometric means of columns, defined as:

where M̂ = {m̂}n
i,j=1

 is the column-wise normalized version of a PCM. In both meth-
ods, the ratio of weights in Eq. (1) approximately holds. In the case that the PCM is 
fully consistent, the column-wise normalization of all columns is the same, making 
any normalized column the desired criteria priorities.

2.2  Compositional Data

The difficulty of processing ratios with common elements in their nominators or 
denominators is recognized in statistics a long time ago. In his famous paper on 
spurious correlation in Pearson (1897) pointed out that the correlation of ratios with 
common parts in their nominators/denominators may not be precisely correct. How-
ever, Pearson’s precautions went unheeded until the 1980s, when some studies high-
lighted the methods and tools for analyzing ratios with common elements (Aitchison 
1982). These studies were based on data whose sum is a fixed number, which were 
called compositions. The following definition provides a concise explanation of this 
notion.

Definition 2.4 (Aitchison 1982) A composition w of n parts is an n × 1 vector with 
positive components w1,… ,wn whose sum is 1.

Be aware that the sum of components of a composition in Definition 2.4 is not 
necessarily 1 but can be any other number, e.g., 100. Moreover, even the sum of the 
parts can be unknown and not equivalent for different compositions in the data set. 
An example of such data is the household budget, where the expenses of families 
are classified different categories four categories (Aitchison 1982). Usually, different 
families have different costs, typically commensurate to their income, but for ana-
lyzing such data, the ratio between different expense classes is critical, and the data 
is thus compositional. In this circumstance, we can divide the value of an expense 
class for each family by the total expenses of the family to form a compositional 
vector from the raw expense values. As a result, a different (unknown) constant-sum 

(2)mij = mih × mhj, i, j, h = 1,… , n.

(3)wi =
n

√√√√ n∏
j=1

m̂ij, i = 1,… , n,
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does not change the nature of the compositional data, where the ratio between differ-
ent parts matters, not the magnitude of its parts.

Given that compositions have a limiting constraint, the statistical analysis of com-
positional data must be different. As a concrete example, we cannot assume that a 
composition follows a normal distribution since it does not lie in the real space Rn . 
Instead, it lies in lower-dimensional simplices, making the available statistical tools 
inapplicable to such data.

The priorities of criteria in MCDM are indeed compositional. As a result, statis-
tical analysis—even simple arithmetic or geometric mean—should be investigated 
before applying directly to such data. In the following sections, several statistical 
methods are analyzed, and proper methodologies for processing priorities in MCDM 
are developed and put forward, which align with the priorities’ compositional nature.

3  Priorities Aggregation

Group members involved in a decision-making problem can be expected to have dif-
ferent preferences, which might be due to different causes, including (1) uncertainty 
(due to lack of relevant information and proper structuring of the problem); (2) con-
flict (due to different values or priorities); or (3) misunderstanding (due to different 
perspective and partial information) (Belton and Pictet 1997). There are generally 
three approaches to handling the differences among group members: sharing, com-
paring, and aggregating (Belton and Pictet 1997). By sharing, the analyst/facilitator 
tries to moderate a discussion, for instance, via the decision conferencing (Phillips 
1990; McCartt and Rohrbaugh 1989), among the members to address the differences 
by discussing the causes of different preferences with the ultimate aim of finding 
common ground and agreement. In this approach, the group is treated as a single 
DM. In comparing, on the other hand, members are considered individually, and the 
preferences obtained from members are used for further negotiation and compari-
son to reach a consensus. Finally, in aggregating, the individual preferences are not 
negotiated, nonetheless, the analyst/facilitator tries to find common ground where 
the differences among the preferences are reduced.

While reaching a consensus among the group members by following sharing or 
comparing approaches is desirable, a unanimous agreement is not always guaran-
teed. This is why the aggregating approach could also be seen as complementary 
to the comparing approach. A responsible analyst/facilitator should try to moderate 
a discussion among the members and make their views close. However, if reach-
ing a consensus seems impossible, aggregating the preferences (which have already 
become closer) comes to the picture in the end. Also, in some situations where shar-
ing and comparing is not easy, e.g., when we need to collect the preferences of a 
relatively large number of participants, aggregating seems the only possible option. 
Examples could be arriving at a decision in a municipality by collecting the prefer-
ences of citizens of a town or formulating a policy by collecting the preferences of 
electric vehicle users in a region. We refer to Belton and Stewart (2002) for detailed 
explanations of the three approaches mentioned here. Regarding aggregating the 
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priorities, as we discussed earlier, we need to use operations suitable for priorities, 
i.e., operations on compositions.

In this section, we first review the compositional approach to aggregating the pri-
orities of multiple DMs and show that the geometric mean of priorities should be 
utilized for aggregation, and the use of the arithmetic mean should be avoided in this 
case. Further, a method based on robust statistics is developed for aggregating the 
priorities that are robust to deviant DMs and identifies the DMs whose priorities are 
different from the majority of other DMs, making them have a lesser impact on the 
final aggregated priorities. Identifying deviant DMs can also be used in the nego-
tiation process to converge the preferences of the DMs in the group. The notations 
used in this article are also shown in Table 2.

3.1  Arithmetic Versus Geometric Mean

There are two widely-used approaches for aggregating multiple DM priorities: 
arithmetic and geometric mean. Initially, the arithmetic mean method (AMM) was 
reported to be the most appropriate method because the geometric mean violates the 
Pareto optimality (Ramanathan and Ganesh 1994). Later on, Forman and Peniwati 
showed that the geometric mean preserved the Pareto optimality as well (Forman 
and Peniwati 1998) and recommended using the geometric mean for aggregating 
priorities without a solid justification. However, this recommendation is taken for 
granted, and the arithmetic mean has been used mainly for aggregating the priorities. 
Even in a more recent review article (Ishizaka and Labib 2011), only the arithmetic 
mean is mentioned as the only means for aggregating the priorities in the AHP.

These two methods have a fundamental problem of averaging DM priorities, each 
element showing only the relative importance of one criterion concerning other 
criteria. Since only the ratio between the weights of different criteria, and not the 
magnitude of weights, matters, we cannot directly apply the arithmetic or geometric 
mean over the priorities of multiple DMs. Instead, we first need to compute all the 
possible ratios between the elements in a priority or weight vector and then take an 
average over the ratios. For n criteria, all the possible ratios are n(n − 1)∕2 placed in 
a compositional average array.

Table 2  Notation used throughout the paper

Variable Description

K Number of DMs
n Number of criteria
W ∈ R

K×n matrix containing all the priorities of K DMs for n criteria

Ŵ ∈ R
K×n(n−1)∕2 Log-ratio transformation of priorities

P Performance matrix
w
g ∈ R

n Aggregated priority
ŵ ∈ R

n(n−1)∕2 Log-ratio transformation of the aggregated priority



787

1 3

Unveiling and Unraveling Aggregation and Dispersion Fallacies…

Definition 3.1 (Compositional average array (Aitchison 1982)) For an aggregated 
n-part compositions like w, the compositional average array is given by

where �ij = �{ln
wi

wj

} , and � is the mathematical expectation.

The mathematical expectation in Definition 3.1 can be replaced by the average for 
the empirical analysis since the log-ratios lie within the real space R . Thus, one can 
compute each element of the compositional average array based on the priorities of 
K DMs as:

In addition, it is evident that:

On the other hand, a PCM, like M, is said to be fully-consistent if mij = mih × mhj for 
all i, j, k in the range of the matrix (see Definition 2.2). Now, if we define the matrix 
Ê by taking element-wise exponential from E, i.e., Ê = exp(E) , this matrix can be 
viewed as a fully-consistent PCM. For fully consistent PCMs, a normalized column 
would yield the final aggregated priorities. The following lemma shows that a nor-
malized column of matrix Ê is equivalent to the normalized geometric mean of all 
priorities or the GMM.

Lemma 3.2 A normalized column of the exponential-transformed compositional 
average array is tantamount to the geometric mean method (GMM).

Proof Without loss of generality, we take the first column of the compositional aver-
age array and show that the normalization of the first column is equivalent to the 
GMM. Let c ∈ R

n be the exponential-transformed of the first column, then,

E =

⎡
⎢⎢⎢⎣

0 �12 �13 … �1n
�21 0 �23 … �2n
⋮ ⋮

�n1 �n2 �n3 … 0

⎤
⎥⎥⎥⎦
,

(4)�ij = �

{
ln

wi

wj

}
=

1

K

K∑
k=1

ln
Wki

Wkj

, ∀i, j = 1,… , n.

(5)�{�ij} = �{�ik} + �{�kj}, ∀i, j = 1,… , n.

(6)

ci = exp(�i1), i = 1,… , n,

= exp

(
1

K

K∑
k=1

ln
Wki

Wk1

)

= exp

(
ln

K∏
k=1

(
Wki

Wk1

) 1

k

)

=

K∏
k=1

(
Wki

wk1

) 1

K

.
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Now, the normalization of c yields

which is the normalized geometric mean of priorities or the GMM, and that com-
pletes the proof.

Corollary 3.3 Taking any average over the raw priorities is not statistically correct. 
Nevertheless, the analysis based on compositional data showed that the GMM is the 
proper average of all the priorities. This implies that using the arithmetic mean for 
aggregating DM priorities should be avoided.

3.2  Robust Aggregation Based on the Welsch Estimator

In Eq. (4), the mathematical expectation is replaced by the averaging over the availa-
ble samples, i.e., the priorities of K DMs, and the final aggregated outcome becomes 
equivalent to the GMM. Another option is to use more robust statistics, such as 
the median, to produce more robust priorities for deviant DMs. In aggregating pri-
orities, a deviant is a DM whose preferences deviate significantly from most other 
DMs. Note also that using the median on the original data is erroneous. The final 
aggregated results using the median in Eq. (4) are not tantamount to the GMM but 
are a more robust surrogate. However, the median would not lead to a fully consist-
ent PCM based on the associated compositional average array.

Another choice, instead of averaging, is to use different estimators. In robust 
statistics, there are a number of estimators that can provide more robust estima-
tions. Such estimators are called M-estimators that can replace the mean or median 
in Eq.  (4). For example, the Welsch M-estimator is one of the well-known esti-
mators that has shown promising performance in noisy environments (He et  al. 
2010; Mohammadi et al. 2016). To use this estimator for computing the composi-
tional average array, we consider the log-ratio transformed data Ŵ and estimate the 
aggregated log-ratio transformed priority ŵg by solving the following optimization 
problem:

where �(x) = exp(−x2∕�2) is the Welsch estimator. For �(x) = x , minimization (8) 
yields the same solution as the arithmetic mean of log-ratio transformed data, so the 

(7)

ci∑n

j=1
cj

=
1

∑n

j=1

∏K

k=1

W
1
K
kj

W
1
K
k1

K�
k=1

�
Wki

Wk1

� 1

K

=

∏K

k=1
W

1

K

ki

∑n

j=1

∏K

k=1
W

1

K

kj

,

(8)min
ŵg

K�
k=1

𝜙(‖Ŵk⋅ − ŵg‖),
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result of the compositional average array would be identical to the GMM. Using the 
Welsch, a more robust estimator, we expect that the aggregation outcome will be 
more robust to deviants, i.e., the DMs whose preferences are significantly different 
from the majority of other DMs. Problem (8) is not convex (Geman and Reynolds 
1992), but the following lemma paves the way for an efficient solution.

Lemma 3.4 (Geman and Reynolds 1992) For a fixed x, there is a potential dual 
function � such that:

where �(.) is the convex conjugate of �(.) , and 𝛼i > 0 is an auxiliary variable, which 
is determined by the so-called minimizer function �(.) defined as:

Using Lemma 3.4, problem (8) can be written as:

Thus, the following steps must be iterated until convergence is reached:

For the second step in (12), we need to take the derivative and find the optimal solu-
tion as:

In addition, the performance of the Welsch estimator is heavily reliant on selecting 
its parameter � . As the recent studies suggest (He et  al. 2010; Mohammadi et  al. 
2015), this parameter can be recursively updated in each iteration as:

(9)�(xi) = inf
�i

�ix
2

i
+ �(�i),

(10)�(x) = exp

(
−
x2

�2

)
.

(11)min
ŵg,𝛼

K�
k=1

𝛼k‖Ŵk⋅ − ŵg‖2 + 𝜓(𝛼k).

(12)

𝛼k = 𝛿

�
‖Ŵk − ŵg‖

�
= exp

�
−

‖Ŵk⋅ − ŵg‖
𝜎2

�
, ∀k = 1,… ,K,

ŵg = argmin
ŵg

K�
k=1

𝛼k‖Ŵk⋅ − ŵg‖2.

(13)

𝜕

𝜕ŵg

K�
k=1

𝛼k‖Ŵk⋅ − ŵg‖2
2
= 0

⇒

K�
k=1

𝛼kŴk⋅ =

K�
k=1

𝛼kŵ
g

⇒ ŵg =
�

𝜆kŴk⋅, 𝜆k =
𝛼k∑K

j=1
𝛼j

.
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Algorithm 1 summarizes the overall procedure for aggregating the priorities of mul-
tiple DMs by using the Welsch estimator.

The value of �k in Algorithm 1 shows the contribution of each DM to the final 
aggregated priorities, and the DMs with deviating preferences from the majority 
of other DMs are assigned a lower �k . As a result, the DMs with deviating prefer-
ences from the vast majority of other DMs can be detected by considering their 
associated �k . Note also that � ∈ RK satisfies the non-negativity and unit-sum 
constraints, allowing us to view it as a weight for DMs based on their opinion 
proximity to other DMs.

Remark 3.5 The values of � from Algorithm 1 identifies the deviant DMs. Instead of 
aggregation, the decision facilitator/analyst can use these values to understand what 
DMs have different preferences and use such information in the negotiation process.

Remark 3.6 We do not claim the preference of wg

AWGMM
 and wg

GMM
 over each other. 

While both are mathematically sound approaches for aggregating priorities, their 
main difference is handling the deviants. While wg

GMM
 assigns equal weights to all 

the DMs, wg

AWGMM
 assigns lower weights to the DMs whose priorities are far from 

the majority of the DMs. We think the suitability of the two approaches depends on 
a particular decision-making situation; if all the DMs involved in the decision-mak-
ing process must have equal contributions, then the GMM must be used. However, 
if the majority opinion is of more interest, then AWGMM seems more appropriate. 
In any case, using the arithmetic mean for aggregating priorities should be avoided.

After obtaining ŵg from Algorithm 1, it can be placed in a compositional aver-
age array, which happens to be fully consistent, making the aggregated priori-
ties be obtained by normalizing a column of such a matrix. The following lemma 
proves the consistency of the compositional average array built based on ŵg.

Lemma 3.7 The compositional average array computed based on Algorithm  1 is 
fully consistent, thereby providing unique aggregated priorities.

(14)𝜎 =

∑K

k=1
‖Ŵk⋅ − ŵg‖2

2

n2
.
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Proof Algorithm 1 outputs the log-ratio transformed ŵg and � ∈ RK . Accordingly, 
the compositional average array can be constructed as in Definition 3.1, where

where � is obtained from Algorithm 1. It is now simple to show that:

which means that the exponential-transformed of such a matrix is fully consistent 
and provides unique aggregated priorities, and that completes the proof.

The proposed aggregation method has several features, some of which are listed 
in the following:

• Pareto optimality entails that if all DMs in a group prefer A over B, then the 
group decision should also favor A (Forman and Peniwati 1998). In the proposed 
aggregation method, if all DMs favor criterion i over j, then: 

 and since �k is non-negative and is summed to one in Algorithm 1, it follows 

 which means that the proposed aggregation method satisfies Pareto optimality.
• Non-dictatorship refers to the fact that no individual priorities become the priori-

ties of the group automatically, regardless of the preferences of other members 
in the group. The proposed method assigns a weight to each DM, the magnitude 
representing the corresponding DM’s contribution to final aggregated weights. 
Although the procedure might give some DMs a lower weight (even nearly zero), 
the weights are only assigned after considering the priorities of all DMs in a 
group. In addition, if a DM is added or removed from a group, the weights of 
DMs and the final aggregated priorities will change, confirming that the aggre-
gated priorities are not automatically biased toward one of the DMs.

• Recognition means that the group decision is arrived at after considering all the 
members’ priorities. In the proposed aggregation method, each DM is assigned a 
weight after considering the priorities of all group members: If the priorities of a 
DM are different from those of other group members, then it is assigned a lower 
weight. It means that the final aggregated priorities are computed based on the 
priorities of all decision-makers. Further, adding or removing a DM will change 

�ij = �

{
ln

Wki

Wkj

}

=

K∑
k=1

�k ln
Wki

Wkj

, ∀i, j = 1,… , n,

�ij = �ik + �kj,

(15)ln
Wki

Wkj

> 0, ∀k = 1,… ,K,

(16)
K∑
k=1

𝜆k ln
Wki

Wkj

> 0,
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the weights assigned to each DM and the final aggregated priorities, which also 
corroborates that AWGMM considers all DMs’ priorities before arriving at the 
aggregation priorities.

3.3  An Illustrative Example

This section illustrates the aggregation procedure through an example. In this 
regard, assume that five DMs have expressed their preferences on four criteria 
C = {c1, c2, c3, c4} , and the matrix W containing the priorities of five DMs is as 
follows:

The result of the arithmetic mean is:

We first create the compositional average array, as defined in Definition 3.1. In this 
regard, we compute element �12 as:

Similarly, other elements in the compositional average array are computed, the result 
of which is as follows:

By taking exponential and normalizing a column of this matrix, we arrive at the 
aggregated priorities as:

which is identical to the GMM and is considerably different from (18). We further 
apply Algorithm 1 to find the aggregated priorities. This algorithm works with the 
log-ratio transformed data Ŵ and has, as one of its outputs, � ∈ RK that works as a 
weight for different DMs. The Ŵ and � for this example are:

(17)

(18)w
g

AMM
=
[
0.253 0.389 0.277 0.081

]
.

�12 =
1

5

(
ln

0.220

0.435
+ ln

0.210

0.434
+ ln

0.363

0.312
+ ln

0.243

0.386
+ ln

0.227

0.381

)

= −0.446.

(19)E =

⎛⎜⎜⎜⎝

0 − 0.446 − 0.036 1.371

0.446 0 0.411 1.817

0.036 − 0.411 0 1.407

−1.371 − 1.817 − 1.407 0

⎞⎟⎟⎟⎠
.

(20)w
g

GMM
=
[
0.260 0.405 0.269 0.066

]
,
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As is evident from this matrix, the third DM is assigned a weight of approximately 
zero,2 mainly because their preferences are significantly different from others. Thus, 
it is treated like a deviant and does not influence the final aggregated log-ratio ŵg 
that is computed as:

which can be placed in an array as:

It can be verified that the exponential-transformed of this matrix is a fully consistent 
PCM, which was proved in Lemma 3.7. Now, if we take the exponential and then 
normalize a column, the final aggregated priorities are obtained as:

As expected, the average computed by the AWGMM in (22) is different from those 
in (20) and (18) since one of the DMs is assigned a small weight (nearly zero) and 
has therefore minimal impact on the final aggregated priorities. Note also that the 
values of � can be used in the negotiation, as the third DM has significantly different 
preferences than others.

4  Standard Deviation and Statistical Tests

Similar to the discussion regarding the central tendency of priorities, the standard 
deviation for the priorities is defined differently. The change of central tendency 
and standard deviation influences statistical tests, such as paired t-test and Wilcoxon 
Signed-rank test, which are often used in processing the priorities. The use of such 
statistical tests is to verify if the difference between the weights of the two criteria 
is significantly different (Chiclana et  al. 2013). In this section, we first study the 
estimation of standard deviation from the perspective of compositional data analysis 
and show that such a definition would provide correct and more meaningful results 
than computing the standard deviation from raw priorities. We then combine com-
positional data analysis with Bayesian statistics to calculate the probability that one 

ŵg =
[
−0.628 −0.354 1.546 0.274 2.174 1.90

]
,

(21)E =

⎛
⎜⎜⎜⎝

0 − 0.628 − 0.354 1.546

0.628 0 0.274 2.174

0.354 − 0.274 0 1.90

−1.546 2.174 − 1.90 0

⎞
⎟⎟⎟⎠
.

(22)w
g

AWGMM
=
[
0.225 0.410 0.319 0.046

]
.

2 Note that it is not absolute zero, but an infinitesimal number.
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criterion is more important than another based on the priorities of multiple DMs and 
provide a probabilistic ranking of the criteria.

4.1  Standard Deviation

The standard deviation of elements in priorities has also been used without con-
sidering the inherent constraints in the compositional data (Tomashevskii and 
Tomashevskii 2019; Tomashevskii 2015). Like the arithmetic mean, the standard 
deviation calculation based on raw priorities is also incorrect and invalidates the 
consequent decisions and methods. In addition, the standard deviation estimated 
based on the priorities typically has a magnitude that is as large as or even larger 
than the mean of the priorities (see Tomashevskii and Tomashevskii 2019; Toma-
shevskii 2015), thereby having narrow applicability in practice.

For compositional data, we need to compute the deviation of all possible ratios in 
a composition. Therefore, we define the compositional deviation array that includes 
the standard deviation of all possible ratios.

Definition 4.1 (Compositional deviation array (Aitchison 1982)) For an n-part com-
position like w, the compositional deviation array is given by

where �ij =
√

var
(
ln

wi

wj

)
 , and var is the variance operator.

The variance in Definition 4.1 can be replaced by the empirical variance defined 
as:

Definition 4.1 shows that for n criteria, we indeed have n(n − 1)∕2 unique standard 
deviations, equivalent to the number of possible ratios for an n-part composition. 
This means that, based on such a definition, the analysis based on the average and 
standard deviation of each criterion computed according to raw priorities makes no 
sense. Besides, by using the deviation and average arrays, it is possible to provide 
more insights regarding the priorities of different DMs over a set of criteria, which 
provides more description of DMs’ priorities and the relative importance of different 
criteria rather than a sole ratio.

Before illustrating the usefulness of the compositional deviation array through 
an example, it is worth noting that the definition of variance for the deviation array 
can also be replaced by the median absolute deviation (MAD), which is based on the 
median and is a more robust surrogate for standard deviation. In addition, based on 
the proposed aggregation method AWGMM, we can define a robust variance as:

T =

⎡⎢⎢⎢⎣

− �12 �13 … �1n
�21 − �23 … �2n
⋮ ⋮

�n1 �n2 �n3 … −

⎤⎥⎥⎥⎦
,

(23)�2
ij
= var

(
ln

wi

wj

)
=

1

K − 1

K∑
k=1

(
ln

Wki

Wkj

− �ij

)2

, ∀i, j = 1,… , n.
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where � and �AWGMM are computed based on the proposed aggregated method in 
Algorithm 1. Given these definitions, we illustrate the use of standard deviation by 
an example. In addition, since the magnitudes of values in average and deviation 
arrays are identical, we can place the numbers in an array to summarize the priori-
ties of multiple DMs in one array only. The next definition presents such an array.

Definition 4.2 (Compositional average-deviation array) For an n-part composition 
like w, the compositional average-deviation array (AD) is defined as:

where �ij is the average, i.e., mean, median, or a robust estimation based on Algo-
rithm 1, and �ji is the associated standard deviation to �ij.

Example 4.3 We compute the compositional average-deviation array for the example 
in Sect. 3.3 by using the mean, median, and the method proposed in Algorithm 1. 
We first begin with the mean and standard deviation, that is computed as:

The magnitude of the above-diagonal values suggests the difference between the two 
criteria, and its sign indicates which criterion is more important. For instance, the 
value − 0.446 indicates that criterion c2 is more important than criterion c1 , since the 
value is negative. The biggest difference is between c2 and c4 whose magnitude of 
average differences is 1.817. The lower-diagonal entries represent the standard devi-
ation, which can help realize how reliable the difference between the two criteria is 
based on a group of DMs’ priorities. For instance, the average difference between c1 
and c3 has the infinitesimal value of − 0.035 , while the standard deviation is 0.704. 
Therefore, one can readily understand that these criteria have similar priorities or 
importance to the group of DMs.

The same average-variation array can be computed by using the median and 
median absolute deviation, as well as the proposed robust aggregation of priorities, 
i.e.,

(24)var

(
ln

wi

wj

)2

=

K∑
k=1

�k

(
ln

Wki

Wkj

− �AWGMM
ij

)2

,

⎛
⎜⎜⎜⎝

0 �12 �13 … �1n
�21 0 �23 … �2n
⋮ ⋮

�n1 �n2 �n,3 … 0

⎞
⎟⎟⎟⎠
,

(25)

(26)ADmedian =

⎛⎜⎜⎜⎝

0 − 0.518 − 0.311 1.479

0.162 0 0.330 2.160

0.080 0.179 0 1.864

0.081 0.142 0.090 0

⎞⎟⎟⎟⎠
,
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The matrices computed based on the median and the proposed aggregated method 
are similar but significantly different from those computed based on the mean. As 
an instance, the difference between criteria c1 and c3 are more significant than that 
computed by mean ( − 0.311 and − 0.354 for median and AWGMM, respectively, 
but − 0.035 for mean), while the standard deviation is also tiny (0.080 and 0.048 
for median and AWGMM, respectively, but 0.704 for mean), making the difference 
between the two criteria significantly different. By looking at the priorities pro-
vided by DMs, we can readily realize that c3 is consistently better than c1 , except for 
the third DM, and the difference between the weights of these two criteria for four 
DMs is also significant with the average ratio of 1.42. At the same time, the third 
DM favors c1 to c3 with the factor of 3.39. This influences the average differences 
between the two criteria and skews the mean statistics. However, in more robust 
approaches, such as median and AWGMM, such priorities have less of an impact on 
the aggregated statistics, allowing us to capture robustly the statistical description of 
criteria importance. The same considerable difference exists for comparing c1 and c4 
as well.

4.2  Statistical Comparison of Two Criteria: A Bayesian Approach

In the previous section, we show how notions of compositional data can help 
describe the importance of criteria in MCDM, given a number of priorities from 
multiple DMs. Along the same line, this section is devoted to studying the statistical 
tests for comparing the significance of the difference between the criteria based on 
various DMs’ priorities.

We have three statistical tests for comparing two criteria: paired t-test (or one-
sample t-test), Wilcoxon Signed-rank test, and Sign test. There is a comprehensive 
comparison of these tests in practical problems (Demšar 2006; Mohammadi et al. 
2018), concluding that each test is appropriate in a given circumstance. However, 
the statistical tests based on p value have many drawbacks (Benavoli et al. 2017), 
making the outcome of the tests unreliable and of little practical importance. There-
fore, it is highly recommended to use Bayesian tests instead of using p value infer-
ences. The use of Bayesian statistics also allows us to make a more meaningful com-
parison: We can compute the extent to which one criterion is more important than 
another based on the priorities of a group of DMs. Such a meaningful comparison 
was the primary driver of some recent studies in group MCDM, which tried to com-
pute the extent to which one criterion is more important than another by using the 
standard deviation of priorities (Tomashevskii and Tomashevskii 2019; Tomashevs-
kii 2015). While these studies are fallacious due to an incorrect and improper cal-
culation of standard deviation, we here provide a statistically-sound method based 

(27)ADAWGMM =

⎛
⎜⎜⎜⎝

0 − 0.628 − 0.354 1.546

0.100 0 0.274 2.175

0.048 0.113 0 1.901

0.117 0.122 0.118 0

⎞
⎟⎟⎟⎠
.



797

1 3

Unveiling and Unraveling Aggregation and Dispersion Fallacies…

on compositional data and Bayesian statistics. We first review two basic definitions 
introduced in Mohammadi and Rezaei (2020).

Definition 4.4 (Credal ordering (Mohammadi and Rezaei 2020)) For a pair of crite-
ria ci and cj , the credal ordering O is defined as:

where

• R is the relation between the criteria ci and cj , i.e., <, >, or =;
• d ∈ [0, 1] represents the confidence of the relation.

Definition 4.5 (Credal ranking (Mohammadi and Rezaei 2020)) For a set of criteria 
C = (c1, c2,… , cn) , the credal ranking is a set of credal orderings which includes all 
pairs (ci, cj) , for all ci, cj ∈ C.

Using Bayesian statistics to compare every pair of criteria in a given problem will 
finally result in the credal ranking of all criteria. What is required to be computed is 
the confidence d for each credal ordering, that could be computed by the Bayesian 
counterpart of three tests: paired t-test, Sign test, and Wilcoxon Signed-rank test.

The paired t-test requires the average and the standard deviation of differences, 
which can be simply supplied by using the average-deviation array. One of the three 
arrays, i.e., mean, median, and AWGMM, can be used to conduct the paired t-test. 
There are a number of Bayesian counterparts for the sample paired t-test (Rouder 
et al. 2009; Kruschke 2013; Fox and Dimmic 2006). For the case of comparing cri-
teria importance, the Bayesian test proposed in Rouder et al. (2009) is recommended 
since it takes the average, standard deviation, as well as the sample size (i.e., the 
number of DMs in our case) and provides the extent to which one criterion is more 
important than another, allowing us to experiment with the average-deviation arrays.

For the Sign test, we need to count the DMs that favor one criterion over another 
and then use the beta-binomial conjugate as a Bayesian test, according to which we 
can compute the confidence in the credal orderings.

However, developing a Wilcoxon Signed-rank test for compositional data is a bit 
tricky. Suppose we apply the Wilcoxon Signed-rank test directly to the priorities of 
multiple DMs. In that case, it accounts for the difference between the weights of two 
criteria for all the DMs, assigns a rank based on the magnitude of the difference, and 
computes the statistics. However, for compositional data like the priorities of DMs, 
the ratio between the weights for each DM should be considered. Therefore, instead of 
computing the difference between the weights of the two criteria, we should calculate 
the ratio and assign a rank based on the magnitude of the ratios. So, if two criteria are 
deemed the same, the ratio between their weights should be one. Instead of taking the 
ratios and comparing them against one, we can take the logarithm of the weights and 
then apply the conventional Wilcoxon Signed-rank test: If two criteria have the exact 

(28)O = (ci, cj,R, d),
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weights, then the log-ratio will be zero, and the deviation of the log-ratio from zero 
indicates that one criterion is significantly more important than another.

For K DMs, the proposed Wilcoxon-type test contains the following steps: 

 Step 1. Compute the ratio rk between the weights of the two criteria for all the DMs.
 Step 2. Compute r̂k by taking the logarithm of ratios rk . Then, rank r̂k according to 

their absolute magnitude. In the case of ties, the average rank is assigned.
 Step 3. Compute R+ as the sum of ranks of the DMs whose corresponding r̂k is posi-

tive.
 Step 4. Similarly, R− is computed as the sum of ranks of DMs whose corresponding 

r̂k is negative.
 Step 6. For p value statistics, define T = min(R+,R−) . Most statistical books contain 

a table of exact critical values for T and K. For the Bayesian test, the ranks are 
given to the Bayesian Wilcoxon test (Benavoli et al. 2014) and compute the 
extent to which one criterion is more important than another.

We explain the procedure of the Wilcoxon-type problem using an example. Table 3 
shows the weights of two criteria obtained based on the preferences of 15 DMs. Each 
row in this table corresponds to each DM. In the last two columns, we show the log 
ratios and the associated rank of each DM based on the Wilcoxon Signed-rank test. 
Accordingly, R+ and R− are calculated as:

(29)
R+ = 7 + 1 + 4 = 12

R− = 108.

Table 3  An example of applying 
the proposed Wilcoxon-type test 
for verifying the significance 
of the difference between two 
criteria based on the priorities of 
multiple DMs

c1 c2 log-ratio Rank

DM1 0.125 0.243 − 0.6650 13
DM2 0.143 0.224 − 0.4490 9
DM3 0.147 0.231 − 0.4520 10
DM4 0.164 0.209 − 0.2420 6
DM5 0.197 0.151 0.2660 7
DM6 0.157 0.256 − 0.4890 12
DM7 0.153 0.232 − 0.4160 8
DM8 0.115 0.249 − 0.7730 14
DM9 0.178 0.167 0.0640 1
DM10 0.164 0.183 − 0.1100 2
DM11 0.175 0.211 − 0.1870 5
DM12 0.168 0.192 − 0.1340 3
DM13 0.155 0.251 − 0.4820 11
DM14 0.126 0.273 − 0.7730 15
DM15 0.199 0.17 0.1580 4



799

1 3

Unveiling and Unraveling Aggregation and Dispersion Fallacies…

Given R+ and R− , we can then apply the Bayesian Wilcoxon Signed-rank test to 
compute the extent to which one criterion is more important than another based on 
the priorities of a group of DMs.

5  Distance Metrics and Clustering Methods

In processing multiple DM priorities, the Euclidean distance is widely used, where 
it directly computes the distance based on the original priorities. In compositional 
data analysis, however, the distance between two compositions is defined differently, 
taking the nature of the compositions into account. In this section, the Aitchison 
distance (Aitchison et  al. 2000), which is a proper and arguably the most popular 
distance metric for compositional data, is reviewed, according to which a clustering 
method is developed to cluster multiple DMs based on their priorities.

5.1  Distance Metrics for Priorities in Group MCDM

The Euclidean distance is typically used as the distance measure between two priori-
ties. Let w,w� ∈ R

n be the priorities of two DMs, the Euclidean distance is defined 
as:

The Euclidean distance is based on the Euclidean space and computes the distance 
based on the original priorities that lie on a simplex (not Euclidean space). There-
fore, a proper distance metric should be used to measure the distance more in line 
with the compositional nature of the priorities. The Aitchison distance is arguably 
the most popular distance metric in compositional data analysis, which also corre-
lates with the Euclidean distance. The Aitchison distance is defined as the Euclidean 
distance of the log-ratio transformed data (Aitchison et al. 2000), i.e.,

Similarly, the mean absolute deviation (MAD) distance for the compositional data, 
shown by MADC, can be defined as:

As a result, the distance metrics in (31) or (32) should be used for clustering the 
DMs based on their priorities, which respect the compositional nature of the 
priorities.

(30)de(w,w
�) =

√√√√ n∑
i=1

(
wi − w�

i

)2
.

(31)da(w,w
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5.2  K‑Means Clustering for Priorities

Grouping DMs into a number of clusters is also used in group MCDM (Abel et  al. 
2014; Meixner et al. 2016). One way is to group them based on their priorities using 
clustering methods, the core building block of which is a distance function. Using an 
improper distance function would group the DMs on a wrong basis. On top of that, 
the centroids of clusters would not necessarily satisfy the unit-sum constraint, thereby 
failing to represent the priorities properly. To prevent these pitfalls, we now extend the 
K-means clustering algorithm that uses a compositional distance metric, e.g., distance 
metrics in (31) or (32), to group the DMs based on their priorities.

The K-means needs to know the number of clusters, o, and identifies o centroids of 
clusters l1,… , lo . The standard K-means uses the Euclidean distance and the arithmetic 
mean for clustering. However, a compositional distance metric and normalized geomet-
ric mean should be utilized for clustering compositional data.

The steps required to cluster compositional data Wi, i = 1,… ,K by using K-means 
are as follows: 

Step 1 Place centroids l1,… , lo at random locations.
Step 2 Until convergence, repeat the following steps: 

Step 2.1 For each Wi , find the nearest centred lj as: 

 where de(., .) is a compositional distance. Then, assign Wi to cluster j.
Step 2.2 For each cluster j = 1,… , o , update the centroids as the mean of 

the points within the cluster, i.e., 

 where Kj is the number of priorities in cluster j, 
∏

 and power are element-
wise operations, and e is a vector with elements of one.

Since the distance function and the average are different from those of the standard 
K-means, the outcome of clustering will be distinct as well. In addition, the centroids 
identified by the proposed clustering method would be compositional, while the cen-
troids of standard K-means for clustering compositional data are not necessarily com-
positional, e.g., the centroids are not compositional for the compositional mean abso-
lute deviation.

(33)j = argmin
j

da(wi, lj),

(34)lj =

∏Kj

k=1
W

1

Kj

k.

eT

�∏Kj
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6  Numerical Results

In this section, we show the correct ways of analyzing the priorities of multiple 
DMs through a real case study in airline baggage handling. The baggage handling 
system is essential to ground handling operations and impacts passengers’ satisfac-
tion. A recent study develops a model, namely SERVQUAL, for assessing the qual-
ity of service for baggage handling (Rezaei et al. 2018). Grounded on the literature 
review and the interviews with the passengers, the SERVQUAL includes five main 
criteria for evaluating the quality of the airline baggage handling systems: tangi-
bles, reliability, responsiveness, assurance, and empathy. The estimate the impor-
tance of the criteria, the preferences of 148 passengers from several nationalities are 
elicited according to the best–worst method (Mohammadi and Rezaei 2020). The 
analyses conducted in this section are based on the priorities of the 148 participants. 
The data and MATLAB implementation of the corresponding analyses are publicly 
available.3

6.1  Aggregating Priorities

We first look into the aggregation of priorities by different methods. We first com-
pute by the AMM (which is not correct but is typically used in the literature), and 
the result is:

Similarly, the results of the GMM and AWGMM are as follows:

The AMM has a different aggregation than the GMM, so the result of such aggre-
gation can distort the follow-up decisions based on the aggregated weights. Also, 
the AWGMM has a different aggregation than GMM, especially with respect to the 
weights of reliability, responsiveness, and empathy. In particular, the weights of 
empathy and responsiveness are much less in the AWGMM, while the weight of reli-
ability is more significant. To inspect this difference, we looked into the participants’ 
priorities and realized that 7 out of 140 participants had been assigned an infini-
tesimal weight. By looking into the priorities of these participants, we realize that 
most of them have either assigned significantly higher weights to empathy (mainly 
more than 0.50) or tangibles and instead a much lower weight to reliability. Hence, 
since these participants are deemed deviants and assigned a lower weight, they have 
a lesser impact on the final aggregated priorities. As a result, the AWGMM aggre-
gated priorities have a higher weight for reliability and lower weights for tangibles 
and empathy in comparison to the GMM.

(35)w
g

AMM
=
[
0.1397 0.3459 0.2289 0.1519 0.1336

]
.

(36)
w
g

GMM
=
[
0.1376 0.3502 0.2347 0.1527 0.1248

]
,

w
g

AWGMM
=
[
0.1234 0.4462 0.1932 0.1490 0.0883

]
.

3 https:// github. com/ Majee d7/ MCDMf allac ies_ compo sitio nal.

https://github.com/Majeed7/MCDMfallacies_compositional
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6.2  Credal Ranking

We now compute the credal ranking of criteria based on the Bayesian Wilcoxon 
Signed-rank test. We specifically use the Bayesian Wilcoxon Signed-rank test 
because it entails fewer assumptions on the input data and is typically used in 
MCDM. To better summarize the credal ranking of criteria, we visualize it using a 
weighted, directed graph. The nodes in the graph are the criteria, and each directed 
arc shows that the criterion in origin is much more important than that at the other 
end by a confidence level specified by the weight of the associated arc. Each arc in 
the graph visualizes a credal ordering of two criteria, and the whole graph visualizes 
the credal ranking of all criteria.

Figure 1 shows the credal ranking of five criteria for the baggage handling sys-
tems. According to this graph, reliability is by far the most important criterion, fol-
lowed by responsiveness. Assurance is the third important criterion, and it is more 
important than tangible and empathy with confidence levels of 0.90 and 0.99, 

Fig. 1  The credal ranking of criteria for assessing the service quality of airline baggage handling system

Table 4  The center of three clusters identified by K-means and K-means for compositional data

Tangibles Reliability Responsiveness Assurance Empathy Sum

K-means 0.1211 0.5019 0.1402 0.1302 0.0651 0.9584
0.1085 0.1434 0.4957 0.1185 0.1142 0.9803
0.1092 0.1545 0.1549 0.1806 0.1765 0.7757

Compositional 
K-means

0.1524 0.1524 0.4653 0.0773 0.1524 1
0.1375 0.5325 0.1375 0.1375 0.0550 1
0.0726 0.3224 0.1921 0.2005 0.2123 1
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respectively. Also, tangible is the fourth criterion and is more important than empa-
thy with a confidence of 0.87.

6.3  Clustering the Participants

We now show how clustering can group the participants into multiple mutually 
exclusive groups. For doing so, we apply K-means for compositional data discussed 
in Sect. 5, and compare with conventional K-means. Also, the number of clusters is 
set to three (Rezaei et al. 2018). We use the mean absolute deviation and its compo-
sitional version for clustering to highlight the advantages of the compositional dis-
tance metrics for grouping the DMs based on their priorities.

We first compare the outcome of clustering methods based on their centroids. 
Table  4 shows the centroids of clusters identified by the clustering methods. An 
essential difference between the methods is the difference between the sum of cen-
troids: The centroids of K-means do not sum up to one, while those of the compo-
sitional K-means will add up to one, satisfying the unit-sum constraint required for 
the priorities of criteria. As a result, the centers of clusters provided by the proposed 
method are better representatives of the different groups of participants.

We also compare the clusters of the participants assigned by different clustering 
methods. The two clustering methods group the participants differently: By repeat-
ing the clustering methods multiple times, the two methods assign around 50 par-
ticipants into different clusters. Thus, without considering the compositional nature, 
clustering would group the participants differently. While we cannot compare the 
participants in the clusters, we should note that the clustering based on the conven-
tional distance metric (without considering the compositional nature) is theoretically 
incorrect, so we should favor the clusters provided by the proposed clustering algo-
rithm that is specially tailored for the compositional data.

7  Conclusion and Discussion

In this paper, we studied three different errors in processing the priorities of multiple 
decision-makers (DMs) in group decision-making problems, and correct ways for 
processing the priorities were introduced. The first error discussed in this article was 
the aggregation of priorities and showed that the compositional analysis for aggrega-
tion would result in the normalized geometric mean of priorities. An essential by-
product is that the use of the arithmetic mean of priorities should be avoided.

We also discussed the error regarding the computation of the standard deviation 
of weights and proposed using Bayesian statistics to provide a probabilistic rank-
ing of criteria, called credal ranking. The credal ranking gives the extent to which a 
group of DMs prefers one criterion over another, computed based on the Bayesian 
Wilcoxon Signed-rank test. We finally explained a proper distance metric for gaug-
ing the distance between two priorities, according to which we modified K-means 
clustering for grouping the DMs based on their priorities.
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The findings of this study also have implications for other statistical tools when 
we use them for priorities [e.g., analysis of variance (ANOVA)]. Generally speak-
ing, wherever we need to do computations with priorities, we need to consider their 
compositional nature.

In the future, more errors in MCDM should be studied from a compositional data 
perspective. A crucial case is when the performance matrix of alternatives is also 
created by some MCDM methods, each column resulting in a composition. Then, 
the compositions from different criteria should be merged into global priorities by 
considering the importance of criteria shown by another composition. Considering 
the compositional nature of the data might allow us to extend those methods to be 
normalization-agnostic and obviate the rank reversal phenomenon.
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