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Abstract
We present a consensus improvement mechanism based on prospect theory and 
quantum probability theory (QPT) that enables the manifestation of irrational and 
uncertain behaviors of decision makers (DMs) in linguistic distribution group deci-
sion making. In this framework, the DMs pursue the possibility of working with 
different partial agreements on prospect values. Considering that the reference infor-
mation should be comprehensive and accurate as it guides information modification 
and affects consensus efficiency, objective and subjective information is integrated 
to obtain the information. Several studies have verified that the interference effect 
will occur when the brain beliefs flow towards the different decision classification 
paths. To address this problem, QPT is introduced into the information integration 
and the optimized value of the interference term can be acquired by the designed 
multi-objective programming model based on the maximum individual utility. 
Finally, as the reference point changes during the preference adjustment process, a 
dynamic reference point-oriented consensus model is constructed to obtain the opti-
mized modification. A case study is performed on the emergency plan for the selec-
tion of designated hospitals, and comparative analyses are performed to demonstrate 
the feasibility and advantages of the proposed model. Several important insights are 
offered to simulate the most likely possibility of consciousness flowing into different 
decision classifications for DMs and moderators.
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1 Introduction

Group decision making (GDM) aims at the optimal decision being made among 
multiple alternative options; communication, negotiation, and modification are 
necessary when an unacceptable disagreement arises (Labella et al. 2018; Zhang 
et  al. 2019; Rodríguez et  al. 2018). As opposed to the impractical “hard” con-
sensus (Bezdek et  al. 1978), the “soft” consensus has been widely explored, in 
which a consensus threshold is preset to measure whether or not the consensus is 
reached (Labella et al. 2020; Zhang et al. 2018; Wu et al. 2020; Xu et al. 2021). 
The key issue of the consensus reaching process (CRP) is to design an effective 
feedback mechanism, including the identification of unacceptable decision mak-
ers (DMs) (those who contribute less to the group opinion), the determination 
of reference information (for the identified DMs), and the modification rule (for 
the identified DMs). The existing literature provides series of consensus mod-
els; however, the common point that has not attracted sufficient attention is the 
psychological behavior of DMs showing in the CRP. Human rationality generally 
lies between complete rationality and irrationality, that is, the human is bounded 
rationally as human knowledge, imagination, and computing ability are limited in 
highly uncertain and extremely complex realistic decision-making environments. 
The application of behavioral decision theories such as prospect theory (PT) 
(Tversky and Kahneman 1979) and quantum probability theory (QPT) (Buse-
meyer et al. 2009) when conducting consensus improvement may simulate actual 
decision making, which can bring the decision result closer to actual decision 
making.

It has been verified that numerous decision deviations from traditional optimal 
behavior exist (such as the expected utility theory (EUT) (Neumann and Morgen-
stern 1944)): the uncertainty effect, reflection effect, anchoring effect, regret the-
ory, overconfidence, and other psychological phenomena. Most of these are based 
on reference points. Abundant evidence shows that preferences are reference 
dependent, and reference points play a crucial role in explaining people’s atti-
tudes towards risk (Baillon et al. 2020). Therefore, we focus on reference-depend-
ent decision behaviors. PT, which is the most influential descriptive theory of 
decisions under risk, and was proposed by Tversky and Kahneman (1979), evalu-
ates outcomes as gains and losses from a reference point. PT can fully demon-
strate the complexity and uncertainty of human decision behavior, as well as the 
central role of reference dependence; thus, it is introduced in our consensus mod-
eling. The universality of PT has been verified by extensive studies in GDM with 
various preference forms and it has been applied in many fields through combi-
nations with different theoretical methods in the modeling process (Ding et  al. 
2019b; Zhou et al. 2019; Zhu et al. 2017). Guided by PT, we prefer the adoption 
of the prospect value to measure consensus, which depicts individual risk prefer-
ence psychology effectively and reliably. The reason is that although several iden-
tification rules assist in selecting the less contributing individuals, such as dis-
tance functions (Gong et al. 2015; Li et al. 2019), clustering (Kamis et al. 2017; 
Wu and Xu 2018), conflict detection (Liu et  al. 2019; Ding et  al. 2019a), and 
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consensus evolution networks (Wu et al. 2019), these are all essentially based on 
similarities. In fact, although DMs provide the same evaluation of an alternative 
and the consensus level based on the preference similarity is sufficiently high, it 
is possible that individual psychological utilities will vary owing to the differ-
ent reference points. However, this possibility is commonly ignored by existing 
works, which fit the personalized preferences and actual decision-making behav-
iors of DMs. Therefore, it would be significant to investigate the consensus meas-
urement based on PT.

In general, individuals have their own preferences for selecting a reference point, 
and it is necessary for the reference point to be selected carefully (Dolan and Rob-
inson 2001). The selection of the reference point is dependent on several complex 
factors in GDM, such as the DM preferences, decision goals, and current decision 
environment. In addition to the widely used crisp numbers, such as denoting the 
assumptive value, average value, and expectation as reference points (Ding et  al. 
2019b; Xu et al. 2018; Zhou et al. 2019), Wang et al. (2015) proposed a PT-based 
interval dynamic reference point. Moreover, Zhu et al. (2017) provided three refer-
ence points for multi-stage risk decision issues, including the expected values, posi-
tive ideal points, and development status of alternatives. Song and Zhu (2019) also 
proposed three reference points considering the status quo, minimum requirement, 
and goal. It should be noted that Baillon et al. (2020) summarized six cases of refer-
ence settings, including status quo, MaxMin, MinMax, X at Max P, expected value, 
and prospect itself (details can be found in Sect. 4.1) and explored the most common 
rules. In the research on decision making based on PT, the reference point is con-
sidered to change dynamically with different decision stages and scenarios in many 
fields. In terms of the dynamic reference point in the CRP, current methods mainly 
focus on the updated reference point in the new round of decision making following 
the change in the evaluation information (Wang et al. 2015; Gao et al. 2017); how-
ever, the reference point is supposed to be dynamic during the modification process. 
A challenging problem that arises in this domain is the construction of a modifica-
tion model that designs the dynamic reference point along the evaluation changes to 
obtain the optimized adjusted evaluation.

Many alternative methods are available in the CRP for solving the determina-
tion of reference information (Kamis et al. 2017; Zhang et al. 2020). To consider 
the various factors comprehensively, Fan et al. (2002) insisted that it is necessary 
to construct decision-making models based on subjective and objective informa-
tion. Subsequently, Zhang et  al. (2016) extended the relevant research by sim-
ulating decision analyses based on subjective psychological characteristics and 
objective reference information. Song and Zhu (2019) introduced a series of deci-
sion-making methods with a cloud model based on objective and subjective infor-
mation. Inspired by this method, we generate the reference information from the 
objective and subjective preferences, and thus, the aggregation model should be 
proposed. The common strategy that is used to study the integration of informa-
tion from different classifications in GDM is based on classical probability theory 
(i.e. the law of total probability). In this process, the potential hypothesis is that 
the DM considers the classification paths sequentially and the decision is pre-
sented as a determinate basic state at any moment; thus, the final decision state 
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is dependent on the probabilities of the basic states. However, numerous studies 
and experiments have proven the inapplicability of the law of total probability 
in classification decision making, whereas QPT can simulate real decision mak-
ing effectively (Busemeyer et al. 2009; Wang et al. 2014; Wang and Busemeyer 
2016). This is because the classification paths are considered simultaneously 
in QPT, which corresponds to real decision making. QPT can demonstrate this 
mode through obtaining the final decision state by the superposition of the prob-
ability amplitudes of the coexisting basic states, and the resulting interference 
term of the categorization on the decision making explains the violation of the 
law of total probability. Specifically, the interference occurs when the conscious-
ness flows across different classification paths, which is belief superposition. QPT 
can elucidate many other paradoxes apart from the violation of the law of total 
probability (Yukalov and Sornette 2012; Aerts and Sozzo 2012), and quantum 
decision models have been developed to describe human decision making in dif-
ferent applications (Busemeyer et al. 2015; Busemeyer and Wang 2018; He et al. 
2018) over the past decades (Aerts and Aerts 1995; Khrennikov 1999). It has been 
conclusively demonstrated that QPT has verified its applicability and superiority 
through many studies. Given that insufficient work has been devoted to informa-
tion integration from different classifications based on QPT in the CRP, and that 
the integration of subjective and objective information has been verified as rea-
sonable for actual decision making, we focus on the quantum integration of these 
two classifications of information. Moreover, essential concern exists regarding 
the determination of the interference term. The interference term plays a pivotal 
role in simulating decision behavior, and no unified method has been developed 
to determine its value. The obstacle that is overcome in this study is the explora-
tion of the optimization value of the interference term to acquire the most accept-
able personalized reference information for an individual.

Based on the motivations outlined above, this study aims to investigate a con-
sensus mechanism with the consensus measurement based on the prospect value, 
the reference information integration guided by QPT, and the modification model 
considering the dynamic reference point. As linguistic distribution assessment has 
received substantial interest in describing preferences by revealing the complexity 
in real decision making (Zhang et al. 2018; Wu et al. 2018, 2020), this study focuses 
on exploring the CRP in linguistic distribution GDM. The main contributions of this 
proposal include three aspects:

– The concept of “attitude consistency” in the linguistic distribution context is pro-
posed to improve the quality of the linguistic distribution assessment with higher 
accuracy, and it is integrated into the CRP modeling.

– The reference assessment is acquired through integrating different information 
with QPT, and the multi-objective programming model is constructed to obtain 
the value of the interference term based on the maximum individual utility.

– A dynamic reference point-oriented consensus model is constructed, the consen-
sus measurement of which is computed with the prospect value of the alternative 
so as to obtain the optimized modified information in the CRP based on the best 
consensus level.
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The applicability and effectiveness of the proposed CRP are demonstrated by an 
illustrative example and a comparison discussion. It is established that the con-
structed consensus model can analyze the linguistic distribution information more 
accurately, as well as guarantee maximal individual utility. Our approach for improv-
ing the consensus involves the use of different behavior decision theories that can be 
applied to reflect the dynamic characteristics of GDM, and the irrational behavior 
and belief superposition of DMs in classification decisions.

The remainder of this paper is organized as follows: Section  2 briefly outlines 
several concepts relating to linguistic distribution assessment and behavioral deci-
sion theories. Section 3 introduces the acquisition of reference information, includ-
ing the aggregation of subjective preferences, and the quantum integration of subjec-
tive and objective preferences. Section 4 describes the proposed dynamic reference 
point-based consensus model. Section 5 presents an application example to demon-
strate the performance of the proposed models, along with the results analysis and a 
comparison with other methods according to four aspects. Finally, conclusions and 
future directions are provided in Sect. 6.

2  Preliminaries

Suppose that M = 1, 2,… ,m and N = 1, 2,… , n . In this study, there are m DMs, 
denoted as dmk (k ∈ M) , ranking n alternatives, denoted as Ai (i ∈ N) through nego-
tiation and communication based on the respective preference information. In this 
section, we briefly discuss the concepts of linguistic distribution assessments and 
behavioral decision theories.

2.1  Linguistic Distribution Assessment

The relevant concepts and condition construction that are adopted in the consensus 
modeling of linguistic distribution assessments are described as follows:

2.1.1  Relevant Concepts

Zadeh (1975) innovatively proposed that the linguistic variable, which is in the form 
of words or sentences with a natural or artificial language, can make information 
evaluation more realistic and flexible. On this basis, Herrera and Herrera-Viedma 
(2000) introduced an ordered discrete linguistic term set (LTS) using the following 
mathematical expression: Let S = {S� ∣ � = 0, 1,… , g − 1, g} be a finite and totally 
ordered discrete LTS with odd granularity g + 1 , where S� represents the possible 
value of a linguistic variable. The set of linguistic variables with granularity 7 is 
as follows: S = {S0 ∶ very poor, S1 ∶ poor, S2 ∶ sightly poor, S3 ∶ fair, S4 ∶ sightly 
good, S5 ∶ good, and S6 ∶ very good}. S must satisfy the following characteristics 
with S� , S� ∈ S:

(1) The set is ordered as S� ≤ S� if and only if � ≤ �.
(2) There is a negation operator: Neg(S�) = Sg−�.
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A novel linguistic information expression known as linguistic distribution assess-
ment was presented by Zhang et al. (2014), which contains the linguistic term S� in S, 
and each term has a corresponding distribution �� . The relevant definitions and opera-
tional laws are as follows:

Definition 1 (Zhang et al. 2014). Let S be as before: M = {(S� , ��)|� = 0, 1,… , g}, 
where S� ∈ S, �� ∈ [0, 1],

∑g

�=0
�� = 1 , and �� is the symbolic proportion of S� . 

Thus, M is known as the distribution assessment of S. The distance measure between 
two arbitrary linguistic distribution assessments M1 = {(S� , �

1
�
)|� = 0, 1,… , g} and 

M2 = {(S� , �
2
�
)|� = 0, 1,… , g} is:

The expectation that is associated with the linguistic distribution assessment M can 
be obtained as follows:

2.1.2  Relevant Model Construction

Reliable and logical preference information is necessary in the GDM process. The 
rules should be set according to the characteristics of different evaluations to nor-
malize the expression. For linguistic distribution assessment, the following features 
were explored in Zhang et al. (2018) and Wu et al. (2018, 2020):

– Succession: the linguistic terms S� with corresponding �� ≠ 0 should be succes-
sive. For example, M = {(S1, 0.3), (S2, 0), (S3, 0.5), (S4, 0.2)} are not successive.

– Accuracy: the evaluation information should be as accurate as possi-
ble with few linguistic terms. For example, M = {(S� , 1)} is the most pre-
cise expression because it involves only one linguistic term, whereas 
M = {(S0, 0.1), (S1, 0.2), (S3, 0.3), (S4, 0.2), (S5, 0.1), (S6, 0.1)} is the roughest 
form because it contains all linguistic terms with g = 6.

Therefore, accurate constraints can be constructed to guarantee precise, concen-
trated, and logical preferences:

d(M1,M2) =
1

2

g∑
�=0

|�1
�
− �2

�
|

EV(M) =

g∑
�=0

� ⋅ ��

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑g−1

�=0
�z�+1 − z�� ≤ 2 (1 − 1)

z0 + zg ≤ 1 (1 − 2)∑g

�=0
z� ≤ N (1 − 3)

z� =

�
0, �� = 0

1, �� ≠ 0
(1 − 4)

�� ∈ [0, 1] (1 − 5)
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where constraints (1 − 1) and (1 − 2) guarantee succession by introducing the binary 
variable z� , which can measure whether the DM provides an evaluation on �� ; con-
straint (1 − 3) indicates the accuracy, 

∑g

�=0
z� represents the number of involved 

terms, and a larger value of 
∑g

�=0
z� has a lower accuracy. Different values for N can 

be set according to practical decision problems and the individual preference of the 
DM; constraint (1 − 5) states the range of �� (details can be found in Zhang et al. 
(2018) and Wu et al. (2018, 2020)).

2.2  Behavioral Decision Theories

In this study, we apply behavioral decision theories, including QPT and PT, to the 
consensus model, and the main concepts are presented below.

2.2.1  QPT

Busemeyer and Wang verified the rationality and superiority of quantum theory 
frameworks in classification decision making compared to the Markov process 
through experiments (Busemeyer et  al. 2009; Wang and Busemeyer 2016). They 
held that the decision state is reflected by the wave function (probability amplitude), 
and the final decision state is the superposition of several basic decision states. 
The probability of the decision at state r can be obtained if the wave function �r 
is known, which is expressed as the square of the probability amplitude |�r|2 . On 
this basis, He et al. (2018) introduced QPT into multiple-attribute GDM and ana-
lyzed the opinion aggregation through different paths simultaneously. It is com-
monly stated that the probability of selecting alternative Ai in the Markov process is 
expressed as:

where Cj denotes the classification path j, P(Cj) is the probability of selecting path j, 
P(Ai|Cj) is the probability of selecting alternative Ai with path j, and � is a normali-
zation factor that can result in 

∑
i
P(A

i
) = 1 . He et al. (2018) summarized the quan-

tum probability framework to obtain the value of P(Ai) , as follows:

where �Cj
 is the probability amplitude of selecting path j, �(Ai|Cj) is the probability 

amplitude of selecting alternative Ai with path j, and � is a normalization factor, as 
before. This formula indicates that the classical probability is the squared magnitude 
of the relevant amplitude probability. In particular, when only two paths Cj and Cj′ 
are considered:

P(Ai) = �
∑
j

P(Cj)P(Ai|Cj)

P(Ai) = �|∑
j

�Cj
�Ai|Cj

|2

P(Ai) = �|�Cj
�Ai|Cj

+ �Cj�
�Ai|Cj�

|2
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As in the quantum framework, the squared magnitude of the amplitude probability is 
equal to the value of multiplying the amplitude with its complex conjugate (denoted 
by ∗ ). Subsequently,

with

where ei� is the phase of the corresponding amplitude, and the meanings of the other 
symbols are the same as before. Thus,

 It is clear that 2
√

P(Cj)P(Ai|Cj)P(Cj� )P(Ai|Cj� )cos� is the additional part compared 

with the Markov process. In QPT, 2
√

P(Cj)P(Ai|Cj)P(Cj� )P(Ai|Cj� )cos� is known as 
the interference term. Furthermore, � = �Cj

− �Cj�
 represents the angle difference 

between the interference phase angles concerning the paths of Cj and Cj′ . If 
0 ≤ 𝜃 <

𝜋

2
 , it is implied that a positive interference exists to a certain extent. If 

� =
�

2
 , there is no interference term and the quantum probability framework will be 

equivalent to the law of total probability. If 𝜋
2
< 𝜃 ≤ 𝜋 , it is implied that a negative 

interference exists to a certain extent.

2.2.2   PT

The main concept of PT can be summarized as follows: (1) the outcomes are 
obtained by gains or losses compared to the reference point instead of the expec-
tation calculated using the EUT. (2) DMs take risk-averse attitudes towards gains 
and take risk-seeking attitudes towards losses, and they exhibit more sensibility on 
losses than on gains. The detailed formula for the value function is as follows:

where x refers to the reference point and x is the actual outcome of the alternative. � 
and � are the exponent parameters relating to the gains and losses, respectively. � is 
the risk-aversion parameter, which determines a steeper characteristic of losses than 

P(Ai) = �(|�Cj
�Ai|Cj

+ �Cj�
�Ai|Cj�

||�Cj
�Ai|Cj

+ �Cj�
�Ai|Cj�

|∗)

�Cj
=
√

P(Cj)e
i�Cj ,�Ai|Cj

=
√

P(Ai|Cj)e
i�Ai |Cj

(2)

P(A
i
) =�

[
(
√

P(C
j
)P(A

i
|C

j
)e

i�
Cj +

√
P(C

j�
)P(A

i
|C

j�
)e

i�
C
j� )

(
√

P(C
j
)P(A

i
|C

j
)e

−i�
Cj +

√
P(C

j�
)P(A

i
|C

j�
)e

−i�
C
j� )
]

=�
[
P(C

j
)P(A

i
|C

j
) + P(C

j�
)P(A

i
|C

j�
) +

√
P(C

j
)P(A

i
|C

j
)
√

P(C
j�
)P(A

i
|C

j�
)e

i(�
Cj
−�

C
j�
)

+
√

P(C
j
)P(A

i
|C

j
)
√

P(C
j�
)P(A

i
|C

j�
)e

i(�
C
j�
−�

Cj
)
]

=�
[
P(C

j
)P(A

i
|C

j
) + P(C

j�
)P(A

i
|C

j�
) + 2

√
P(C

j
)P(A

i
|C

j
)P(C

j�
)P(A

i
|C

j�
)cos�

]

(3)v =

{
(x − x)𝜇, x ≥ x

−𝜆(x − x)𝜈 , x < x
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of gains. The values of �, � , and � were determined through experiments and are 
provided in Tversky and Kahneman (1992): � = 0.89 , � = 0.92 , and � = 2.25.

The prospect value can guide the alternative selection; that is, the decision option 
with the maximum value gains the highest priority. The prospect value can be 
obtained through the prospect function and corresponding probability:

(4)PV = v ⋅ p

Table 1  Notations in proposed consensus model

 Notations  Meanings

dmk Decision maker k
Ai Alternative i
Ml(i) Linguistic distribution assessment of dml for Ai

M¬k(i) The rough aggregated preference (except dmk) for Ai

S� Linguistic term
�k(i)
�

dmk ’s distribution on S� for Ai

�¬k(i)
�

The rough aggregated preference (except dmk)’s distribution on S� for Ai

EV
¬k(i) The expected value of accurate aggregated preference (except dmk)

EV¬k(i) The expected value of M¬k(i)

ẼV
k(i) The expected value of reference information of dmk for Ai

�
¬k(i)

�
The accurate aggregated preference (except dmk)’s distribution on S� for Ai

z¬k(i)
� The binary variable to measure whether �¬k(i)

�
 is equal to 0

�(i)
�

Objective distribution on S� for Ai

�̃k(i)
�

Reference distribution on S� of dmk for Ai

P(Csub) The probability of consciousness flowing towards the subjective information
P(Cobj) The probability of consciousness flowing towards the objective information
� Phase difference
�k(i) The normalization factor in the quantum integration of dmk for Ai

dk Total distance of prospect values on all alternatives for dmk

� the prospect distance threshold
PVk(i) The prospect value of dmk for Ai

Qk(i)
�

The intermediate binary variable to determine reference point

Rk(i) The minimum subscript of linguistic distribution assessment for dmk for Ai

Rk The subscript of reference point for dmk

zk(i)
�

The binary variable to measure whether S� is involved in the modified preference

�
k(i)

�
The modified distribution on S� of dmk for Ai

Tk(i)
�

Value function of dmk for Ai

S(Ai) Score for Ai
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 Notes For linguistic distribution assessment, the subscript of the linguistic term 
is used in the calculation of the prospect value in this study, and the distribution 
denotes the probability p in PT and QPT.

The list of notations in the proposed consensus model are presented in Table 1.

3  Acquisition of Reference Information

As mentioned previously, when the identified dmk is suggested to make modifica-
tions, he/she will refer to several recommendations. In this study, we assume that 
the reference information source involves two paths: objective information and 
subjective information. The objective information is based on actual data that have 
occurred in the past from the perspective of practice. The subjective information is 
the provided preferences of the DMs, except for dmk’s, which is from the perspective 
of consensus improvement. As introduced above, during the process of aggregat-
ing information from these two paths, an interference effect will emerge as DMs 
consider the two paths simultaneously (that is, there is no explicit categorization 
aimed at subjective and objective information prior to the decision). Therefore, the 
adoption of QPT to explore the integration process is more aligned with a realistic 
decision-making environment. It is evident that the objective information is a lin-
guistic distribution assessment and the subjective information is composed of m − 1 
linguistic distribution assessments. It is suggested that the aggregation of subjective 
preferences is necessary in the first step.

3.1  Aggregation of Subjective Preferences

Assuming that the DMs except for dmk can be represented as dml(l ∈ M, l ≠ k) , their 
preference for alternative Ai , which is denoted by Ml(i) = {(S� , �

l(i)
�
)|� = 0,… , g} , is 

expressed by linguistic distribution assessments. According to the weighted method 
adopted in much of the current literature on aggregating information (Zhang et al. 
2020; Jing et  al. 2020) with equal individual weights, the normalized aggregated 
preference of all dml can be obtained for Ai through Eq. (5).

Although M¬k(i) is comprehensive in that it covers all of the linguistic terms included 
in the individual assessments, in this study, the aim of aggregating the subjective 
information is to provide guidance for the identified DM, and thus, the aggregated 
information should be sufficiently accurate to improve the reference value and to 
enhance the decision-making efficiency. Obviously, M¬k(i) cannot satisfy the restric-
tions mentioned in Sect.  2.1.2. Therefore, it is necessary to construct a model to 
ensure that the aggregated collective information is accurate. Constraints (1) should 
be included in the aggregation model. Furthermore, according to the above anal-
ysis, N determines the number of linguistic terms in the assessment. In general, 
N = 1, 2, 3 , and the value of N is 2 in Zhang et  al. (2018) and Wu et  al. (2018, 

(5)M¬k(i) = {(S� , �
¬k(i)
�

)�� = 0,… , g} = {(S� ,

∑m−1

l
�l(i)
�

m − 1
)�� = 0,… , g}
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2020). To retain as much of the original information of dml as possible, let N = 3 
in this study. In this situation, a special preference with opposite attitudes cannot be 
ignored (e.g., g = 6 ): {(S2, �2), (S3, �3), (S4, �4)} with �2, �3, �4 ≠ 0 . As S2 represents 
“sightly poor” and S4 denotes “sightly good”, this assessment is inexact, vague, and 
inconsistent. Specifically, we propose that the collective preferences should satisfy 
the following condition that is denoted as “attitude consistency” with N = 3 to avoid 
opposite preferences in a linguistic distribution assessment:

– Attitude consistency: z g

2
−1 + z g

2

+ z g

2
+1 ≤ 2, if N ≥ 3

The restrictions for ensuring the accuracy of the aggregation information can be con-
structed through combining constraints (1) and the “attitude consistency” condition 
with N ≥ 3 , as follows:

Considering that the utility of a DM is positively related to the reserving proportion 
of original information (Gong et al. 2015), the objective with the minimum devia-
tion between the initial individual assessment and aggregated information can be 
constructed, which contains two aspects: one focuses on the minimum distribution 
deviation on the same linguistic term:

and the other concerns the minimum expectation deviation:

where �c
�
 and EVc are the collective information. The reason for analyzing two objec-

tives simultaneously lies in the fact that the same distribution deviation may take 
different expected values, and the same expectation deviation may originate from 
different linguistic distributions. The advantages of this operation can be elucidated 
by using certain examples. Assume that {(S1, 0.2), (S2, 0.3), (S3, 0.35), (S4, 0.15)} 
with expectation EV = 2.45 must aggregate if only the minimum distribution devia-
tion on the same linguistic term expressed by the first objective function in model 
(6) is constructed. Several assessments with the same distribution deviation of 
0.3 are obtained: {(S1, 0.2), (S2, 0.45), (S3, 0.35)} , {(S1, 0.35), (S2, 0.3), (S3, 0.35)} , 
and {(S1, 0.2), (S2, 0.3), (S3, 0.5)} ; however, the expectations are 2.15, 2, 
and 2.3, respectively, and it is obvious that 2.3 is the closest to 2.45. There-
fore, {(S1, 0.2), (S2, 0.3), (S3, 0.5)} is the most optimized solution. If only the 

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑g−1

�=0
�z�+1 − z�� ≤ 2

z0 + zg ≤ 1∑g

�=0
z� ≤ N

z� =

�
0, �� = 0

1, �� ≠ 0

z g

2
−1 + z g

2

+ z g

2
+1 ≤ 2

�� ∈ [0, 1]

Min
∑g

�=0
��c

�
− ���

Min |EVc − EV|
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minimum expectation expressed by the second objective function in model (6) is 
considered, several assessments with the same expectation of 2.45 are obtained: 
{(S1, 0.125), (S2, 0.3), (S3, 0.575)} , {(S2, 0.55), (S3, 0.45)} ; however, the total distribu-
tion deviations are 0.45 and 0.7. Thus, {(S1, 0.125), (S2, 0.3), (S3, 0.575)} is the most 
optimized solution. Taken together, these results suggest that the construction of a 
multi-objective programming model (denoted as model (6)) is necessary for aggre-
gating information. The priority for the objective functions depends on the behavio-
ral preference of the individual.

where �¬k(i)
�

 represents the accurate aggregated distribution of all DMs, except for 
dmk on S� for Ai , �¬k(i)�

 denotes the rough aggregated distribution of all DMs, except 
for dmk on S� for Ai through Eq. (5), EV

¬k(i)
 is the accurate aggregated expectation of 

all DMs, except for dmk for Ai , and EV¬k(i) denotes the rough aggregated expectation 
of all DMs except for dmk for Ai . z¬k(i)�

 is a binary variable to measure whether S� 
is involved in the accurate aggregated preference. Through model (6), the accurate 
subjective reference preference of dmk for Ai can be obtained as {(S� , �

¬k(i)

�
)}.

(6)

Min
∑g

�=0
��¬k(i)

�
− �¬k(i)

�
�

Min �EV¬k(i)
− EV¬k(i)�

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑g−1

�=0
�z¬k(i)

�+1
− z¬k(i)

�
� ≤ 2

z
¬k(i)

1
+ z¬k(i)

g
≤ 1∑g

�=0
z¬k(i)
�

≤ 3∑g

�=0
�
¬k(i)

�
= 1

z¬k(i)
�

=

�
0, �

¬k(i)

�
= 0

1, �
¬k(i)

�
≠ 0

z
¬k(i)
g

2
−1

+ z
¬k(i)
g

2

+ z
¬k(i)
g

2
+1

≤ 2

�
¬k(i)

�
∈ [0, 1]

Fig. 1  Formation of reference information
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3.2  Reference Information Acquired Through Quantum Integration of Subjective 
and Objective Preferences

As mentioned previously, the identified dmk combines the aggregated collective 
subjective preference that is denoted as {(S� , �¬k(i)�

)} in Sect. 3.1, and the objective 
preference for Ai , denoted by {(S� , �(i)� )} , to obtain the reference information. Fig. 1 
depicts the components of the reference information and the framework of the deci-
sion classification in the proposed quantum integration: the identified individual 
considers the information from the objective data and subjective evaluations simul-
taneously, and the consciousness flowing towards the objective and subjective infor-
mation is in a superposition, which reflects the uncertainty, conflict, and ambiguity 
of cognitive decision behavior. Finally, the distribution of each linguistic term can 
be acquired. In this section, we construct a multi-objective programming model to 
demonstrate how acceptable reference information is formed based on QPT.

Considering that less modification, more satisfied DMs (Xu et al. 2021; Jing et al. 
2020; Liu et al. 2020), and reference information guide the adjustment, the identified 
DM may prefer that the reference information is as close to the original information 
as possible in the quantum integration process. Similar to the objective functions set 
in model (6), both the distributions on the linguistic terms, and the preferences of the 
expectations of the original and reference information of the individual should be 
considered, while QPT is applied to the simulation of the reference distribution on 
each linguistic term. Moreover, as the aggregated reference information is obtained 
by combining the subjective and objective information, it should not exceed the sub-
jective and objective information. Driven by the above analysis, the following model 
can be constructed to obtain the identified reference information of dmk for Ai , and a 
detailed explanation is provided.

where �̃k(i)
�

 and �k(i)
�

 represent the reference distributions of dmk and the original eval-
uation of dmk on S� for Ai , respectively. Furthermore, ẼV

k(i)
 and EVk(i) denote the 

expectations of the reference and original information, respectively. The minimized 
objective functions mean that the distance between the reference information and 
original information of the identified DM should be as small as possible, whether the 
distance is measured from the perspective of the distribution on the linguistic term 
(expressed by the first objective function) or the expectation value of the preference 

(7)

Min
∑g

�=0
��̃k(i)

�
− �k(i)

�
�

Min �ẼVk(i)
− EVk(i)�

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�̃k(i)
�

= �k(i)[�(i)
�
⋅ P(Cobj) + �

¬k(i)

�
⋅ P(Csub)

+2

�
�
(i)
� ⋅ P(Cobj) ⋅ �

¬k(i)

�
⋅ P(Csub)cos�] (7 − 1)

�k(i) = 1∕[
∑g

�=0
(�(i)

�
⋅ P(Cobj) + �

¬k(i)

�
⋅ P(Csub)

+2

�
�
(i)
� ⋅ P(Cobj) ⋅ �

¬k(i)

�
⋅ P(Csub)cos�)] (7 − 2)

�̃k(i)
�

∈ [min{�
¬k(i)

�
, �(i)

�
},max{�

¬k(i)

�
, �(i)

�
}] (7 − 3)

P(Cobj) + P(Csub) = 1 (7 − 4)

P(Cobj),P(Csub) ∈ [0, 1] (7 − 5)
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(expressed by the second objective function). The probability of consciousness 
flowing towards the objective information (that is, the probability of selecting the 
objective information), which is denoted by P(Cobj) , as well as the probability of 
consciousness flowing towards the subjective information (that is, the probability of 
selecting the subjective information), which is denoted as P(Csub) , both freely take 
a value in the interval [0,1] and P(Cobj) + P(Csub) = 1 (as revealed by (7 − 4) and 
(7 − 5) ). Specifically, if P(Cobj) = 1 , this means that the identified DM considers the 
objective information only, and he/she will refer to the subjective information only 
when P(Csub) = 1 . In these situations, only one path exists, and correspondingly, the 
interference effect disappears. Based on Eq. (2) regarding the quantum integration 
of information from two paths, constraint (7 − 1) holds, which determines the dis-
tribution of the reference information on S� , and �k(i) is the normalization factor, 
the calculation formula for which is provided as constraint (7 − 2) . As the reference 
information is formed through objective and accurate subjective information, the 
reference information should not be less than their minimum or exceed their maxi-
mum; hence, the third constraint holds. model (7) can be solved by Gurobi 9.1.0, the 
optimized reference preference expressed by {(S� , �̃k(i)�

)} , and the probability of con-
sciousness flowing towards the objective and subjective information; subsequently, 
the optimized difference between the interference phase angles, which is denoted as 
� , can be obtained. When a moderator exists in the decision making, his/her role is to 
prompt the consensus reaching, and he/she may suggest that the identified DM refer 
to a certain classification with a specific probability. In this situation, the optimized 
{(S� , �̃

k(i)
�

)} , and � can be determined based on the maximum individual utility.

4  Consensus Modeling with Dynamic Reference Point

In the CRP, the identified DM will make some modifications based on his/her 
initial opinion once the reference information has been formed. Although it is 
possible that the preference information that is provided by the DMs initially 
exhibits an evident difference, inspired by the PT introduced in Sect.  2.2.2, 
DMs can seek a unified opinion to a certain extent if the prospect value that is 
obtained based on the reference point is similar. In detail, the consensus of dmk 
and dml depends on the similarity between the prospect value of dmk , denoted 
as PVk , and the prospect value of dml , denoted as PVl (where the prospect value 
is obtained based on the reference point and preference assessment of dmk(dml) , 
rather than the similarity between the assessments of dmk and dml in the tradi-
tional model. Moreover, the psychological expectation of the identified DM who 
is persuaded to make modifications may change during the communication and 
negotiation.

Hence, in this section, we present an approach for consensus improvement 
considering the dynamic reference point. It is composed of three steps: (1) refer-
ence point setting, (2) the identification rule, and (3) the consensus model.
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4.1  Reference Point Setting

In this study, we adopt the most preferred rule, as verified experimentally by Baillon 
et al. (2020); that is, the status quo and a security level (the maximum of the minimal 
outcomes of the prospects in a choice). Considering that the status quo is dependent on 
the current realistic decision environment, it is easy to portray it as a specific number, 
whereas the security level is reflected by the evaluation information and is dynamic 
in the negotiation process. Therefore, the security level is analyzed in this study. The 
security level can be expressed by MaxMin, which posits that in a comparison between 
two prospects, the DM will focus on the minimum value of the two prospects and take 
the maximum as the reference point. Using the linguistic distribution assessment as an 
example, in a comparison between {(S2, 0.2), (S3, 0.8)} and {(S4, 0.4), (S5, 0.6)} , the 
minimum outcomes are S2 and S4 , respectively. MaxMin implies that the DM will take 
S4 as the reference point and will view S5 as a gain, and S2 and S3 as losses (Baillon 
et al. 2020).

Notes According to Baillon et al. (2020), six reference point rules have been speci-
fied (the remaining four rules apart from status quo and MaxMin are listed as fol-
lows). This study only explores one of the most common reference points; the con-
sensus modeling based on the other setting rules is similar to that of the constructed 
method.

– MinMax means that the DM takes the minimum of the maximum outcomes as his/
her reference point.

– X at Max P means the DM takes the outcome with the highest probability as his/her 
reference point.

– Expected Value means that the reference point is prospect specific.
– Prospect Itself specifies a stochastic reference point.

Considering {(S2, 0.2), (S3, 0.8)} and {(S4, 0.9), (S5, 0.1)} as an example, S3 is selected 
as the reference point for MinMax, and S4 is selected as the reference point for X at Max 
P. Expected Value and Prospect Itself depend on the willingness of the DM in actual 
decision making.

4.2  Identification Rule

This rule helps to identify the DMs who contribute less to the consensus; that is, those 
whose total prospect value on all alternatives is far from that of the others. A prospect 
distance threshold � can be used to identify the preferences that should be modified. 
The total distance of the prospect values on all alternatives for dmk , which is denoted as 
dk , can be calculated by

(8)dk =

n∑
i

m∑
l,l≠k

|PVk(i) − PVl(i)|
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where PVk(i) is calculated using Eq. (4) and it represents the prospect value of dmk 
for Ai . DMs with an insufficient distance are listed in descending order (the DMs 
with dk > 𝜙 ); this is the order that is followed by the model for DMs to make modi-
fications. Without loss of generality, in this model, the assessment of only one DM 
requires adjustment at each iteration. As each modification improves the collective 
consensus (the consensus measurement should be conducted again following each 
modification iteration), it is possible that the DMs in the “waiting list” for modifica-
tion may no longer be required to make modifications. This operation follows the 
principle that fewer modified DMs is preferable (the numerical example can explain 
this principle clearly in Sect. 5: dm1 and dm2 are asked for adjustment initially, but 
the consensus is reached after the modification of only dm1 , and there is no longer a 
need for dm2 to make modifications).

4.3  Consensus Model

As stated previously, the consensus in this study focuses on seeking an approximately 
unanimous prospect value. Therefore, the distance of the prospect value between dmk 
and other DMs should be as small as possible. The following minimum objective func-
tion holds:

In PT, it is clear that the calculation of the prospect value is dependent on the refer-
ence point. As individual preference information is dynamic during the CRP, there 
may be changes in the reference point. For example, if there are two linguistic dis-
tribution assessments, namely {(S2, 0.2), (S3, 0.8)} and {(S4, 0.4), (S5, 0.6)} , MaxMin 
implies that DM will take S4 as the reference point; if the second assessment is mod-
ified as {(S4, 0.3), (S5, 0.7)} , the reference point is still S4 , but if the second assess-
ment is modified as {(S3, 0.3), (S4, 0.7)} , the reference point becomes S3 . Therefore, 
we integrate the dynamic reference point into the CRP in an attempt to construct 
a dynamic reference point-oriented consensus model. A mathematical representa-
tion of the reference point needs to be provided. As introduced above, dmk will first 
select the minimum evaluation that is involved in the linguistic distribution assess-
ment for all alternatives, and thereafter select the maximum among these as the ref-
erence point. We first use Rk(i) to denote the subscript of the minimum linguistic 
term on each Ai of dmk . The following Eqs. (10), and (11) are provided to achieve 
the value of Rk(i) by introducing a binary variable Qk(i)

�+1
.

(9)Min dk =

n∑
i=1

m∑
l,l≠k

|PVk(i) − PVl(i)|

(10)Q
k(i)

𝛼+1
=

{
0, z

k(i)

𝛼+1
− zk(i)

𝛼
≤ 0, 𝛼 = 0, 1,… , g − 1

1, z
k(i)

𝛼+1
− zk(i)

𝛼
> 0, 𝛼 = 0, 1,… , g − 1

(11)Rk(i) =

g−1∑
�=0

(� + 1)Q
k(i)

�+1
, i = 1, 2,… , n
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where zk(i)
�

 has the same meaning as z� in constraints (1) for measuring whether S� 
is involved in the linguistic distribution assessment provided by dmk for Ai . Qk(i)

�
 

can aid in identifying the minimum S� with a distribution 𝜌𝛼 > 0 of dmk for Ai . The 
proof is provided as follows.

Proof 

– General case:

(1) If only one linguistic term is involved, namely {(S�+1, 1)} (� = 0, 1,… , 
g − 1) , z�+1 = 1 , z� = 0 , and only Qk(i)

�+1
= 1 using Eq. (10). Hence, 

Rk(i) = � + 1 . The proof is completed.
(2) If more than one linguistic term is involved, and we assume that the mini-

mum term is S�  and the maximum term is expressed by S�′ 
(𝛽 < 𝛽�, 𝛽, 𝛽� = 0, 1,… , g) , z0, z1,… , z�−1 = 0 and z� , z�+1,… , z��−1, z�� = 1 , 
and only Qk(i)

�
= 1 using Eq. (10). Hence, Rk(i) = � . The proof is completed.

– Special case:
  if the minimum term is S0 , z0 = 1 . Regardless of the number of linguistic terms 

that are included in this evaluation, all Qk(i)
�

= 0 by Eq. (10). Hence, Rk(i) = 0 . 
The proof is completed.

  ◻

Subsequently, the maximum value among Rk(i) is the reference point and it can be 
determined using Eq. (12).

 Notes The reason that we do not use min{� ∗ zk(i)
�

|� = 0,… , g} to determine the 
minimum subscript value of dmk for each alternative is that the minimum value is 
always equal to 0.

Equations (9) to (12) realize the dynamic characteristics of the reference point in 
the modification acquisition process. Obviously, the adjusted preference is expressed 
by the linguistic distribution, and thus, should satisfy the “Succession,” “Accu-
racy,” and “Attitude consistency” as introduced in Sects. 2.1.2 and 3.1. Moreover, 
the renewed information should locate between the reference and initial information, 
which is similar to the adjustment rule proposed by Dong et al. (2016). The math-
ematical expression is as follows:

where �k(i)
�

 is the modified distribution on S� of dmk for Ai.
Given that the consensus should be improved as much as possible within the 

acceptable range of DMs, based on the above analysis, the optimized modification 
model can be constructed as follows:

(12)Rk = max{Rk(i)|i = 1, 2,… , n}

�
k(i)

�
∈ [min{�̃k(i)

�
, �k(i)

�
},max{�̃k(i)

�
, �k(i)

�
}]
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where the objective function hopes the prospect values of DMs can be as similar 
to each other as possible. Constraints (13 − 1) − (13 − 6) are the same as those in 
model (6), thereby ensuring the rationality of the optimal preference. Constraint 
(13 − 7) limits the modification range by the reference information obtained through 
model (7), which can prevent consensus retrogression as it contains the original 
information of the identified DM. Constraints (13 − 8) − (13 − 10) determine the 
dynamic reference point and constraints (13 − 11) − (13 − 12) are the calculation 
formulas for the PT. Model (13) can be solved by Gurobi 9.1.0, and the modified 
preference expressed by {(S� , �

k(i)

�
)} will be obtained in this manner.

Following each modification, the prospect distance must be calculated to verify 
whether it is no more than the predefined threshold � . If dk > 𝜙 exists, the CRP needs 
to be conducted again; the ending condition of the CRP is each dk ≤ �.

4.4  Alternative Ranking

Once the CPR ends, an alternative ranking and selection process is conducted. The 
score of alternative Ai is computed by S(Ai) =

1

m−1

∑m

k
PVk(i) , which means that for the 

average prospect value of Ai , a better S(Ai) results in a better alternative Ai . The algo-
rithm of the proposed CRP is provided in Table 2.

(13)
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5  Application Example

In this section, we illustrate the proposed consensus model through a numerical 
example and analyze the effects of consciousness flowing towards different informa-
tion paths on the results. Furthermore, we discuss the advantages of the consensus 
mechanism from several comparison viewpoints.

5.1  Numerical Calculation

In this subsection, we provide a numerical example about the contingency plan for 
the selection of designated hospitals through the above consensus process.

5.1.1  Background

COVID-19 continued to spread globally in 2020, and it still affects the normal travel 
and production activities of humans. Although the epidemic is now well under con-
trol in most areas, mutant viruses are beginning to emerge. Therefore, emergency 
response plans for the epidemic need to be drawn up in advance to ensure that timely 
and effective control measures can be taken in the event of an outbreak to ensure the 
safety of lives and maintain the stability of social life. The selection problem of the 
designated hospitals belongs to the emergency plan of the government for fighting 
the epidemic. A designated hospital refers to a hospital that intensively treats con-
firmed and suspected cases during an epidemic. Such hospitals usually have ade-
quate professional medical care and a strong medical ability to deal with COVID-
19. The purpose of establishing designated hospitals is to ensure that patients can 
receive timely and effective treatment, while also reducing the possibility of wide-
spread infection caused by distributed therapy. Hence, designated hospitals can play 
a significant role in recovery from the epidemic. Multiple factors should be con-
sidered when selecting the optimal hospital as the designated facility, such as the 

Table 2  Algorithm of proposed CRP

Algorithm: The dynamic reference point-oriented CRP with the reference information integrated based 
on quantum probability theory.

Input: The prospect distance threshold � to measure consensus; the original preference informa-
tion provided by DMs and the objective information of alternatives

Output: The modified preference information; the alternative ranking
Step 1: Apply Eq.(8) to identify all dmk with dk > 𝜙 , that is who need modification;
Step 2: Apply Eq.(5) and model (6) to aggregate subjective information except the identified dmk , 

denoted as {(S� , �
¬k(i)

�
)};

Step 3: Apply model (7) to integrate the subjective and objective information based on quantum 
decision theory, denoted as {(S� , �̃k(i)�

)};
Step 4: Apply model (13) to obtain the modified preference of dmk , denoted as {(S� , �

k(i)

�
)};

Step 5: Compute Eq.(8) again, if dk > 𝜙 exists, then return to Step 2; otherwise, the CRP ends, the 
score of Ai is computed as S(Ai) , the better S(Ai) , the better Ai;

Step 6: End
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medical level (including instrument sufficiency, physician specialization, and medi-
cal experience), management level (including regulation standardization and logisti-
cal support), and flexibility of medical treatment (the effect on other types of patient 
visits). The selection problem of designated hospitals is a GDM issue.

Consider a situation in which we assume that three experts (DMs) are denoted 
as dm1, dm2 , and dm3 , which should provide a ranking priority for three hospitals: 
A1,A2 , and A3 . Moreover, there is a need for a uniform ranking of alternatives fol-
lowing communication and consultation. It is assumed that experts will adopt lin-
guistic distributed assessments to provide preference information for each hospital, 
so as to express their evaluations comprehensively and completely using more than 
one linguistic term, owing to the diversity of the criteria listed above, as well as the 
complexities and vagaries of epidemic situations. Given that experts have different 
evaluation behavior habits and individual expectations differ for a particular crite-
rion, it is appropriate to focus on the consensus-building process based on psycho-
logical behavior characteristics. After identifying the expert who is furthest from the 
opinion of the group, this expert needs to adjust his/her preference to improve the 
consensus level. During this process, he/she will also refer to the subjective evalu-
ation information of other experts and the objective information of each hospital 
based on the past medical treatment and processing ability in response to similar 
emergencies, while retaining their own opinions to a certain extent. The original 
preference information of experts on the three candidate hospitals is presented in 
Table 3.

5.1.2  Consensus Measurement

According to the reference point rule that is adopted in this study, it is easy to deter-
mine that the reference point for dm1 is S4 , for dm2 is S3 , and for dm3 is S5 . Based on 
Sect. 2.2.2, the prospect values of the DMs on the candidate hospitals can be calcu-
lated as per Table 4.

Table 3  Original preference information of DMs in candidate hospitals

dm1 dm2 dm3

A1 {(S1, 0.5), (S2, 0.3), (S3, 0.2)} {(S1, 0.4), (S2, 0.6)} {(S3, 0.7), (S4, 0.3)}

A2 {(S4, 0.6), (S5, 0.4)} {(S2, 0.3), (S3, 0.4), (S4, 0.3)} {(S4, 0.2), (S5, 0.3), (S6, 0.5)}

A3 {(S3, 0.4), (S4, 0.5), (S5, 0.1)} {(S3, 0.7), (S4, 0.3)} {(S5, 0.6), (S6, 0.4)}

Table 4  Prospect values of DMs 
on candidate hospitals dm1 dm2 dm3

A1 − 4.82 − 3.05 − 3.66
A2 0.4 − 0.38 0.05
A3 − 0.8 0.3 0.4
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According to the identification rule, the distances of the prospect values of the 
DMs on the candidate hospitals are listed in Table 5 through Eq. (8). If � = 4.5 in 
this study, dm1 and dm2 are suggested to make modifications successively.

5.1.3  Reference Information Based on Quantum Integration

As introduced above, for dm1 , the subjective reference information is obtained 
from dm2 and dm3 . The rough and accurate subjective collective information 
can be obtained as per Table  6 through Eq. (5) and model (6), respectively. Fig-
ures 2, 3, and 4 present the normalized distributions of the linguistic terms along � 
changes in the process of integrating the objective and subjective reference infor-
mation based on QPT on A1 , A2 , and A3 for dm1 , respectively. If the moderator 
suggests P(Cobj) = P(Csub) = 0.5 in this example (i.e. the subjective and objective 

Table 5  Distances of prospect 
values of DMs on candidate 
hospitals

dm1 dm2 dm3

A1 2.93 2.37 1.77
A2 1.13 1.2 0.78
A3 2.3 1.2 1.3
Total distance 6.36 4.77 3.85
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information is considered equally), through model (7), the optimized reference 
information for dm1 on the alternatives can be obtained, as illustrated in Table  7. 
According to Table 7, in the process of integrating the preference for A1 , � = 150◦ , 
a relative heavy negative interference appears. For A2 and A3 , � = 0◦ , the interfer-
ence is positive. Subsequently, the distribution range of the modification information 
for dm1 based on the original information and reference information presented in 
Table 7 can be concluded as per Table 8 (for model (6) and model (7), the priority of 
the objective function is assigned for the distribution on each linguistic term in this 
example).

5.1.4  Modification Information

Using model (13), the modified preference information of dm1 can be optimized with 
the adjusted reference point S3 . The relevant modifications and corresponding pros-
pect values are displayed in Table 9. Guided by the designed consensus mechanism, 
the distance between the prospect values should be recalculated, as per Table 10. 
Evidently, all dk are less than � and the CRP ends, and there is no need for dm2 to 
make a modification. This example requires only one iteration.

5.1.5  Alternative Ranking

The scores of the alternatives can easily be obtained: S(A1) = −3.17 , S(A2) = 0.2 , 
and S(A3) = 0.413 . Hence, the ranking of the alternatives is A3 ≻ A2 ≻ A1 . Hospital 

Table 7  Reference information 
for dm1

Reference information Phase angle 
difference �

A1 {(S1, 0.47), (S2, 0.23), (S3, 0.3)} 150◦

A2 {(S2, 0.07), (S3, 0.22), (S4, 0.55), (S5, 0.06), (S6, 0.1)} 0
◦

A3 {(S3, 0.55), (S4, 0.3), (S5, 0.15)} 0◦

Table 8  Distribution range of modification information for dm1

�
k(i)

0
�
k(i)

1
�
k(i)

2
�
k(i)

3
�
k(i)

4
�
k(i)

5
�
k(i)

6

A1 0 [0.47,0.5] [0.23,0.3] [0.2,0.3] 0 0 0
A2 0 0 [0,0.07] [0,0.22] [0.55,0.6] [0.06,0.4] [0,0.01]
A3 0 0 0 [0.4,0.55] [0.3,0.5] [0.1,0.15] 0

Table 9  Modified preference 
information for dm1

Modified information Prospect value

A1 {(S1, 0.5), (S2, 0.3), (S3, 0.2)} − 2.80
A2 {(S3, 0.22), (S4, 0.6), (S5, 0.18)} 0.93
A3 {(S3, 0.55), (S4, 0.35), (S5, 0.1)} 0.54
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A3 is the best and is selected as the preferred designated medical institution. Moreo-
ver, if the outbreak continues and a hospital can no longer bear the medical pres-
sure, hospitals A2 and A3 will be successively selected as the designated treatment 
hospitals.

5.2  Analysis of Results

In the above example, it is assumed that the values of P(Cobj) are all equal to 0.5 for 
A1,A2 , and A3 and that the DMs will take different values of P(Cobj) for different 
alternatives. Therefore, the following section analyzes the influence of conscious-
ness flowing towards different evaluations on the result of the information, and pro-
vides several insights for determining the possible values of P(Cobj) in real deci-
sion making at two stages (the first stage concerns reference information acquisition 
and the second concerns modified information acquisition). We take P(Cobj) ∈ (0, 1) 
with a step of 0.05 as the input, and through the data of A1 , A2 , and A3 , Figures 8, 9, 
and 10 can be obtained. Fig. (a) in Figs. 8, 9, and 10 indicates the reference informa-
tion along the consciousness probability changes (the left vertical axis represents the 
distributions on the linguistic terms and the right one is the phase angle difference 
� ). Furthermore, Fig. (b) in Figs. 8, 9, and 10 indicates the modified distributions on 
the linguistic terms of A1 , A2 , and A3 , respectively (the priority is still designed to be 
assigned for the distribution deviation of models (6) and (7) in the following analy-
sis). The detailed analysis is as follows.

According to Fig.  8(a), each distribution exhibits an evident fluctuation dur-
ing the interval [0.35,0.5], and the interference becomes significantly negative 
from completely positive. in Fig.  8(b) shows the fluctuation during the interval 
[0.05,0.2]. As priority is assigned to the distribution deviation, we subsequently 
characterize the minimum distribution deviations on all linguistic terms between 
the reference and original information with different P(Cobj) , which are listed in 
Table  11. It is demonstrated that P(Cobj) = 0.45 can decrease the deviation (from 
0.4 to 0.26) effectively and obviously, and thereafter, the deviation remains at a rela-
tively low level. The minimum deviation can be obtained when P(Cobj) = 0.5 with 
{(S1, 0.47), (S2, 0.23), (S3, 0.3)} . If model (7) is adopted with the unknown P(Cobj) , 
the optimized solution of this model is obtained as {(S1, 0.5), (S2, 0.2), (S3, 0.3)} 
with P(Cobj) = 0.533 , � = 144◦ . Fig. 5 is a three-dimensional diagram that reveals 
the reference distributions along the phase angle difference changes when the prob-
ability of consciousness flowing towards objective information changes on A1 for 
dm1 . Moreover, according to Fig.  8(b), the values of the distribution on different 

Table 10  Distance of DM 
prospect values on alternatives 
following modification

dm1 dm2 dm3

A1 1.10 0.85 1.45
A2 2.19 1.73 1.31
A3 0.37 0.34 0.24
Total distance 3.66 2.92 3.00
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linguistic terms are all stable in the interval [0.2,  0.9], which is equivalent to the 
original preference dm1 being provided as {(S1, 0.5), (S2, 0.3), (S3, 0.2)} . Under these 
circumstances, the distribution and expectation deviations between the original and 
modified prospect values are both equal to 0. In summary, we can infer the following 
insight for determining P(Cobj) on A1.

Insight on A1 : Based on the principle that “the utility of the DMs is lower 
when they are further from the original opinion,” dm1 is more likely to prefer 
P(Cobj) ∈ [0.45, 0.95] at the reference acquisition stage, and he/she would pre-
fer P(Cobj) ∈ [0.2, 0.9] at the modification acquisition stage. As there exists an 
overlap between P(Cobj) ∈ [0.45, 0.95] and P(Cobj) ∈ [0.2, 0.9] , the common part 
P(Cobj) ∈ [0.45, 0.9] is the most likely option in an actual decision environment, so 
as to guarantee the utilities of the two stages simultaneously.

According to Fig. 9(a), no fluctuation occurs for each distribution over the domain 
and no negative interference exists. Furthermore, the strength of the positivity con-
tinues to increase with the total positive interference from P(Cobj) = 0.35 . Table 12 
demonstrates that the distribution deviation maintains an upward trend on the entire 
domain, and thus, dm1 will not prefer the larger P(Cobj) . According to model (7), the 
optimized reference information is {(S4, 0.6), (S5, 0.15), (S6, 0.25)} with P(Cobj) = 0 , 
which is consistent with the above findings. Under these situations, � = 90◦ , which 
means that the two classifications are independent, and the integration is equivalent 
to the Markov process. Fig. 6 is a three-dimensional diagram that reveals the refer-
ence distributions along the phase angle difference changes when the probability of 
consciousness flowing towards objective information changes on A2 for dm1 . Fur-
thermore, a smaller P(Cobj) indicates that the modified information is closer to the 
original preference, from the perspectives of both the distribution and the expec-
tation deviations (as indicated in Table  13). Hence, we can conclude the findings 
regarding the value of P(Cobj) on A2.

Insight on A2 : Based on the principle that “the utility of the DMs is lower when 
they are further from the original opinion,” a smaller value of P(Cobj) will be pre-
ferred by dm1 with the reference and modification acquisition stages.

According to Fig. 10(a), the fluctuation generally appears around P(Cobj) = 0.8 , 
with positive interference generated in most cases. The minimum distribution 

Fig. 5  Reference distributions along phase angle difference changes when probability of consciousness 
flowing towards objective information changes on A1 for dm1
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deviations for all linguistic terms between the reference and original infor-
mation with different P(Cobj) are listed in Table  14, which demonstrates that 
the distribution deviation decreases as P(Cobj) approaches 0.9. Thus, dm1 
will prefer a larger P(Cobj) that is no more than 0.9 at the reference informa-
tion acquisition stage. Using model (7), the optimized reference information is 
{(S3, 0.5), (S4, 0.4), (S5, 0.1)} with P(Cobj) = 0.888 and � = 180◦ , taking the mini-
mum distribution deviation as 0.2, which is consistent with the above findings in 
general. Fig. 7 is a three-dimensional diagram that reveals the reference distribu-
tions along the phase angle difference changes when the probability of conscious-
ness flowing towards the objective information changes on A3 for dm1 (Figs.  8, 
9). Moreover, in Fig.  10(b) is unstable overall. It can be observed that when 
P(Cobj) = 0.8 , the modified information is closest to the original preference of dm1 
as {(S3, 0.4), (S4, 0.5), (S5, 0.1)} . In summary, we can infer the following insight for 
determining P(Cobj) on A3.

Insight on A3 : When the findings from the reference and modified information are 
not exactly the same, it is suggested that we should rely more on the modified infor-
mation in this study, as this is the final preference that will be provided by the DMs. 
Therefore, the analysis demonstrates that dm1 is more likely to take P(Cobj) = 0.8 on 
A3.

The above analysis focuses on the most likely attitudes towards different refer-
ence information paths for a certain alternative. Under the assumption of the uni-
fied P(Cobj) for all alternatives, we should pay attention to the overall performance. 
Table  15 presents the total expectation and distribution deviations between the 
modified and original information for different P(Cobj) for all alternatives, which are 

Fig. 6  Reference distributions along phase angle difference changes when probability of consciousness 
flowing towards objective information changes on A2 for dm1
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visually represented in Fig.  11. Evidently, the total utilities of the DMs reach the 
highest level when P(Cobj) = 0.2.

According to the above, the final utility of the DM depends on the distance of the 
modified information from the original preference, whereas the moderator, whose 
aim is to promote group consensus, hopes that the prospect values of all DMs on 
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Table 11  Distribution deviation between reference and original information for different P(Cobj) on A1

P(Cobj) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Distribution deviation 0.54 0.52 0.51 0.49 0.48 0.47 0.46 0.40 0.26 0.20 0.22

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Distribution deviation 0.26 0.28 0.29 0.30 0.31 0.31 0.31 0.33
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Fig. 9  Relevant information of A2 along consciousness probability changes

Table 12  Distribution deviation between reference and original information for different P(Cobj) on A2

P(Cobj) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Distribution deviation 0.53 0.55 0.58 0.60 0.62 0.64 0.67 0.70 0.74 0.78 0.82

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Distribution deviation 0.87 0.91 0.96 1.02 1.08 1.15 1.23 1.34

Table 13  Deviations between modified and original information for different P(Cobj) on A2

P(Cobj) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Expectation deviation 0.00 0.00 0.00 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.50
Distribution deviation 0.00 0.00 0.00 0.20 0.24 0.28 0.32 0.36 0.40 0.44 0.50

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Expectation deviation 0.54 0.58 0.64 0.70 0.76 0.82 0.90 1.00
Distribution deviation 0.54 0.58 0.64 0.70 0.76 0.79 0.84 0.89

Table 14  Distribution deviation between reference and original information for different P(Cobj) on A3

P(Cobj) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Distribution deviation 0.59 0.55 0.52 0.49 0.47 0.45 0.44 0.42 0.40 0.39 0.37

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Distribution deviation 0.36 0.35 0.33 0.32 0.30 0.25 0.24 0.33
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each alternative are as close as possible. The relevant data are displayed in Table 16 
and Fig.  11. According to the orange broken line, which reflects the deviation in 
the prospect value in Fig. 11, the peak appears at P(Cobj) = 0.15 , which is the point 
that the moderator is most reluctant towards. Combined with the above analysis, 
the conflict between the DMs and moderator is generated. The value of the most 
likely P(Cobj) following the game confrontation between the moderator and DMs is 
worth studying in the future. The P(Cobj) with the minimum values of the prospect 

Probability of consciousness flowing towards objective information
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tri
bu

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a) Reference  information

D
iff

er
en

ce
 o

f p
ha

se
s

0

18

36

54

72

90

108

126

144

162

180

distribution on S 3

distribution on S 4

distribution on S 5

difference of phases

Probability of consciousness flowing towards objective information
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
is

tri
bu

tio
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Modified  information

distribution on S 3

distribution on S 4

distribution on S 5

Fig. 10  Relevant information of A3 along consciousness probability changes

Table 15  Total deviations between modified and original information for different P(Cobj) on all alterna-
tives

P(Cobj) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Expectation deviation 0.76 0.69 0.62 0.29 0.35 0.39 0.76 0.49 0.54 0.59 0.66
Distribution deviation 1.06 0.96 0.86 0.38 0.46 0.50 0.46 0.62 0.68 0.74 0.82

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Expectation deviation 0.70 0.75 0.81 0.86 0.78 0.86 0.97 1.17
Distribution deviation 0.86 0.92 0.98 1.02 0.80 0.96 1.14 1.38

Table 16  Total deviations of prospect values between dm1 and other DMs on all alternatives with 
dynamic reference point

P(Cobj) 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Prospect values deviation 3.86 4.06 4.26 4.23 4.11 4.04 3.95 3.85 3.76 3.66 3.53

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Prospect values deviation 3.46 3.36 3.25 3.16 3.33 3.17 2.96 2.48



521

1 3

Dynamic Reference Point‑Oriented Consensus Mechanism in…

deviation and expectation/distribution deviations appearing simultaneously is the 
most satisfied attitude towards the objective information in the process of referee-
ing information for the DMs and moderators. Moreover, the total deviations of the 
prospect values between the dm1 and other DMs for all alternatives in Table 16 are 
all less than the original deviation of 6.36 in Table 5, which proves the validity of 
the proposed consensus model.

In summary, the simulation can aid in estimating the most likely value of P(Cobj) 
based on certain rules for the DMs and moderator. In the above analysis, the priority 
is assigned for the distribution deviation and the situation of the priority arrange-
ment for the expectation distribution can be similarly explored.

5.3  Comparative Analysis

To elucidate the advantages of the proposed CRP, we conducted a comparative anal-
ysis on multiple objectives in models (6) and (7) regarding the value of the interfer-
ence term in the QPT. Furthermore , we analyzed the efficiency of the proposed 
consensus model compared to the existing consensus method based on the dynamic 
reference point. We present the comparative analysis with Li et al. (2021) in terms 
of the linguistic distribution context, and analyze the linkages between model (6), 
model (13), and the existing works (Zhang et al. 2018; Wu et al. 2018, 2020).
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5.3.1  Comparative Analysis Regarding Multiple Objectives in Models (6) and (7)

The function of model (6) is to make the rough information accurate. Consid-
ering the rough subjective information on A3 : {(S3, 0.35), (S4, 0.15), (S5, 0.3), (S6, 
0.3)} as an example to illustrate the advantage and necessity of setting multiple 
objectives, first, the situation with the priority assigned for the distribution objec-
tive function is analyzed. It is known that the optimized assessment obtained by 
model (6) is {(S3, 0.35), (S4, 0.15), (S5, 0.5)} with a distribution deviation of 0.5 
and an expectation deviation of 0.8. When only the distribution objective func-
tion is considered as in Zhang et  al. (2018), {(S3, 0.35), (S4, 0.35), (S5, 0.3)} can 
be obtained with a distribution deviation of 0.5 and an expectation deviation of 
1. Obviously, the expectation deviation is narrowed by multiple objectives with 
the same distribution deviation. Second, the situation with the priority assigned 
to the expectation objective function is analyzed: {(S4, 0.35), (S5, 0.35), (S6, 0.3)} 
can be obtained through multiple objectives with a distribution deviation of 0.6 
and an expectation deviation of 0. When only the expectation objective func-
tion is considered as in Tan et al. (2021), {(S4, 0.52), (S5, 0.01), (S6, 0.47)} can be 
obtained with a distribution deviation of 1.18 and an expectation deviation of 0. 
Obviously, the distribution deviation is narrowed by multiple objectives with the 
same expectation deviation. In conclusion, regardless of which objective func-
tion is assigned with priority, the optimal solution that minimizes the distribution 
deviation and the expected deviation can be determined through multiple objec-
tives among feasible solutions. Therefore, the construction of multiple objectives 
in model (6) is effective. The similar analysis for model (7) is omitted here.

5.3.2  Comparative Analysis Regarding Value of Interference Term in QPT

Considering that there is not yet an authoritative method for determining the 
value of � (He et  al. 2018), our proposal constructs a multi-objective program-
ming model in the form of model (7) on the basis of individual utility in CRP 
to obtain the solution. If the similarity heuristic method proposed in Catarina 
and Andreas (2016) is adopted, we can obtain the difference of the phases For 
A1 , � = 67.59◦ , which means that the interference is positive to a certain extent. 
For A2 , � = 107.76◦ , which means that the interference is relatively mildly nega-
tive. For A3 , � = 75.64◦ , which means that the interference is positive to a certain 
extent, being closer to independence compared to � = 67.59◦ on A1 . There is an 
evident difference compared to the outcomes presented in Sect. 5.1.3. The modi-
fication information range can be obtained as �1(1)

1
∈ [0.39, 0.5] , �1(1)

2
∈ [0.2, 0.3] , 

and �1(1)
3

∈ [0.2, 0.4] with all the other distributions equal to zero. Obviously, the 
modification range is extended compared to that in Table 8, and the utility of the 
individual will be negatively affected. Therefore, the adoption of the goal pro-
gramming model can aid in obtaining an optimized quantum integration solution 
based on the maximum satisfaction level of the individual.
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5.3.3  Efficiency of Proposed Model Compared to Existing Consensus Methods Based 
on Dynamic Reference Point

In the consensus process with the application of PT, the reference point is supposed 
to be re-established following the preference modification, rather than dynamic dur-
ing the adjustment (Wang et al. 2015; Gao et al. 2017), which is considered in this 
study. The calculated numerical example in this study reflects this view in detail. 
The modified information on A2 takes different minimum linguistic terms under dif-
ferent situations, resulting in different reference points, and the prospect value is 
formed based on the dynamic reference point. It can be determined that the refer-
ence point is S4 with P(Cobj) ∈ [0.05, 0.15] and is S3 with P(Cobj) ∈ [0.2, 0.95] based 
on the “MaxMin” rule for A2 from in Fig. 9(b), which indicates the dynamic charac-
teristics of the reference point.

If we adopt the proposal in Wang et al. (2015) and Gao et al. (2017), that is, the 
reference point is stable during modification for each iteration, the dynamic charac-
teristic of the reference point is reflected in the fact that it will change when entering 
the next round of modification. Thus, Table 17 can be provided, which demonstrates 
the total deviation of the prospect values for each DM on all alternatives (i.e. dk ) 
with different values of P(Cobj) after the first modification based on the reference 
point ( S4 ). Table 18 provides the relevant information with the dynamic reference 
point. It is obvious that there exists dk > 𝜙(4.5) in Table 17; thus, the CRP needs 
to be conducted again. However, with the dynamic reference point during adjust-
ment, Table 18 indicates that only one modification is sufficient, as all dk < 𝜙(4.5) 
and the ending condition of the CRP is reached. The numerical results indicate that 
our method is more efficient with fewer rounds of modification compared to existing 
methods.

5.3.4  Comparative Analysis with Li et al. (2021) Regarding Linguistic Distribution 
Context

This study investigates the CRP in the linguistic distribution context based on the 
relevant behavioral decision theories through series optimization models, whereas Li 

Table 17  Total deviation of prospect values for each DM on all alternatives with initial reference point S4 
following first modification

P(Cobj) 0.05 0.1 0.15 0.2  0.25  0.3 0.35 0.4 0.45 0.5 0.55

dm1 3.67 3.74 3.74 3.69 3.81 3.93 4.01 3.92 4.51 5.04 5.15

dm2 3.43 3.46 3.46 3.43 3.5 3.56 3.6 3.55 3.85 4.11 4.17

dm3 2.5 2.53 2.53 2.51 2.57 2.63 2.7 2.62 2.92 3.18 3.24

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

dm1 5.09 5.09 5.05 5.05 4.79 4.95 5.01 5.09

dm2 4.14 4.14 4.12 4.12 3.99 4.07 4.1 4.14

dm3 3.21 3.21 3.19 3.19 3.06 3.14 3.17 3.21



524 X. Tan et al.

1 3

et al. (2021) focused on the estimation of the missing distribution with personalized 
individual semantics (PISs) in linguistic distribution GDM based on the consistency 
condition through collective/individual optimization models. Several insights can be 
obtained for future studies by comparing the two references. The comparison is pre-
sented as follows and is summarized in Table 19.

First, the preference relations in Li et al. (2021) are pairwise comparison preference 
relations, which are equipped with the consistency condition to measure the rational-
ity and logic of the relations matrix. As this study focuses on multi-attribute prefer-
ence relations, consistency is not involved in our decision problem. The proposed CRP 
with behavioral theories can be further researched using pairwise comparison prefer-
ence relations. This is owing to the consistency condition in Li et al. (2021) that can 
obtain the missing judgments based on the logic of preference relations, whereas the 
elements in preference relations are complete in our paper. When ignorance elements 
exist in multi-attribute preference relations, a possible method for their estimation may 
be to integrate all other DM preferences on the missing position using QPT. The PISs 
regarding the words adopted in Li et al. (2021) is flexible and personalized compared to 
the computation of the linguistic term in this study, which is more in accordance with 
the actual decision-making environment. Optimization models are constructed in both 
papers to obtain the preference information, with the best consistency as the objective 

Table 18  Total deviation of prospect values for each DM on all alternatives with dynamic reference point 
following first modification

P(Cobj) 0.05 0.1 0.15 0.2  0.25  0.3 0.35 0.4 0.45 0.5 0.55

dm1 3.86 4.06 4.26 4.23 4.13 4.04 3.95 3.85 3.76 3.66 3.53

dm2 3.52 3.62 3.72 3.2 3.16 3.11 3.06 3.01 2.97 2.92 2.85

dm3 2.6 2.69 2.79 3.28 3.23 3.19 3.14 3.09 3.04 3 2.93

P(Cobj) 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

dm1 3.46 3.36 3.25 3.16 3.33 3.17 2.96 2.53

dm2 2.82 2.77 2.72 2.67 2.75 2.67 2.57 2.36

dm3 2.9 2.85 2.79 2.75 2.83 2.75 2.64 2.43

Table 19  Comparison between Li et al. (2021) and this study

Li et al. (2021) This paper

Preference relations Pairwise comparison Multi-attribute preference relations
Elements in preference relations Incomplete Complete
Linguistic numerical scale Personalized Fixed and traditional
Aim computation of ignorance ele-

ments and PISs
Consensus reaching

Rule used Consistency condition Behavioral theories
Environment Linguistic distribution context Linguistic distribution context
Methodology Optimization model Optimization model
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in Li et al. (2021), and the minimum modification and best consensus as the objectives 
in this paper.

Moreover, it can be observed that the complete preference information acquired from 
the optimization models in Li et al. (2021) does not focus on the information accuracy 
(Zhang et al. 2018; Wu et al. 2018, 2020). For example, the probabilistic information in 
Table 5 in Li et al. (2021) for p1

12,t
 , p1

13,t
 , p1

14,t
 takes a non-zero value for each linguistic 

term, and for p1
23,t

 , p1
24,t

 , p1
34,t

 , the succession performance is not sufficient good, which 
is inaccurate as mentioned in Zhang et al. (2018) and Wu et al. (2018, 2020). Also, 
The preference attitude introduced in this study for all six preference information sets is 
opposite in one linguistic distribution assessment. It is proposed that the quality of the 
preference information should be guaranteed in this study.

5.3.5  Linkages Between Model (6), Model (13), and Existing Works (Zhang et al. 
2018; Wu et al. 2018, 2020)

As described above, models (6) and (13) in this study are established based on Zhang 
et al. (2018) and Wu et al. (2018, 2020), with the distribution linguistic term assess-
ment. Optimization models are constructed in all three works to prompt the CRP, and 
the common operation of the existing models is that the accurate constraints (i.e. con-
straints (1) in this study) are developed to improve the quality of the collective (aggre-
gated) preference information, which is adopted in models (6) and (13) to guarantee 
the accuracy of the preference information. Furthermore, this study introduces the con-
cept of “attitude consistency” on the basis of the commonly used constraints, thereby 
ensuring the accuracy of the preference information from the perspective of individual 
attitudes so as to cause the consensus model to exhibit universality when the number of 
involved linguistic terms is more than 2 (i.e. N ≥ 3).

In terms of objective functions, Wu et al. (2018) aimed at maximizing the support 
degree of the group opinion, whereas Zhang et al. (2018) and Wu et al. (2020) both 
focused on the minimum preference loss to support the CRP. Similarly, model (6) 
aims for the collective preference to be as close as possible to the individual assess-
ment. We introduce the excepted value together with the distribution with which 
existing models are concerned to construct a multi-objective function. This advan-
tage is verified in Sect. 5.3.1. Moreover, model (13) is aimed at the minimum dis-
tance between the individual prospect values on all alternatives with the designed 
mechanism of the dynamic reference point that is involved in the constraints. To 
recapitulate, the proposed models (6) and (13) develop the accuracy conditions that 
the distribution linguistic assessment should obey, construct the multi-objective 
function to obtain better preference information, and introduce objective functions 
from different perspectives based on existing works.

6  Conclusions

Our study suggests the possibility of quantum consciousness during the integration 
of different information paths, and establishes a multi-objective programming model 
to determine the interference term conforming to the psychological utility of the 
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DMs, thereby demonstrating that the proposed model is more reliable than existing 
methods from a behavioral perspective. Furthermore, this study introduces identi-
fication based on the prospect value and dynamic reference point in the modifica-
tion process, which considers the dynamic characteristics of the behavioral decision-
making process and eliminates the destabilization of various complex factors on the 
decision-making accuracy.

Overall, this study offers a new strategy to consider the complexity of the lin-
guistic distribution decision-making environment and individual non-rationality, 
as well as the conflict, uncertainty, and fuzziness that are reflected in the brain. 
However, there are also limitations to this study. First, the reference information is 
simulated based on the assumptive quantum mechanism and mathematical model; 
however, the consciousness of human behavior is elusive. Whether other uncertain 
factors need to be analyzed is a topic worth exploring. Second, we only focus on 
the dynamic property when the DM makes modifications; however, the expectations 
and bottom lines of DMs will change with the continual development of decision-
making events. The issue of dynamic behavioral characteristics at different stages is 
an interesting research topic.
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