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Abstract
Voting paradoxes have played an important role in the theory of voting. They typi-
cally say very little about the circumstances in which they are particularly likely or 
unlikely to occur. They are basically existence findings. In this article we study some 
well known voting paradoxes under the assumption that the underlying profiles are 
drawn from the Condorcet domain, i.e. a set of preference profiles where a Con-
dorcet winner exists. The motivation for this restriction is the often stated assump-
tion that profiles with a Condorcet winner are more likely than those without it. We 
further restrict the profiles by assuming that the starting point of our analysis is that 
the Condorcet winner coincides with the choice of the voting rule under scrutiny. 
The reason for making this additional restriction is that—intuitively—the outcomes 
that coincide with the Condorcet winner make those outcomes stable and, thus, 
presumably less vulnerable to various voting paradoxes. It will be seen that this is, 
indeed, the case for some voting rules and some voting paradoxes, but not for all of 
them.

Keywords  Voting rule · Voting paradox · Condorcet domain · Profile restrictions

1  Introduction

Many, if not not all, voting rules can be seen as attempts to overcome specific prob-
lems, anomalies or puzzles observed in conducting elections or analyzing their 
results. Sometimes the problems faced with are so grave that they acquire the status 
of paradoxes. Voting paradoxes have, indeed, played an important role in the devel-
opment of voting theory. The best known of these are known as Borda’s and Con-
dorcet’s paradoxes, illustrated in Tables 1 and 2, respectively.
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In these tables the letters A, B and C stand for candidates (or policy alternatives, 
for that matter) and the columns represent the preference rankings of voters from 
top to bottom. Borda’s paradox pertains to the plurality (or first-past-the-post) vot-
ing where the candidate receiving more votes than any of his/her competitors is the 
winner. Assuming that Table 1 depicts the preferences of the nine voters, A can be 
expected to win under plurality voting, but would be defeated by both B and C in 
pairwise majority voting. In fact, the plurality winner A is an absolute loser in the 
sense of being the last-ranked candidate of an absolute majority voters. Thus, the 
paradox boils down to an incompatibility of two intuitive views on what winning 
means, viz. one which determines the winner by looking at the distribution of first 
ranks among the alternatives and one based on pairwise majority contests.1

The latter intuition may lead to the other classic voting paradox, viz. Condorcet’s 
or cyclic majority paradox exemplified in Table  2. Conducting pairwise majority 
comparisons in this profile results in a cycle: B defeats A, A defeats C, C defeats 
B etc. The paradox consists in observing that if individual complete and transitive 
preference orderings are being aggregated into a collective one by means of pairwise 
majority votes, the outcome may fail on transitivity.

These two paradoxes are just examples from a larger class of anomalies encoun-
tered in aggregating individual preferences into collective choices or rankings (for 
overviews, see e.g. Brams 1976; Felsenthal 2012; Kramer 1973; Nurmi 1999; Saari 
2000a, b, 2001). The paradoxes are rule-related: some rules are vulnerable to some 
paradoxes, while others can lead to other kinds of paradoxes. No voting rule is invul-
nerable to all paradoxes. The way the vulnerability is demonstrated is by presenting 
a profile where the rule under scrutiny leads to a paradoxical outcome. Typically 
the profiles are selected from an unlimited set of profiles, that is, no constraints are 

Table 1   Borda’s paradox  
Grazia (1953)

4 Voters 3 Voters 2 Voters

A B C
B C B
C A A

Table 2   Condorcet’s paradox 1 Voter 1 Voter 1 Voter

A B C
C A B
B C A

1  Borda’s proposal, currently known as the Borda count, would here result in B. In Borda count involv-
ing k candidates each voter assigns k − 1 points to his/her first ranked candidate, k − 2 points to the 
second ranked one etc, 0 points to the last ranked candidate. For each candidate the points assigned 
by all voters are summed to obtain the Borda score of that candidate. The winner(s) is (are) then the 
candidate(s) with the largest Borda score.
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imposed on the types of profiles. Sometimes this may be implausible if it is known 
that the profiles where the rules are being applied always or very frequently satisfy a 
restriction that affects the vulnerability assessment. One such restriction is the pres-
ence of a Condorcet winner in the profiles under investigation.

2 � The Condorcet Domain

Our focus is on voting rules that can be described as social choice functions map-
ping a set of n individual preference relations over a set A of candidates into the set 
of subsets of A. The preference relations are assumed to be complete (or connected) 
and transitive. Thus, for any n- tuple of individual complete and transitive prefer-
ence relations, the voting rule specifies a subset of candidates, viz. the winners in 
the sense of this particular rule in the specified profile. The evaluation of voting 
rules typically involves a consideration of the selected winners vis-à-vis the individ-
ual preference relations.2 For example, the rule may yield as the winner a candidate 
that would in pairwise majority comparisons be defeated by all its competitors if the 
voters voted according to their preference relations. As an example of such a rule 
and profile we can refer to the plurality voting and Table 1. While one such profile 
is sufficient to demonstrate the failure of the plurality rule to guarantee the exclusion 
of an eventual absolute loser, it doesn’t say anything about the general conditions 
under which such an anomaly emerges. Yet it is not difficult to envision a sufficient 
condition for avoiding the anomaly: the profile contains an absolute winner. Thus, in 
a domain satisfying this condition the plurality voting excludes the absolute loser.3

Given the intuitive difficulty of constructing examples of various voting para-
doxes it is worth studying the profiles types under which the paradoxes occur. In 
particular, if it is known that some types are far more common than others, we may 
question the relevance of general vulnerability results and focus on finding the inci-
dences of paradoxes under those domains which are most likely to be encountered 
in practice. This focus is by no means new. In fact, it was discussed already before 
Arrow’s theorem appeared in the literature. Duncan Black introduced the nowadays 
well-known profile restriction, viz. single-peakedness in late 1940’s (Black 1948). 
Based on spatial characterization of decision alternatives this and related restrictions 
soon gained much scholarly attention. Our focus is on a non-spatial restriction on 
preference relations, viz. one where the defining feature is the presence of a Con-
dorcet winner. Profiles satisfying this restriction constitute the Condorcet domain 

2  Social choice functions as here defined were not the focus of Arrow in his classic general possibility 
theorem (Arrow 1963). Rather his interest was in social welfare functions mapping preference profiles 
into the set of collective preference rankings. The distinction is important in characterizing voting rules 
[e.g. the consistency of Kemeny’s median (Fishburn 1977; Young and Levenglick 1978)], but since most 
voting paradoxes deal with choice sets, our focus is on voting rules as choice functions.
3  The condition is sufficient, but not necessary for the avoidance of the plurality choice of an absolute 
loser. Consider a small modification of Table 1: let the 4-voter group consist of only 2 voters, ceteris par-
ibus. The resulting profile would have seven voters, an absolute loser (A) and no absolute winner. There 
B would become the plurality winner and thus the choice of the absolute loser is avoided.
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of profiles (Campbell and Kelly 2015). This domain contains the single-peakedness 
profiles as single-peakedness is a sufficient condition for there being a Condorcet 
winner. It is, however, not necessary as shown by Table 3. There B is the Condorcet 
winner and yet there is no unanimity regarding which candidate is the worst, best 
or middle-ranked one. Hence the Table 3 profile is not single-peaked. It is not even 
value-restricted since this property would require that unanimity prevails regarding 
which candidate is not the best one or which candidate is not the middle-ranked one.

So, the Condorcet domain contains as a proper subset the profiles with single-
peaked preferences. Are the profiles in the Condorcet domain more common than 
those without a Condorcet winner? In some circumstances, e.g. in one-dimensional 
policy spaces where the voters’ preferences can be represented by ellipsoidal indif-
ference curves, the answer is clearly yes. However, by Kramer’s (1973) result, intro-
ducing more policy dimensions makes the existence of single-peaked preferences 
unlikely. Moreover, in many-dimensional policy-spaces, the core4 or similar equilib-
rium conditions do not in general exist (Kramer 1973; Saari 1997; Schofield 1983). 
Thus, even though probabilistic and simulation results seem to suggest that the prob-
ability of profiles with a Condorcet winner is quite high in small alternative settings 
and tends to become larger with increasing number of voters (Gehrlein and Lepelley 
2011, p. 21) and (Gehrlein and Lepelley 2011, p. 55) , the question of prevalence 
of which types of profiles—those with a Condorcet winner or those without it—
cannot be resolved in abstracto.5 Nevertheless, the Condorcet domain constitutes a 
class of profiles of interest if for no other reason than because its profiles contain 
an alternative that many authors deem an obvious winner.6 So, the question is: does 

Table 3   A non-single-peaked 
profile with a Condorcet winner

2 Voters 2 Voters 2 Voters 2 Voters 1 Voter

A A B C B
B C C B A
C B A A C

5  In simulation studies one creates randomized electorates by generating for each voter a preference 
ranking over candidates using some probability distribution as the starting point. One then determines, 
for each generated electorate, whether a Condorcet winner exists or not. In probability models the prob-
ability estimates for the existence of the Condorcet winner are expressed in closed formulae. The esti-
mates give theoretical likelihoods, in various types of electorates, for encountering an election setting 
with a Condorcet winner. The main point of simulations and probability models is, however, not to pre-
dict how often Condorcet winners are found in real world elections, but to assess the significance of the 
changes in profile parameters (e.g. number of voters, number of candidates, probability distribution of 
preference rankings) for the voting outcomes (Gehrlein and Lepelley 2017).
6  Two assumptions have to be made in order to plausibly argue that the Condorcet winner is an obvious 
one. First, the majority principle leads always to the correct outcome. Second, a candidate that wins all 
those pairwise contests in which he/she participates is the socially best one. This view is defended i.a. 
in Felsenthal and Machover (1992a) and Risse (2001). It is, however, by no means uncontested, see esp. 
Saari (1995, 2003). For a non-technical exposition, see Nurmi (1999, pp. 31–40).

4  The core is the set of majority undominated alternatives. It coincides with the Condorcet winner when-
ever the latter exists.
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the existence of a Condorcet winner do away with important paradoxes in social 
choices? I.e. is the presence of a Condorcet winner a guarantee against unpleas-
ant surprises in the form of voting paradoxes? If it is and those profiles are deemed 
more common than others, then we can optimistically dismiss those paradoxes as 
applicable only in rare circumstances.

3 � The Paradoxes and Rule Types

Voting paradoxes are counterintuitive outcomes resulting from applying voting 
rules. Often the surprising aspect pertains to the relationship between the voter pref-
erences and the outcomes of voting rules. Paradoxes can also be expressed as fail-
ures of procedures to satisfy specific desiderata. There are various possibilities to 
classify paradoxes. In the following we consider three classes: Condorcet incompat-
ibility, monotonicity-related and subset choice paradoxes. The first class consists of 
paradoxes showing that the Condorcet winner is not elected or the Condorcet loser 
is elected under a given procedure. The monotonicity paradoxes include two major 
sub-classes, viz. those focusing on a given electorate where specific types of modi-
fications take place and those where the electorate is augmented with new voters 
with specific preferences or where the electorate is diminished by removing voters 
with specific preferences. Choice set variance paradoxes, in turn, look at the pos-
sible changes in outcomes when some subsets of the candidate or voter set are con-
sidered.7 We shall provide an overview of these paradoxes in both unrestricted and 
Condorcet domains.

3.1 � Condorcet Incompatibility Paradoxes

This class consists of paradoxes where one intuition of winning clashes with 
another. Not all such clashes qualify as paradoxes. E.g. that plurality voting occa-
sionally results in a different outcome than the Borda count is not usually deemed 
particularly dramatic. Indeed, which differences in outcomes are called paradoxes 
and which not is often in the eye of the beholder. Two incompatibilities are often 
regarded as particularly serious. Both are associated with Marquis de Condorcet. 
The first refers to the possibility that a Condorcet winner is not elected by the pro-
cedure under scrutiny. If such an instance is found, then it is said that the proce-
dure violates the Condorcet winning criterion. An instance of this incompatibility 
is Table  3 where plurality voting results in A, whereas B is the Condorcet win-
ner. Thus, plurality voting is vulnerable to this sort of incompatibility or paradox. 
Fishburn and Brams (1983) call this the thwarted-majorities paradox. The second 
incompatibility is the mirror image of the first one: a profile is found where the Con-
dorcet loser is elected by the procedure under study. The procedure then violates 
the Condorcet losing criterion. An instance can be found in Table 1 where A, the 

7  Felsenthal discusses a long list of voting paradoxes in Felsenthal (2012). A somewhat more encom-
passing classification is to be found in Nurmi (1999).
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Condorcet loser, is elected by the plurality voting. Table 4 summarizes the compat-
ibility of 20 voting procedures with the Condorcet winning criterion (C-winning) 
and the Condorcet losing (C-losing) criterion under the unrestricted (columns 2 and 
3) (Nurmi 1983, 1987) and the Condorcet domain (Felsenthal and Nurmi 2019). The 
incompatibility (compatibility, respectively) of the procedure with the criterion is 
indicated by 0 (1).

The procedures are listed from pairwise through positional and multi-stage ones to 
procedures with non-standard voter input. The latter are procedures that require more 
information than the preference ranking of voters to yield a winner. Each class of sys-
tems is separated with a horizontal line from the following class.8 For definitions of 
the procedures the reader is referred to Felsenthal and Nurmi (2019, pp. 5–13).

Most procedures in Table 4 are well-known. It will be recalled e.g. that the major-
ity judgment method of Balinski and Laraki is based on ordinal grade (utility) val-
ues assigned by each voter to each candidate. For each candidate the median score is 
determined and the candidate with the highest median score is declared the winner 
(Balinski and Laraki 2011). So, in contradistinction to the ranking-based procedures, 

Table 4   Condorcet criteria 
summary (Felsenthal and Nurmi 
2019)

Domain Procedure Unrestricted Condorcet

C-winning C-losing C-winning C-losing

Amendment 1 1 1 1
Copeland 1 1 1 1
Dodgson 1 0 1 1
Kemeny 1 1 1 1
Minimax 1 0 1 1
Schwartz 1 1 1 1
Young 1 1 1 1

Borda 0 1 0 1
Plurality 0 0 0 0

Baldwin 1 1 1 1
Black 1 1 1 1
Bucklin 0 0 0 0
Coombs 0 1 0 1
Hare 0 1 0 1
Nanson 1 1 1 1
pl. runoff 0 1 0 1

Approval 0 0 0 0
Majority j. 0 0 0 0
Range voting 0 0 0 0

8  The assignment of procedures to classes is not unambiguous. E.g. the Borda count can be implemented 
as a purely binary system.
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for each voter there may be rank positions that are assigned to no candidate or there 
may be rank positions occupied by several candidates. Range voting, in turn, allows 
voters to assign cardinal utility values to candidates and the sum of values given to 
each candidate determines the winner.9

Even a cursory inspection of Table  4 reveals that the domain restriction from 
universal to Condorcet makes very little difference in terms of performance with 
respect to the Condorcet winning and losing.10 One should bear in mind that on 
each row a ‘1’ in the second (or third, respectively) column implies the identical 
entry in the fourth (or fifth) column as well. Of the binary systems which are all 
Condorcet extensions, only Dodgson’ rule and the minimax procedure exhibit differ-
ent—improved—performance under the Condorcet domain. That the Dodgson rule 
and the minimax method may elect a Condorcet loser has been shown in Nurmi 
(2004a, p. 10) and Felsenthal and Nurmi (2018, p. 82). In fact, both methods may 
elect an absolute loser. This can only happen when no Condorcet winner exists in 
a profile since when one does exist, all Condorcet extensions (including Dodgson 
and minimax) end up with the Condorcet winner. The latter obviously cannot be a 
Condorcet loser.

Overall, it is not surprising that both Condorcet criteria are satisfied by nearly all 
binary procedures. After all, they are mainly attempts to extend the Condorcet win-
ning idea to situations where no such winner exists. Table 1 demonstrates that the 
failure of the plurality rule on the Condorcet winning criterion also applies in the 
Condorcet domain. It also shows that this rule may end up with a Condorcet loser 
even in the restricted domain. The Borda count obviously satisfies the Condorcet 
losing criterion in the Condorcet domain since it does so in the unrestricted one. 
The failure of the Borda count on Condorcet’s winning criterion is shown in Table 5 
where a (strong) Condorcet winner A exists (and thus the profile is in the Condorcet 
domain), but the Borda count elects B.

Baldwin’s (aka Borda elimination) rule is a Condorcet extension that runs in sev-
eral rounds eliminating on each round the candidate with the lowest Borda score. 
This guarantees that the eventual Condorcet winner is not eliminated and that the 
eventual Condorcet loser will be eliminated on the final round or before it. The same 

9  There are several other procedures that have been proposed for specific types of decision settings, 
e.g. sequential voting by veto (Mueller 1978), successive procedure (Rasch 1995), sequential choice 
(Felsenthal and Machover 1992b; Mueller 1978; Stefánsson 2019), the Janeček method (Janeček 2018; 
Oreský 2020). The last-mentioned system allows the voters to cast both positive and negative votes. For 
each candidate the voter may give one positive vote or no vote. In addition, the voter can cast a negative 
vote to some candidates. The system is quite flexible with regard to the number of positive and negative 
votes, but it is suggested that the number of the latter be no more than half of the number of positive 
votes cast by the voter. In single-winner elections this procedure gives each voter two or three positive 
and one negative vote to distribute among the candidates. The winner is the candidate with the largest 
sum of votes (Janeček 2018). Since these procedures require information about voter opinions that is 
much richer than just the ranking of the candidates, we shall not discuss them here. N.B. the approval 
voting also requires more information than preference rankings, but since it is often included in similar 
comparisons we shall conform to this usage.
10  The results reported here have been collected from a number of sources, i.a. Straffin (1980), Nurmi 
(1983, 1987), Tideman (2006), Felsenthal (2012), Janeček (2018), Felsenthal and Nurmi (2018, 2019), 
Oreský (2020).
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applies to Nanson’s rule which eliminates candidates with at most the average Borda 
scores. Bucklin’s performance in the unrestricted domain has been established by 
Tideman (see Felsenthal 2012, pp. 50, 55, Tideman 2006, p. 197). From his exam-
ples we can infer that this procedure violates the Condorcet winning criterion in the 
Condorcet domain as well. However, its failure on the Condorcet losing criterion 
has not been established. Table 6 does that using a minor modification of Tideman’s 
example. The profile contains a Condorcet winner, B, and a Condorcet loser, A. Yet, 
A is not excluded as the Condorcet losing criterion would require, but is elected 
along with C.11

That Coombs’s procedure fails on Condorcet-winning criterion on the Condorcet 
domain as well as in the unrestricted one has been shown by Tideman (Felsenthal 
2012, p. 50) and since it satisfies the Condorcet losing criterion in general, it does 
so in the Condorcet domain as well. The same argument applies to the Hare sys-
tem (aka alternative vote procedure or the single transferable vote in single-member 
constituencies). As the Hare system and the plurality runoff are equivalent in three-
candidate races and as the examples referred to above involve just three candidates, 
we can make the same conclusions regarding the plurality runoff system.

The last four procedures in Table 4 require a different voter input than the pre-
ceding ones to determine the winner and, thus, their evaluation using the same cri-
teria may be deemed inappropriate. In any event, all of them fail on both kinds of 
Condorcet criteria both in unrestricted and in Condorcet domains (Felsenthal 2012; 
Oreský 2020).

In general, the restriction of the profile domain is accompanied with very few 
changes in the performance of voting procedures in terms of Condorcet-related cri-
teria: what holds for the incidence of paradoxes under no domain restrictions mainly 
seems to hold in the Condorcet domain as well.

Table 5   Borda count does not 
elect the strong Condorcet 
winner

7 Voters 4 Voters

A B
B C
C A

Table 6   Bucklin’s procedure in 
the Condorcet domain

1 Voter 10 Voters 11 Voters 11 Voters 11 Voters 1 Voter

A A B B C C
B C A C A B
C B C A B A

11  So, the only candidate not elected by Bucklin’s procedure in the Condorcet domain is B, the Con-
dorcet winner which may be somewhat surprising.
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3.2 � Monotonicity‑Related Paradoxes

A cornerstone of democratic rule is that the opinions of the electorate make a differ-
ence and that the difference they make is in a non-perverse direction. Several non-
equivalent specifications of this principle have been introduced in the literature (for 
a brief exposition, see e.g. Nurmi 2004b). A common feature in each of them is that 
additional support, ceteris paribus, should never lead to an outcome that is to the 
disadvantage of the candidate. We consider three variants of the additional support 
and the associated paradoxical changes in the voting outcomes: 

1.	 Monotonicity failure in a fixed electorate. We distinguish two sub-types of these 
failures. If either of these failures can occur, the procedure under investigation is 
non-monotonic:

•	 Upward monotonicity failure Given a preference profile, procedure and a win-
ner x, the profile is modified so that the position of x is improved in some 
individual preference rankings, ceteris paribus. A procedure is (upward) 
monotonic if such a modification never makes x a non-winner.

•	 Downward monotonicity failure Given a preference profile, procedure and a 
winner x, suppose that the ranking of some other candidate y is lowered, cet-
eris paribus, and as a result y becomes the new winner. In this case we have 
an instance of the downward monotonicity failure.

2.	 Given a preference profile, procedure and a winner x, the electorate is augmented 
with a group of voters with an identical preference ranking where x is ranked 
first, ceteris paribus. A procedure satisfies strong positive involvement (Pérez 
2001) or top property (Kasper et al. 2019) if x remains the winner after any such 
augmentation.

3.	 Given a preference profile, procedure and a winner y, the electorate is augmented 
with a group of voters with an identical preference ranking where z is ranked last. 
A procedure satisfies the strong negative involvement (Pérez 2001) or bottom 
property (Kasper et al. 2019) if z cannot become the winner after such a change.

It is worth observing that monotonicity thus defined is a fixed electorate property, 
i.e. the changes investigated involve an electorate of a fixed size and a fixed num-
ber of candidates. The top and bottom properties, in turn, are variable electorate 
properties, i.e. they focus on changes occurring in voting outcomes that result from 
augmenting (or diminishing) a given electorate with specific types of voters.12 The 
seminal result by Moulin amounts to stating the incompatibility of the Condorcet 
winning criterion and the invulnerability to the no show paradox when there are at 
least four candidates (Moulin 1988). The result has subsequently been refined and 
extended (Brandt et al. 2017; Duddy 2014; Pérez 2001).

12  For an analysis of the relationships between the no show paradox and monotonicity, see Núñez and 
Sanver (2017).
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Table 7 summarizes the findings collected for the most part from Felsenthal and 
Nurmi (2017, 2018, 2019), Felsenthal and Tideman (2013), Felsenthalm and Tide-
man (2014). ‘1’ (‘0’, respectively) in the table indicates that the paradox in ques-
tion cannot (can) occur when using the procedure under the domain indicated by the 
column. Naturally, if a procedure is is invulnerable to a paradox under unrestricted 
domain, it is eo ipso invulnerable to it also under the Condorcet domain. Similarly, 
if a procedure is vulnerable to a paradox in the Condorcet domain, it is also vulner-
able to it under unrestricted domain.

Table 7 shows some important changes in performance of various rules in unre-
stricted vs. Condorcet domains. Most differences between the two domains are 
associated with the Condorcet extensions and the paradoxes in variable electorates. 
While the top property is satisfied by all Condorcet extensions in the Condorcet 
domain, the bottom property characterizes the same procedures in unrestricted and 
Condorcet domains. In fact, the existence of a Condorcet winner in a profile does 
not change the vulnerability of any system (of those under scrutiny here) to the neg-
ative involvement paradox.

Table 7   Invulnerability to 
some monotonicity-related 
paradoxes under unrestricted 
and Condorcet domain

Property Monotonicity Top Bottom

Domain Unrestr. Cond. Unrestr. Cond. Unrestr. Cond.

Amendment 1 1 0 1 0 0
Copeland 1 1 0 1 0 0
Dodgson 0 1 0 1 0 0
Kemeny 1 1 0 1 0 0
Minimax 1 1 0 1 1 1
Schwartz 1 1 0 1 0 0
Young 1 1 0 1 1 1
Borda 1 1 1 1 1 1
Plurality 1 1 1 1 1 1
Baldwin 0 1 1 1 0 0
Black 1 1 0 1 0 1
Bucklin 1 1 0 0 0 0
Coombs 0 0 0 0 1 1
Hare 0 0 0 1 0 0
Nanson 0 1 0 1 0 0
pl. runoff 0 0 0 1 0 0
Approval 1 1 1 1 1 1
Majority j. 1 1 0 0 0 0
Range voting 1 1 1 1 1 1
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3.3 � Choice Set Variance Paradoxes

By choice set variance paradoxes we refer to counterintuitive changes in voting out-
comes resulting (1) from considering subsets of candidates vis-à-vis the superset, 
and (2) from considering the choices made in subsets of voters vis-à-vis the choice 
made by the electorate in toto. More specifically, the former paradoxes occur when-
ever, given a profile over a set A of candidates, a procedure and a winner, say x ∈ A 
determined by the procedure, the same x is not the winner in all subsets of A con-
taining x.13 The paradox related to (2) occurs when, given a partitioning of voters 
and a profile such that the same candidate, x ∈ A , is the winner in each subset of vot-
ers when a given procedure is being applied, then some other candidate y is the win-
ner when the procedure is applied to the entire electorate (Young 1974). We shall 
call the former the subset choice and the latter the consistency paradox. In Table 8 
we report the possibility (0) or impossibility (1) of encountering these paradoxes 
under unrestricted domain and in a procedure-specific sub-domain of the Condorcet 
domain, viz. one where initial profile has a Condorcet winner and—moreover—this 

Table 8   Invulnerability to 
subset choice and consistency 
paradoxes under unrestricted 
and DSF domain

Paradox Subset choice Consistency

Domain Unrestr. DSF Unrestr. DSF

Amendment 0 1 0 1
Copeland 0 1 0 1
Dodgson 0 1 0 1
Kemeny 0 1 0 1
Minimax 0 1 0 1
Schwartz 0 1 0 1
Young 0 1 0 1
Borda 0 0 1 1
Plurality 0 0 1 1
Baldwin 0 1 0 1
Black 0 1 0 1
Bucklin 0 0 0 0
Coombs 0 0 0 0
Hare 0 0 0 0
Nanson 0 1 0 1
pl. runoff 0 0 0 0
Approval 1 1 1 1
Majority j. 1 1 0 0
Range voting 1 1 1 1

13  The property that is violated when this kind of paradox occurs has many names, e.g. heritage, heredity 
condition, subset choice condition, property � or Chernoff’s condition (Aizerman and Malishevski 1981; 
Aleskerov 1999; Fishburn 1974; Sen 1970; Chernoff 1954).
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candidate is elected by the procedure under investigation. This sub-domain will be 
called DSF domain in recognition of Dan S. Felsenthal who introduced the concept 
and studied it in detail. Obviously, the DSF domain coincides with the Condorcet 
domain for all Condorcet extensions. In other procedures the performance may dif-
fer in the Condorcet and DSF domains, since the latter is a proper sub-domain of 
the former. Thus, for example, the profile of Table 1 belongs to the DSF domain of 
the Borda count, but not to the DSF domain of the plurality rule. The point of this 
domain restriction is to provide an intuitive stable starting outcome, viz. one where 
there is a Condorcet winner which coincides with the choice ensuing from the pro-
cedure under investigation. The question addressed then is: to what extent does this 
initial stability guarantee invulnerability of the procedure against voting paradoxes?

A couple of observations on Table  8 are in order. First, the domain restriction 
does, indeed. make a difference when it comes to Condorcet extensions. While none 
of them exhibits invulnerability to subset choice and consistency paradoxes in gen-
eral, they all avoid those paradoxes in the DSF domain. Second, the two positional 
procedures, Borda and plurality, are unaffected by the domain restriction: they are 
vulnerable to the subset choice paradox both in the unrestricted and DSF domains, 
but are invulnerable to the consistency paradox in both domains. Third, two of the 
more recent voting rules that require non-standard voter input—approval and range 
voting—seem to do quite well in terms of the two paradoxes, while the majority 
judgment falls behind them on consistency.

4 � Conclusion

The voting theory community has long been divided into two camps: those advocat-
ing Condorcet’s view of pairwise majority winners as the ‘real’ winners and those 
of more positional persuasion. This paper reports some findings that are unlikely 
to resolve the difference in favour of one view over the other. Yet it is hoped that 
a somewhat more nuanced picture emerges from the preceding. The Condorcet 
domain represents a profile restriction that seems plausible in some contexts. Hence, 
it is worthwhile to find out whether the properties of various voting rules change 
essentially when it is assumed that the procedures are mainly used in the Condorcet 
domain. In particular, it is of some interest to see whether the vulnerability to some 
important voting paradoxes depends essentially on the assumption that the profiles 
of interest are in the unrestricted domain rather than, say, in the Condorcet one. The 
no show paradox or the failure on the bottom property that, by Moulin’s result (Mou-
lin 1988), is a known drawback of Condorcet extensions seems a particularly persis-
tent flaw of these procedures, surviving even in the Condorcet domain. In contrast, 
the more-is-less paradox or failure on the top property is a nonexistent possibility for 
those procedures in this domain. The subset choice and consistency paradoxes van-
ish in Condorcet extensions in the DSF domain. The Borda count and plurality vot-
ing fail in both domains on subset choice, but are consistent in these domains. The 
best performance in terms of the subset choice and consistency criteria is exhibited 
by the approval and range voting procedures.
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